第十二章全等三角形知识点及单元测试题解析

合集下载

2024年八年级数学上册《全等三角形》及答案解析

2024年八年级数学上册《全等三角形》及答案解析

第十二章全等三角形(单元重点综合测试)班级_________姓名________学号__________分数__________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有()①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个2.下列各组图形中,是全等形的是()A. B.C. D.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cmB.2.5cmC.3cmD.5cm4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是()A.SSSB.ASAC.SASD.HL5.如图,在△ABC和△DEF中,点A,E,B,AC∥DF,AC=DF,能判定△ABC≌△DEF的是()A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在( )处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点8.如图,在△ABC中,CD平分∠ACB,DE⊥BC于点E,S△ABC=30,DE=4,BC=10,则AC的长是()A.5B.6C.7D.89.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列五个结论:①DE=DF;②BC=2DB;③AD⊥BC;④AB=3BF;⑤S△ADB=2S△BDF;其中正确的结论共有()A.4个B.3个C.2个D.1个10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()A.5m2 B.2m2 C.5m2 D.4m22二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.12.如图,四边形ABCD≌四边形A B C D .若∠B=90°,∠C=60°,∠D =105°,则∠A的大小为度.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A B C 的位置,使B 和C重合,连接AC 交A C于D,则△C DC的面积为.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒t>0,则当t=秒时,△DEB与△BCA全等.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.22.问题提出:如图1,在四边形ABCD中,∠BAD与∠BCD互补,∠B与∠D互补,AB=AD,∠BAD=x°0<x<180,∠ACB=y°,数学兴趣小组在探究y与x的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x⋯304050607080β130y757065α555040θ这里α=,β=,θ=.猜想证明:(2)根据表格,猜想:y与x之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB到E,使BE=DC,连接AE,⋯,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x+y=135,AC=10,求四边形ABCD的面积.23.(1)【问题解决】如图①,∠AOB=∠DFE=90°,OC平分∠AOB,点F在OC上,∠DFE的两边分别与OA,OB交于点D,E.当FE⊥OB,FD⊥OA时,则FD与FE的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F作两条相互垂直的射线FM,FN,分别交OA,OB于点M,N,判断FM与FN的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD,如图③所示,∠DAB=∠DCB=90°,AC是∠DAB的平分线,AB= 50m,AD=30m,直接写出该空地的面积.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE的面积.【深入探究】(3)如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AF于点F,DE与直线AF交于点G.①求证DG=GE;②若BC=21,AF=12,求△ADG的面积.第十二章全等三角形(单元重点综合测试)班级_________姓名________学号__________分数__________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有()①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个【答案】B【分析】根据全等形的定义,全等三角形的判定与性质,即可判断.【详解】解:能够完全重合的两个图形叫做全等形,即形状和大小相同的两个图形是全等形,故①②说法错误;全等三角形能够完全重合,所以全等三角形的周长相等,面积相等,故③说法正确;若△ABC≌△DEF,∠A的对应角为∠D,所以∠A=∠D,故④说法正确;说法正确的有③④,共2个.故选:B.【点睛】本题考查全等形,理解能够完全重合的两个图形叫做全等形是解题关键.2.下列各组图形中,是全等形的是()A. B.C. D.【答案】B【分析】本题考查全等形,掌握能完全重合的两个图形是全等形是解题的关键.【详解】观察发现:A,C,D选项中两个图形不能完全重合,不是全等形;B选项中两个图形能完全重合,是全等形,故选B.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cmB.2.5cmC.3cmD.5cm【答案】C【分析】此题考查了全等三角形的性质,解题的关键熟练掌握性质的应用.根据全等三角形的对应边相等,再利用线段和差即可求解.【详解】∵△ABC≌△EBD,∴BE=AB=2cm,BC=BD=5cm,∴CE=BC-BE=3cm,故选:C.4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是()A.SSSB.ASAC.SASD.HL【答案】B【分析】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.直接利用全等三角形的判定方法即可得出答案.【详解】解:∵AB⊥BC,CD⊥BC,∴∠ABO=∠DCO=90°,在△ABO和△DCO中,∠ABO=∠DCOBO=OC=CO∠BOA=∠COD,∴△ABO≌△DCO ASA∴证明△ABO≌△DCO的依据的是ASA,故选:B.5.如图,在△ABC和△DEF中,点A,E,B,AC∥DF,AC=DF,能判定△ABC≌△DEF的是()A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D【答案】B【分析】本题考查三角形全等的判定,先根据平行线的性质得到∠A=∠D,加上AC=DF,则可根据全等三角形的判定方法对各选项进行判断即可,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS,HL是解题的关键.【详解】解:∵AC∥DF,∴∠A=∠D,∵AC=DF,A、添加BC=DE,不能判定△ABC≌△DEF;B、添加AE=DB,能判定△ABC≌△DEF;C、添加∠A=∠DEF,不能判定△ABC≌△DEF;D、添加∠ABC=∠D,不能判定△ABC≌△DEF;故选:B.6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对【答案】C【分析】本题主要考查三角形全等的判定定理,角平分线的性质,熟练掌握三角形全等的判定方程是解题的关键.根据全等三角形的判定分别证明△AOP≌△BOP(SAS),Rt△P AE≌Rt△PBF HL,△OEP≌△OFP (AAS),即可得到答案.【详解】解:∵OP平分∠MON,∴∠AOP=∠BOP,∵OA=OB,OP=OP,∴△AOP≌△BOP(SAS);∴AP=BP,∵OP平分∠MON,PE⊥OM,PF⊥ON∴PE=PF,∵PE⊥OM于点E,PF⊥ON于点F,∴Rt△P AE≌Rt△PBF HL;∵OP平分∠MON,∴∠AOP=∠BOP,又∵∠OEP=∠OFP=90°,OP=OP,∴△OEP≌△OFP(AAS).∴图中全等三角形有3对故选C.7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在( )处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点【答案】B【分析】本题考查的是三角形的角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键.根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:要使洒水龙头到草坪三条边的距离相等,则洒水龙头的位置应选在三角形三条角平分线的交点,故选:B8.如图,在△ABC 中,CD 平分∠ACB ,DE ⊥BC 于点E ,S △ABC =30,DE =4,BC =10,则AC 的长是()A.5B.6C.7D.8【答案】A 【分析】本题主要考查了角平分线的性质定理.过点D 作DF ⊥AC 于点F ,根据角平分线的性质可得DE =DF =4,再由S △ABC =S △DBC +S △DAC ,即可求解.【详解】解:如图,过点D 作DF ⊥AC 于点F ,∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,DE =4,∴DE =DF =4,∵S △ABC =S △DBC +S △DAC ,S △ABC =30,BC =10,∴30=12DE ×BC +12DF ×AC ,∴30=12×4×10+12×4×AC ,∴AC =5,故选:A .9.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF ,给出下列五个结论:①DE =DF ;②BC =2DB ;③AD ⊥BC ;④AB =3BF ;⑤S △ADB =2S △BDF ;其中正确的结论共有()A.4个B.3个C.2个D.1个【答案】A 【分析】本题考查了全等三角形判定和性质,角平分线的性质,等腰三角形的判定和性质,由角平分线的性质和平行线的性质可证∠ACB=∠ABC,可得AC=AB,由等腰三角形的性质可得AD⊥BC,CD= BD,由“ASA”可证△CDE≌△BDF,可得S△CDE=S△BDF,CE=BF,DE=DF,即可求解.【详解】解:∵BC恰好平分∠ABF,∴∠ABC=∠CBF,∵BF∥AC,∴∠ACB=∠CBF,∴∠ACB=∠ABC,∴AC=AB,且AD是△ABC的角平分线,∴AD⊥BC,BC=2DB,故②,③正确,符合题意;在△CDE和△BDF中,∠ACB=∠CBF CD=BD∠CDE=∠BDF,∴△CDE≌△BDF ASA,∴S△CDE=S△BDF,CE=BF,DE=DF,故①正确,符合题意;∵AE=2BF,∴AC=3BF=AB,故④正确,符合题意;∵BD=CD,∴S△ADB=S△ACD,∵AE=2BF,∴S△ADB=S△ACD=3S△CDE=3S△BDF,故⑤错误,不符合题意;故选:A.10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()A.52m2 B.2m2 C.5m2 D.4m2【答案】A【分析】本题主要考查平行线间的距离,全等三角形的判定与性质,过点B作BE⊥直线a于点E,延长EB交直线c于点F,过点C作CD⊥直线a于点D,证明△CDA≌△AEB(AAS),得出AE=CD=2m,AD=BE=m,CF=DE=AD+AE=m+2m=3m,再根据=S四边形DEFE-S△ACD×2-S△BCF求解即可【详解】解:过点B作BE⊥直线a于点E,延长EB交直线c于点F,过点C作CD⊥直线a于点D,则∠CDA=∠AEB=90°,如图,∵a∥b∥c,相邻两条平行线间的距离为m,∴BF⊥直线c,CD=2m,BE=BF=m,∵∠CAB=90°,∠CDA=90°∴∠DCA+∠DAC=90°,∴∠DCA=∠EAB,在△CDA和△AEB中,∠DCA=∠EAB∠CDA=∠AEBAC=AB,∴△CDA≌△AEB(AAS),∴AE=CD=2m,AD=BE=m,∴CF=DE=AD+AE=m+2m=3m∴△ABC的面积=S四边形DEFE -S△ACD×2-S△BCF=3m×2m-12×2m×m×2-12×3m×m=52m2故选:A二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.【答案】130°/130度【分析】本题考查了全等三角形的性质与判定,邻补角的定义,掌握全等三角形的性质与判定是解题的关键.证明△ADC≌△ABE AAS得出∠ADC=∠ABE,根据邻补角即可求解.【详解】解:∵在△ADC和△ABE中,∠C=∠E∠A=∠AAD=AB,∴△ADC≌△ABE AAS,∴∠ADC=∠ABE,∵∠CDE=50°,∴∠ADC=180°-50°=130°,∴∠ABE=130°.故答案为:130°.12.如图,四边形ABCD≌四边形A B C D .若∠B=90°,∠C=60°,∠D =105°,则∠A的大小为度.【答案】105【分析】本题考查了全等图形的性质和四边形内角和公式,解题的关键在于熟练掌握全等图形的性质.根据全等的性质求出∠D=∠D ,利用四边形的内角和公式求出∠A的度数即可.【详解】解:∵四边形ABCD≌四边形A B C D .∴∠D=∠D ,∵∠D =105°,∴∠D=105°,∵∠B=90°,∠C=60°,∴∠A=360°-90°-60°-105°=105°,故答案为:105.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.【答案】∠BAD=∠CAE【分析】在△ABE与△ACD中,已知AE=AD,∠AED=∠ADE,即已知一角及角的一边对应相等,根据“AAS”的判定方法,可以添加已知边的对角对应相等即可.本题考查了全等三角形的判定定理:AAS:两角及其中一个角的对边对应相等的两个三角形全等.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.根据已知结合图形及判定方法选择条件是正确解答本题的关键.【详解】解:可添加一个条件:∠BAD=∠CAE,使△ABD≌△ACE.理由:在△ABD与△ACE中,∠BAD=∠CAE∠AED=∠ADEBD=CE,∴△ABD≌△ACE(AAS).故答案为∠BAD=∠CAE14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A B C 的位置,使B 和C重合,连接AC 交A C于D,则△C DC的面积为.【答案】12【分析】根据平移的性质可得AC=A C ,BC=B C ,AC∥A C ,证明△ADC≌△C DA ,得到AD=C D,则S△C DC =12S△ACC,再推出S△ABC=S△ACC=24,则S△C DC=12S△ACC=12.【详解】解:由平移的性质可得AC=A C ,BC=B C ,AC∥A C ,∴∠DCA=∠DA C ,∠DAC=∠DC A ,∴△ADC≌△C DA ASA,∴AD=C D,∴S△C DC =12S△ACC,∵BC=CC ,△ABC的面积为24,∴S△ABC=S△ACC=24,∴S△C DC =12S△ACC=12.故答案为:12.【点睛】本题主要考查了平移的基本性质,全等三角形的性质与判定,三角形中线的性质,熟知平移的性质是解题的关键:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.【答案】52°/52度【分析】本题考查与角平分线有关的三角形的内角和定理.过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.【详解】解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵点M、N是∠ABC与∠ACB三等分线的交点,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=66°,∴∠ABC+∠ACB=180°-∠A=180°-66°=114°,∴∠MBC+∠MCB=23∠ABC+∠ACB=76°,在△BMC中,∠BMC=180°-∠MBC+∠MCB=180°-76°=104°∴∠BMN=12∠BMC=52°.故答案为:52°.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒t>0,则当t=秒时,△DEB与△BCA全等.【答案】3或7或10【分析】本题考查全等三角形的性质,关键是要分情况讨论.分情况,当E在线段AB上,或当E在线段AB延长线上,由HL即可求解.【详解】解:∵CA⊥AB,BM⊥AB,∠CAB=∠DBE=90°,∵ED=CB,当E在线段AB上时,若BE=AC,∴Rt△DEB≌Rt△BCA(HL),∵AE=3tcm,∴BE=AB-AE=15-3tcm,∴15-3t=6,∴t=3;若BE=AB,∴Rt△DEB≌Rt△CBA(HL),∴AE=0,∴t=0(舍去),当E在线段AB延长线上时,若BE=AC,∴Rt△DEB≌Rt△BCA(HL),∵AE=3t=AB+BE=15+6=21(cm),∴t=7,若BE=AB,∴Rt△DEB≌Rt△CBA(HL),∵AE=3t=AB+BE=15+15=30(cm),∴t=10,∴当t=3或7或10秒时,△DEB与△BCA全等.故答案为:3或7或10.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.【答案】见解析【分析】本题考查了全等三角形的判定与性质,由∠1=∠2可得∠EAD=∠BAC,再根据条件AB=AE,∠C=∠D,可利用AAS证明△ABC≌△AED AAS,再根据全等三角形对应边相等即可得出结论.【详解】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠EAD=∠BAC,在△EAD和△BAC中,∠C=∠D∠BAC=∠EADAB=AE,∴△ABC≌△AED AAS,∴BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.【答案】(1)见解析(2)BC∥AD,理由见解析【分析】本题考查了全等三角形的判定与性质,解决本题的关键是得到△ABC≌△CDA.(1)利用SAS证明△ABC≌△CDA即可;(2)由△ABC≌△CDA,得∠BCA=∠CAD,进而可以判断BC与AD的位置关系.【详解】(1)证明:∵AB∥CD,∴∠BAC=∠ACD,在△ABC与△CDA中,AB=CD∠BAC=∠ACDAC=CA,∴△ABC≌△CDA SAS;(2)解:BC∥AD,理由如下:∵△ABC≌△CDA,∴∠BCA=∠CAD,∴BC∥AD.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.【答案】(1)4;△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF(2)证明见解析【分析】本题主要考查了全等三角形的性质与判定,找出判定三角形全等的条件是解题的关键.(1)结合已知条件,再根据全等三角形的四个判定方法,即可找出所有的全等三角形;(2)先证明△AME≌△CNF SSS,即可证明∠MAE=∠NCF.【详解】(1)解:有4对全等三角形,分别为:△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF,理由如下:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA SSS,∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO ASA,∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF SAS,∴AE=CF,∵OE=OF,OM=ON,∴OE-OM=OF-ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF SSS;(2)证明:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA SSS,∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO ASA,∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF SAS,∴AE=CF,∵OE=OF,OM=ON,∴OE-OM=OF-ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF SSS,∴∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.【答案】(1)详见解析(2)125°【分析】本题考查了平行线性质和全等三角形的性质和判定的应用,证得△ABC≌△CDE是解题的关键.(1)根据平行线求出∠ACD=∠CDE,∠ACB=∠CED,再说明∠B=∠CDE,最后结合AC=CE运用AAS即可证明结论;(2)根据全等三角形性质得出∠A=∠E=55°,进而根据平角定义即可解答.【详解】(1)证明∶∵AC∥DE,∴∠ACD=∠CDE,∠ACB=∠CED,∵∠ACD=∠B,∴∠B=∠CDE,∵AC=CE,∴△ABC≌△CDE AAS.(2)解:∵∠A=55°,∵△ABC≌△CDE,∴∠A=∠ECD=55°,∴∠BCD=180°-∠ECD=180°-55°=125°.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.【答案】(1)∠ACE=37°(2)证明见解析(3)15【分析】本题主要考查了邻补角的性质、角平分线的性质与判定定理、三角形的面积等知识点,灵活运用相关知识点成为解答本题的关键.(1)根据邻补角的定义和垂直的定义可得∠ACD=74°、∠CHE=90°,进而得到∠ECH=37°,然后根据∠ACE=∠ACD-∠ECH即可解答;(2)如图:过E点分别作EM⊥BF于M,EN⊥AC与N,根据角平分线的性质定理以及角平分线的定义可得EM=EH、CE平分∠ACD、EN=EH,最后根据角平分线的判定定理即可解答;(3)根据S△ACD=S△ACE+S△CED结合已知条件可得EM=3,最后运用三角形的面积公式即可解答.【详解】(1)解:∵∠ACB=106°,∴∠ACD=180°-106°=74°,∵EH⊥BD,∴∠CHE=90°,∵∠CEH=53°,∴∠ECH=90°-53°=37°,∴∠ACE=∠ACD-∠ECH=74°-37°=37°.(2)证明:如图:过E点分别作EM⊥BF于M,EN⊥AC与N,∵BE平分∠ABC,∴EM=EH,∵∠ACE =∠ECH =37°,∴CE 平分∠ACD ,∴EN =EH ,∴EM =EN ,∴AE 平分∠CAF .(3)解:∵AC +CD =16,S △ACD =24,EM =EN =EH ,∴S △ACD =S △ACE +S △CED =12AC ⋅EN +12CD ⋅EH =12(AC +CD )⋅EM =24,即12×16⋅EM =24,解得EM =3,∵AB =10,∴S △ABE =12AB ⋅EM =15.22.问题提出:如图1,在四边形ABCD 中,∠BAD 与∠BCD 互补,∠B 与∠D 互补,AB =AD ,∠BAD =x °0<x <180 ,∠ACB =y °,数学兴趣小组在探究y 与x 的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x⋯304050607080β130y 757065α555040θ这里α=,β=,θ=.猜想证明:(2)根据表格,猜想:y 与x 之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB 到E ,使BE =DC ,连接AE ,⋯,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x +y =135,AC =10,求四边形ABCD 的面积.【答案】(1)60,100,15;(2)y =90-12x ,理由见详解;(3)S 四边形ABCD =50【分析】(1)观察表格发现:x 每增加10,y 减小5,由此即可得出α、β、θ的值.(2)根据表格猜想:y =90-12x .延长CB 到E ,使BE =DC ,连接AE ,则可得△ABE ≌△ADE ,进而可得AE =AC ,∠EAB =∠CAD ,则可得∠EAC =x °.在△AEC 中,根据三角形内角和定理即可得出y 于x 之间的关系式.(3)延长CB 到E ,使BE =DC ,连接AE .由(2)得△ABE ≌△ADE ,则S △ABE =S △ADE ,进而可得S 四边形ABCD =S △AEC .由x +y =135,y =90-12x 可得x =90,y =45.则可得∠EAC =90°,∠AEC =∠ACE =45°,进而可得AE =AC =10,可得S △AEC 的值,即可得S 四边形ABCD 的值.【详解】(1)观察表格发现:x每增加10,y减小5,∴α=65-5=60,β=80+2×10=100,θ=40-3×5=15.故答案为:60,100,15,x.(2)根据表格猜想:y=90-12证明:如图2,延长CB到E,使BE=DC,连接AE,则∠ABC+∠ABE=180°,又∵∠ABC+∠D=180°,∴∠ABE=∠D,又∵AB=AD,∴△ABE≌△ADE(SAS),∴AE=AC,∠EAB=∠CAD,∴∠E=∠ACB=y°,∠EAC=∠EAB+∠BAC=∠CAD+∠BAC=∠BAD=x°.在△AEC中,∠EAC+∠E+∠ACE=180°,∴x°+2y°=180°,y=90-1x.2(3)如图,延长CB到E,使BE=DC,连接AE.由(2)得△ABE≌△ADE,∴S△ABE=S△ADE,=S△ACD+S△ABC=S△ABE+S△ABC=S△AEC,∴S四边形ABCD∵x+y=135,y=90-1x,2x=135,∴x+90-12解得x=90,y=45,∴∠EAC=90°,∠AEC=∠ACE=45°,∴AE=AC=10,×10×10=50,∴S△AEC=12∴S=50.四边形ABCD【点睛】本题考查了数字类探索规律问题,以及全等三角形的判定和性质,三角形内角和定理.熟练掌握以上知识,证明出y与x之间的关系式是解题的关键.23.(1)【问题解决】如图①,∠AOB =∠DFE =90°,OC 平分∠AOB ,点F 在OC 上,∠DFE 的两边分别与OA ,OB 交于点D ,E .当FE ⊥OB ,FD ⊥OA 时,则FD 与FE 的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F 作两条相互垂直的射线FM ,FN ,分别交OA ,OB 于点M ,N ,判断FM 与FN 的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD ,如图③所示,∠DAB =∠DCB =90°,AC 是∠DAB 的平分线,AB =50m ,AD =30m ,直接写出该空地的面积.【答案】(1)FD =FE ;(2)FM =FN ,理由见详解;(3)1600m 2【分析】(1)根据“角平分线上的点到角两边的距离相等”可得FD =FE ;(2)先根据四边形内角和等于360°可得∠DFE =90°,由∠DFE =∠FMN =90°可得∠DFM =∠EFN ,再根据ASA 证明△DFM ≌△EFN ,则可得FM =FN ;(3)过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点.由(2)得△CFD ≌△CEB ,则可得FD =EB ,S △CFD =S △CEB ,进而可得S 四边形ABCD =S 四边形AECF .证明△ACF ≌△ACE (,则可得AF =AE ,由AE =AB -BE 、AF =AD +DF 可求得BE 的长,进而可得AF 、AE 的长,由此可得S 四边形AECF 的值,即可得S 四边形ABCD 的值.【详解】(1)解:∵OC 平分∠AOB ,点F 在OC 上,且FE ⊥OB ,FD ⊥OA ,∴FD =FE .(2)解:FD =FE ,理由如下:∵FD ⊥OA ,FE ⊥OB ,∴∠FDO =∠FEO =∠FEN =90°,∵四边形DOEF 中,∠FDO =∠FEO =∠AOB =90°,∴∠DFE =360°-∠FDO -∠FEO -∠AOB =90°,∴∠DMF +∠MFE =90°,又∵FM ⊥FN ,∴∠FMN =90°,∴∠DFM =∠EFN ,在△DFM 和△EFN 中,∠FDM =∠FENFD =FE ∠DFM =∠EFN,∴△DFM ≌△EFN (ASA ),∴FM =FN .(3)解:如图,过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点,由(2)得△CFD≌△CEB,∴FD=EB,S△CFD=S△CEB,∴S四边形ABCD =S四边形AECF,∵AC是∠DAB的平分线,∴∠DAC=∠CAB,又∵∠CFB=∠CEA=90°,AC=AC,∴△ACF≌△ACE(AAS),∴AF=AE,又∵AE=AB-BE,AF=AD+DF,∴AB-BE=AD+DF,∴50-BE=30+BE,解得BE=10,∴AF=AE=40,∴S四边形AECF=40×40=1600m2,∴S四边形ABCD=1600m2,答:该空地的面积为1600m2.【点睛】本题主要考查了角平分线的性质、全等三角形的判定和性质,熟练掌握以上知识,正确的作出辅助线是解题的关键.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.【答案】(1)见解析;(2)见解析;(3)补全图形见解析,∠PCO=∠PDO或∠PCO+∠PDO=180°【分析】本题是三角形综合题目,考查了全等三角形的判定与性质、角平分线的性质等知识,本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键,属于中考常考题型.(1)先证明△DOE≌△COF(SAS),得∠PEC=∠PFD,再证△CPE≌△DPF(AAS),得PE=PF,然后证△OPE≌△OPF(SSS),得∠POE=∠POF,即可得出结论;(2)先证明△OCF≌△ODE(ASA),可得OF=OE,由(1)可得OP平分∠AOB;(3)过点P分别作PM⊥OA于M,PN⊥OB于N,分两种情况进行求解即可.【详解】解:(1)∵OC=OD,∠DOE=∠COF,OE=OF,∴CE=DF,△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠DPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,PE=PF,OP=OP,∴△OPE≌△OPF(SSS),∴∠POE=∠POF,即∠POA=∠POB,∴射线OP平分∠AOB;(2)∵CF⊥OA,DE⊥OB,∴∠OCF=∠ODE=90°,∴∠COF=∠DOE,OC=OD,∴△OCF≌△ODE(ASA),∴OF=OE,由(1)可得OP平分∠AOB;(3)补全图形如下,过点P分别作PM⊥OA于M,PN⊥OB于N,∵OP是∠AOB的平分线,∴PM=PN,∠PMC=∠PND=90°,当PC=PD1时,在Rt△PMC和Rt△PND1中,PC=PD1,PM=PN∴Rt△PMC≌Rt△PND1(HL),∴∠PCO=∠PD1O;当PC=PD2时,同理得Rt△PMC≌Rt△PND2HL,∴∠PCM=∠PD2N;∵∠PD2N+∠PD2O=180°,∴∠PCO+∠PD2O=180°,综上所述,∠PCO与∠PDO的数量关系为∠PCO=∠PDO或∠PCO+∠PDO=180°;25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE的面积.【深入探究】(3)如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AF于点F,DE与直线AF交于点G.①求证DG=GE;②若BC=21,AF=12,求△ADG的面积.【答案】(1)见解析;(2)50;(3)①见解析;63【分析】(1)证明△ABC≌△DAE AAS,即可得证;(2)同(1)法得到△AEP≌△BAG,△CBG≌△DCH,分割法求出图形面积即可;(3)①过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q,易证△AFB≌△DP A,△AFC ≌△EQA,得到DP=AF,EQ=AF,再证明△DPG≌△EQG AAS,即可得出结论;②根据全等三角形的性质,求出AG的长,进而利用面积公式进行求解即可.【详解】解:(1)证明:∵∠BAD=90°,∴∠BAC+∠DAE=90°,∵BC⊥CA,DE⊥AE,∴∠ACB=∠DEA=90°,∴∠BAC+∠ABC=90°,∴∠ABC=∠DAE,在△ABC和△DAE中,∠ACB=∠DEA∠ABC=∠DAEBA=AD∴△ABC≌△DAE AAS,∴BC=AE.(2)由模型呈现可知,△AEP≌△BAG,△CBG≌△DCH,∴AP=BG=3,AG=EP=6,CG=DH=4,CH=BG=3,则S实线围成的图形=12×4+6×3+6+4+3-12×3×6-12×3×6-12×3×4-12×3×4=50.(3)①过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q.图3由【模型呈现】可知,△AFB≌△DP A,△AFC≌△EQA,∴DP=AF,EQ=AF∴DP=EQ,∵DP⊥AG,EQ⊥AG∴∠DPG=∠EQG=90°,在△DPG和△EQG中,∠DPG=∠EQG∠DGP=∠EGQDP=EQ∴△DPG≌△EQG AAS,∴DG=GE.②由①可知,BF=AP,FC=AQ,∴BC=BF+FC=AP+AQ,∵BC=21,∴AP+AQ=21,∴AP+AP+PG+GQ=21,由①△DPG≌△EQG得∴PG=GQ,∴AP+AP+PG+PG=21,∴AP+PG=10.5,∴AG=10.5,∴S△ADG=1×10.5×12=63.2。

八年级数学上册第十二章全等三角形知识点总结归纳(带答案)

八年级数学上册第十二章全等三角形知识点总结归纳(带答案)

八年级数学上册第十二章全等三角形知识点总结归纳单选题1、如图,OD平分∠AOB,DE⊥AO于点E,DE=5,点F是射线OB上的任意一点,则DF的长度不可能是()A.4B.5C.6D.7答案:A分析:根据角平分线的性质,可知点D到OB和OA的距离相等,并且点到直线的线段中,垂线段最短,最短距离为5,即可判断.∵OD平分∠AOB,DE⊥AO于点E,DE=5,∴D到OB的距离等于5,∴DF≥5故DF的长度不可能为4,故选A.小提示:本题考查了角平分线的性质,点到直线的线段中,垂线段最短,熟练掌握性质是本题的关键.2、下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正三角形一定是全等图形答案:B分析:根据全等图形的定义进行判断即可.解:A:两个面积相等的图形不一定是全等图形,故A错误,不符合题意;B:两个全等图形形状一定相同,故B正确,符合题意;C:两个周长相等的图形不一定是全等图形,故C错误,不符合题意;D:两个正三角形不一定是全等图形,故D错误,不符合题意;故选:B.小提示:本题考查了全等图形,熟练运用“能够完全重合的两个图形叫做全等形”是本题的关键.3、如图,在△ABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF,则下列结论:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正确的有()A.①②③B.①②④C.①③④D.①②③④答案:D分析:证得△CAF≌△GAB(SAS),从而推得①正确;利用△CAF≌△GAB及三角形内角和与对顶角,可判断②正确;证明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,则③正确,同理△ANG≌△CDA,得出NG=AD,则FM=NG,证明△FME≌△GNE(AAS).可得出结论④正确.解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正确;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC与AG所交的对顶角相等,∴BG与FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正确;过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正确,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正确.故选:D.小提示:本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键.4、如图,BD是△ABC的角平分线,AE⊥BD,垂足为F,若∠ABC=35°,∠C=50°,则∠CDE的度数为()A .35°B .40°C .45°D .50°答案:C分析:根据角平分线的定义和垂直的定义得到∠ABD =∠EBD =12∠ABC =35°2,∠AFB =∠EFB =90°,推出AB =BE ,根据等腰三角形的性质得到AF =EF ,求得AD =ED ,得到∠DAF =∠DEF ,根据三角形的外角的性质即可得到结论. 解:∵BD 是△ABC 的角平分线,AE ⊥BD ,∴∠ABD =∠EBD =12∠ABC =35°2,∠AFB =∠EFB =90°,∴∠BAF =∠BEF ,∴AB =BE ,AE ⊥BD ,∴BD 是AE 的垂直平分线,∴AD =ED ,∴∠DAF =∠DEF ,∵∠BAC =180°-∠ABC -∠C =95°,∴∠BED =∠BAD =95°,∴∠CDE =95°-50°=45°,故选C .小提示:本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.5、如图,△ABC ≌△DEF ,若∠A =80°,∠F =30°,则∠B 的度数是( )A.80°B.70°C.65°D.60°答案:B分析:由△ABC≌△DEF根据全等三角形的性质可得∠C=∠F=30°,再利用三角形内角和进行求解即可.∵△ABC≌△DEF,∴∠C=∠F,∵∠F=30°,∴∠C=30°,∵∠A=80°,∠A+∠B+∠C=180°,∴∠B=180°−∠A−∠C=70°,故选:B.小提示:本题考查了全等三角形的性质及三角形的内角和定理,熟练掌握知识点是解题的关键.6、小明同学只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.在角的内部,到角的两边距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形的三条高交于一点D.三角形三边的垂直平分线交于一点答案:A分析:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,因为是两把完全相同的长方形直尺,可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB如图所示:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.小提示:本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.7、如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE//AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9答案:A分析:根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明△BDF≌△DEC,求出BF=CD=3,故A错误.解:在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DF⊥AB,∴CD=DF=3,故B正确;∵DE=5,∴CE=4,∵DE//AB,∴∠ADE=∠DAF,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AE=DE=5,故C正确;∴AC=AE+CE=9,故D正确;∵∠B=∠CDE,∠BFD=∠C=90°,CD=DF,∴△BDF≌△DEC,∴BF=CD=3,故A错误;故选:A.小提示:此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键.8、已知图中的两个三角形全等,则∠α等于()A.72∘B.60∘C.58∘D.50∘答案:D分析:根据全等三角形的性质:全等三角形对应角相等,即可得到结论.∵图中的两个三角形全等,∠α为a和c的夹角又∵第一个三角形中a和c的夹角为50°∴∠α=50°故选:D.小提示:本题考查了全等三角形的性质,准确找到对应角是解题的关键.9、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④答案:B分析:根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.解:①和③可以完全重合,因此全等的图形是①和③.故选:B.小提示:此题主要考查了全等图形,关键是掌握全等图形的概念.AD,BD平分∠ABC,则点D到AB的距离等于( ) 10、如图,在ΔABC中,∠C=90°,AC=8,DC=13A.4B.3C.2D.1答案:C分析:如图,过点D作DE⊥AB于E,根据已知求出CD的长,再根据角平分线的性质进行求解即可.如图,过点D作DE⊥AB于E,∵AC=8,DC=1AD,3∴CD=8×1=2,1+3∵∠C=90°,BD平分∠ABC,∴DE=CD=2,即点D到AB的距离为2,故选C.小提示:本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.填空题11、如图,四边形ABCD中,∠B+∠D=180°,AC平分∠DAB,CM⊥AB于点M,若AM=4cm,BC=2.5cm,则四边形ABCD的周长为_____cm.答案:13分析:过C作CE⊥AD的延长线于点E,由条件可证△AEC≌△AMC,得到AE=AM.证明△ECD≌△MBC,由全等的性质可得DE=MB,BC=CD,则问题可得解.解:如图,过C作CE⊥AD的延长线于点E,∵AC平分∠BAD,∴∠EAC=∠MAC,∵CE⊥AD,CM⊥AB,∴∠AEC=∠AMC=90°,CE=CM,在Rt△AEC和Rt△AMC中,AC=AC,CE=CM,∴Rt△AEC≌Rt△AMC(HL),∴AE=AM=4cm,∵∠ADC+∠B=180°,∠ADC+∠EDC=180°,∴∠EDC=∠MBC,在△EDC和△MBC中,{∠DEC=∠CMB∠EDC=∠MBCCE=CM,∴△EDC≌△MBC(AAS),∴ED=BM,BC=CD=2.5cm,∴四边形ABCD的周长为AB+AD+BC+CD=AM+BM+AE﹣DE+2BC=2AM+2BC=8+5=13(cm),所以答案是:13.小提示:本题考查全等三角形的判定与性质,掌握常用的判定方法是解题的关键.12、把两个全等的三角形重合到一起,重合的顶点叫做_________,重合的边叫做_________,重合的角叫做_________.记两个三角形全等时,通常把表示_________的字母写在对应位置上.答案:对应顶点对应边对应角对应顶点分析:根据能够完全重合的两个图形叫做全等形,以及对应顶点、对应边、对应角的概念填空.解:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.记两个三角形全等时,通常把表示对应顶点的字母写在对应位置上.所以答案是:对应顶点;对应边;对应角;对应顶点.小提示:此题主要考查了全等形及相关概念,属于基本概念题,是需要识记的内容.13、如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=_____.答案:12cm或6cm##6cm或12cm分析:当AP=12cm或6cm时,△ABC和△PQA全等,根据HL定理推出即可.解:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=6cm=BC时,在Rt△ACB和Rt△QAP中∵{AB=PQ,BC=AP∴Rt△ACB≌Rt△QAP(HL),②当AP=12cm=AC时,在Rt△ACB和Rt△PAQ中{AB=PQ,AC=AP∴Rt△ACB≌Rt△PAQ(HL),所以答案是:12cm或6cm.小提示:本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.14、如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点B的坐标为(1,5),则A点的坐标是_____.答案:(-7,3)分析:先作辅助线AD ⊥OC 、BE ⊥OC ,通过导角证明∠CAD =∠BCE ,再证明△ADC ≌△CEB , 得到AD 的长度(A 的纵坐标长度)、DC 长度(加上OC 得到A 横坐标长度),根据A 点所在象限的符号,确定A 点坐标. 如图,过点A 作AD ⊥OC 于点D ,过点B 作BE ⊥OC 于点E∵ 点C 的坐标为(-2,0),点B 的坐标为(1,5)∴ OC =2,OE =1,BE =5∵∠ACB =90°∴∠ACD +∠CAD =90°,∠ACD +∠BCE =90°∴∠CAD =∠BCE在△ADC 和△CEB 中,{∠ADC =∠BEC =90°∠CAD =∠BCE AC =BC∴△ADC ≌△CEB(AAS)∴DC =BE =5,AD =CE =1+2=3∴OD =2+5=7∴ A 点的坐标是(-7,3) .小提示:本题考查了全等三角形的证明(在两个三角形中,如果有两组对应角,和其中一组对应角的对边分别相等,那么这两个三角形全等) .15、如图是由九个边长为1的小正方形拼成的大正方形,图中∠1+∠2+∠3+∠4+∠5的度数为______.答案:225°分析:首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,即可求得∠1+∠2+∠3+∠4+∠5的值.解:如图所示:在△ABC和△AEF中,{AB=AE∠B=∠E=90°BC=EF∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在Rt△ABD和Rt△AEH中,{AB=AEAD=AH∴Rt△ABD≌Rt△AEH(HL),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.所以答案是:225°.小提示:此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形的性质:全等三角形对应角相等即可求解.解答题16、(1)如图,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45°.直接写出BE、DF、EF之间的数量关系;(2)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF=1∠BAD,求证:EF=BE+DF;2(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,延长BC到点E,延长CD到点F,使得∠BAD,则结论EF=BE+DF是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并∠EAF=12证明.答案:(1)EF=BE+DF,理由见详解;(2)见详解;(3)结论EF=BE+FD不成立,应当是EF=BE−FD.理由见详解.分析:(1)在CD的延长线上截取DM=BE,连接AM,证出△ABE≌△ADM,根据全等三角形的性质得出BE=DM,再证明△AEF≌△AMF,得EF=FM,进而即可得出答案;(2)在CD的延长线上截取DG=BE,连接AG,证出△ABE≌△ADG,根据全等三角形的性质得出BE=DG,再证明△AEF≌△AGF,得EF=FG,即可得出答案;(3)按照(2)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BE上截取BG,使BG=DF,连接AG.根据(2)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE−BG=BE−DF.所以(1)的结论在(3)的条件下是不成立的.(1)解:EF=BE+DF,理由如下:延长CD,使DM=BE,连接AM,∵在正方形ABCD中,AB=AD,∠B=∠ADM=90°,∴△ABE≌△ADM,∴∠BAE=∠DAM,AE=AM,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAM+∠DAF =90°-45°=45°,∴∠EAF=∠MAF=45°,又∵AF=AF,AE=AM,∴△AEF≌△AMF,∴EF=MF=MD+DF=BE+DF;(2)在CD的延长线上截取DG=BE,连接AG,如图,∵∠ADF=90°,∠ADF+∠ADG=180°,∴∠ADG=90°,∵∠B=90°,∴∠B=∠ADG=90°,∵BE=DG,AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AG=AE,∴∠EAG=∠EAD+∠DAG=∠EAD+∠ABE=∠BAD,∵∠EAF=1∠BAD,2∴∠EAF=1∠EAG,2∴∠EAF=∠FAG,又∵AF=AF,AE=AG,∴△AEF≌△AGF(SAS),∴EF=FG=DF+DG=EB+DF;(3)结论EF=BE+FD不成立,应当是EF=BE−FD.理由如下:如图,在BE上截取BG,使BG=DF,连接AG.∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵在△ABG 与△ADF 中,{AB =AD∠ABG =∠ADF BG =DF,∴△ABG ≌△ADF (SAS ).∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =12∠BAD =12∠GAF . ∴∠GAE =12∠BAD =∠EAF .∵AE =AE ,AG =AF .∴△AEG ≌△AEF .∴EG =EF ,∵EG =BE −BG∴EF =BE −FD .小提示:本题考查了三角形综合题,三角形全等的判定和性质等知识,解题的关键是学会利用旋转变换的思想添加辅助线,构造全等三角形解决问题,解题时注意一些题目虽然图形发生变化,但是证明思路和方法是类似的,属于中考压轴题.17、(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D,E .求证:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC,D,A,E 三点都在直线m 上,并且有∠BDA =∠AEC=∠BAC.请写出DE,BD,CE三条线段的数量关系,并说明理由.答案:(1)证明见解析;(2)DE=BD+CE,证明见解析分析:(1)利用已知得出∠CAE=∠ABD,进而利用AAS得出则△ABD≌△CAE,即可得出DE=BD+CE;(2)根据∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,在△ADB和△CEA中,根据AAS证出△ADB≌△CEA,从而得出AE=BD,AD=CE,即可证出DE=BD+CE;(1)DE=BD+CE.理由如下:∵BD⊥m,CE⊥m,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,{∠ABD=∠CAE∠ADB=∠CEA=90°AB=AC,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)DE=BD+CE,理由如下:∵∠BDA=∠AEC=∠BAC,∴∠DBA +∠BAD =∠BAD +∠CAE ,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,{∠ABD =∠CAE∠ADB =∠CEA AB =AC,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴BD +CE =AE +AD =DE ;小提示:本题考查了全等三角形的判定与性质综合中的“一线三等角”模型:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.18、如图,在五边形ABCDE 中,AB =CD ,∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线.(1)求证:△ABE ≌△DCE ;(2)当∠A =80°,∠ABC =140°,时,∠AED =_________度(直接填空).答案:(1)见解析;(2)100分析:(1)根据∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线,可得∠ABE =∠DCE ,∠CBE =∠BCE ,推出BE =CE ,由此利用SAS 证明△ABE ≌△DCE ;(2)根据三角形全等的性质求出∠D 的度数,利用公式求出五边形的内角和,即可得到答案.(1)证明:∵∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线,∴∠ABE =∠CBE =12∠ABC ,∠BCE =∠DCE =12∠BCD ,∴∠ABE =∠DCE ,∠CBE =∠BCE ,∴BE=CE,又∵AB=CD,∴△ABE≌△DCE(SAS);(2)∵△ABE≌△DCE,∴∠D=∠A=80°,∵五边形ABCDE的内角和为(5−2)×180°=540°,∴∠AED=540°−80°×2−140°×2=100°,所以答案是:100.小提示:此题考查了全等三角形的判定及性质,多边形内角和计算,正确掌握全等三角形的判定及性质定理是解题的关键.。

初二年级数学八上第十二章全等三角形知识点总结复习及常考题型练习

初二年级数学八上第十二章全等三角形知识点总结复习及常考题型练习

第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(3)全等三角形的周长相等、面积相等。

(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.证明两个三角形全等的基本思路:5.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)中线倍长法、截长补短法证三角形全等。

《第12章全等三角形》单元测试含答案解析

《第12章全等三角形》单元测试含答案解析

《第12章全等三角形》单元测试含答案解析一、选择题如图,5个全等的正六边形,A、B、C、D、E,请认真观看A、B、C、D四个答案,其中与右方图案完全相同的是()A.B.C.D.2.下列说法不正确的是()A.两个三角形全等,形状一定相同B.两个三角形全等,面积一定相等C.一个图形通过平移、旋转、翻折后,前后两个图形一定全等D.所有的正方形都全等3.若△ABC≌△DEF,△ABC的周长为15,且AB=6,BC=4,则DF的长为()A.4 B.5 C.6 D.74.如图,在2×2的方格纸中,∠1+∠2等于()A.60° B.90° C.120°D.150°5.如图,△ABE≌△ACD,AB=AC,BE=CD,∠B=60°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70° C.60° D.50°6.如图,△ACB≌△A′CB′,∠A′CB′=65°,∠A′CB=35°,则∠ACA′的度数()A .20°B .30°C .35°D .40°7.如图,D 在AB 上,E 在AC 上,且∠B=∠C ,那么补充下列一个条件后,仍无法判定△ABE ≌△ACD 的是( )A .AD=AEB .∠AEB=∠ADC C .BE=CD D .AB=AC8.长为3cm ,4cm ,6cm ,8cm 的木条各两根,小明与小刚分别取了3cm 和4cm 的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为( )A .一个人取6cm 的木条,一个人取8cm 的木条B .两人都取6cm 的木条C .两人都取8cm 的木条D .C 两种取法都能够9.下列条件中,不能判定△ABC ≌△A 1B 1C 1的是( )A .AB=A 1B 1,∠A=∠A 1,AC=A 1C 1 B .AB=A 1B 1,BC=B 1C 1,AC=A 1C 1C .AB=A 1B 1,∠B=∠B 1,∠C=∠C 1D .AC=A 1C 1,AB=A 1B 1,∠B=∠B 110.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D ;④∠B=∠E .其中能使△ABC ≌△AED 的条件有( )A .4个B .3个C .2个D .1个11.依照下列已知条件,能画出唯独△ABC 的是( )A .AB=3,BC=4,AC=7B .AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45° D.∠C=90°,AB=412.如图,AB=AC,AD=AE,∠BAC=60°,∠C=25°,则∠BMD的度数为()A.50° B.65° C.70° D.85°13.在△ABC中,O为∠CAB和∠CBA的角平分线的交点,若∠AOB=120°,则∠C的度数为()A.120°B.60° C.50° D.3014.如图,将矩形ABCD沿AE折叠,使D点落在BC边的F处,若∠BAF=60°,则∠DAE等于()A.15° B.30° C.45° D.60°15.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是()A.40° B.45° C.50° D.60°16.下列说法中:①角平分线的点到角的两边的距离相等;②一条射线上的点到角的两边的距离相等,则这条射线是角的平分线;③有一直角边和一锐角相等两个直角三角形全等;④有两边和一角对应相等的两个三角形全等;⑤对应角相等的两个三角形是全等的;⑥面积相等两个三角形全等.其中不正确的说法有()A.2个B.3个C.4个D.5个17.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP 的依照是()A.SAS B.ASA C.AAS D.SSS18.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①和②去19.在△ABC中,∠B=90°,CD平分∠ACB,DE⊥AC于点E,若AB=4cm,则AD+DE的值为()A.3cm B.4cm C.5cm D.6cm20.如图是5×5的正方形网格中,以D、E为顶点作位置不同的格点的三角形与△ABC全等,如此格点三角形最多能够画出()A.2个B.3个C.4个D.5个二、填空题:21.将△ABC沿BC方向平移3cm得到△DEF,则CF= ;若∠A=80°,∠B=60°,则∠F= .22.假如两个三角形的三边对应相等,则这两个三角形,它也能充分告诉我们:三角形具有.23.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).24.如图所示,△BDC′是将长方形纸牌ABCD沿着BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形对.25.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,如此的三角形一共能作出个.26.如图,AB⊥AC,且AB=AC,BN⊥AN,CM⊥AN,若BN=3,CM=5,则MN= .27.如图,AB∥CD,O为∠BAC、∠DCA的平分线的交点,OE⊥AC于E,且OE=2,则AB与CD之间的距离等于.28.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,AB=10,BD是∠ABC平分线,DE⊥AB,垂足为E,则△ADE的周长为.29.如下面三个图均有AB=AC,BD=CE,图②在图①的基础上连结了AO,图③在图②的基础上连结了BC,则图①、图②、图③的全等三角形的对数分别为对,对,对.30.△ABC中,AB=10,BC=16,D为AC的中点,则中线BD的取值范畴为.三、作图解答题:31.已知△ABC.(1)请用尺规作图的方法在△ABC内求作一点O,使点O到三边的距离相等.(不写作法,但要保留作图痕迹)(2)若△ABC的周长为60,面积为150,试求点O到三边AB、BC、AC的距离分别是多少?32.在平面直角坐标系xOy中,△ABC的一直角顶点C恰好在坐标原点上,CA、CB分别落在坐标轴(见图示),AC=4,BC=3,AB=5;第一次以点B为定点翻转,边BA落在x轴上;第二次以点A为定点翻转,边AC落在x轴上;第三次以点C为定点翻转,边CB落在x轴上;…如此循环.(1)请在第2020次翻转处画出△ABC的形状示意图.(2)翻转后的图形和原三角形是否是全等三角形?什么缘故?(3)试求第10次翻转后△ABC三个顶点的坐标.(△ABC的三边长按照1:1的单位长度)四、解答题33.如图,已知AB∥CD,AE∥CF,BF=DE求证:AB=CD.34.如图,已知AB=AD,AC=AE,∠1=∠2求证:∠B=∠D.35.如图所示,在△ABC中,AB=AC,M为BC的中点,MD⊥AB于点D,ME⊥AC于点E.求证:MD=ME.36.如图所示,E为AB延长线上的一点,AC⊥BC,AD⊥BD,AC=AD求证:∠CEA=∠DEA.37.如图,∠ABC=90°,AB=BC,D为AC上一点,分别过C、A作BD的垂线,垂足分别为E、F.求证:EF=CE﹣AF.五、解答题:38.如图:将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A= 度.39.如图,OP平分∠AOB,∠AOB=40°,PM⊥OA于M,PN⊥OB于N,PC∥OB,交边OA于点C,E为边OB上的一点,且满足PC=PE.求∠EPN的度数?40.如图,BD平分∠ADC,∠A=∠B=90°,OA=OB.求证:CA平分∠DCB.41.在四边形ABCD中,AD∥BC,点E为CD的中点.求证:S△AEB =SABCD.42.如图,在四边形ABCD中,∠1=∠2,∠3=∠4,∠B=∠D,AF=CE,AB∥CD.求证:AB=CD.43.如图,已知AB⊥AD,AC⊥AE,AB=AD,AC=AE,BC分别交AD、DE于点G、F,AC与DE交于点H.求证:(1)△ABC≌△ADE;(2)BC⊥DE.六、探究、开放题:44.如图,已知AF∥BE,且AF=BE,AC=BD.请指出图中有哪些全等三角形,并任选一对给予证明.45.已知命题:如图,点B、C、E、F在同一直线上,若AB=AF,∠1=∠2,则△ABE≌△AFC.请判定那个命题是真命题依旧假命题,假如是真命题,请给予证明;假如是假命题,请添加一个条件使它成为真命题,并加以证明.46.如图,在Rt△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E,则线段BD和CE具有什么数量关系,并证明你的结论.47.如图①,在△ABC中,∠BAC=90°,AB=AC,直线l通过点A,且BD⊥l于的D,CE⊥l于的E.(1)求证:BD+CE=DE;(2)当变换到如图②所示的位置时,试探究BD、CE、DE的数量关系,请说明理由.《第12章全等三角形》参考答案与试题解析一、选择题如图,5个全等的正六边形,A、B、C、D、E,请认真观看A、B、C、D四个答案,其中与右方图案完全相同的是()A.B.C.D.【考点】全等图形.【分析】将选项中的图形绕正六边形的中心旋转,与题干的图形完全相同的即为所求.【解答】解:观看图形可知,只有选项C中的图形旋转后与图中的正六边形完全相同.故选:C.【点评】此题考查了全等图形以及生活中的旋转现象,旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.2.下列说法不正确的是()A.两个三角形全等,形状一定相同B.两个三角形全等,面积一定相等C.一个图形通过平移、旋转、翻折后,前后两个图形一定全等D.所有的正方形都全等【考点】全等图形.【分析】依照全等三角形的性质和全等图形的定义对各选项分析判定利用排除法求解.【解答】解:A、两个三角形全等,形状一定相同,正确,故本选项错误;B、两个三角形全等,面积一定相等,正确,故本选项错误;C、一个图形通过平移、旋转、翻折后,前后两个图形一定全等,正确,故本选项错误;D、只有边长相等的正方形才全等,因此所有的正方形都全等错误,故本选项正确.故选D.【点评】本题考查了全等图形的定义,熟记全等三角形的性质以及全等图形的概念是解题的关键.3.若△ABC≌△DEF,△ABC的周长为15,且AB=6,BC=4,则DF的长为()A.4 B.5 C.6 D.7【考点】全等三角形的性质.【分析】先求出AC,依照全等三角形的性质得出DF=AC,即可得出选项.【解答】解:∵△ABC的周长为15,AB=6,BC=4,∴AC=15﹣6﹣4=5,∵△ABC≌△DEF,∴DF=AC=5,故选B.【点评】本题考查了全等三角形的性质的应用,解此题的关键是能依照全等三角形的性质得出AC=DF,注意:全等三角形的对应边相等,对应角相等.4.如图,在2×2的方格纸中,∠1+∠2等于()A.60° B.90° C.120°D.150°【考点】全等图形.【分析】标注字母,然后利用“边角边”求出△ABC和△DEA全等,依照全等三角形对应角相等可得∠2=∠3,再依照直角三角形两锐角互余求解.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠2=∠3,在Rt△ABC中,∠1+∠3=90°,∴∠1+∠2=90°.故选B.【点评】本题考查了全等图形,要紧利用了网格结构以及全等三角形的判定与性质,准确识图并确定出全等三角形是解题的关键.5.如图,△ABE≌△ACD,AB=AC,BE=CD,∠B=60°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70° C.60° D.50°【考点】全等三角形的性质.【分析】依照三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,再依照全等三角形对应角相等可得∠DAC=∠BAE.【解答】解:∵∠B=60°,∠AEC=120°,∴∠BAE=∠AEC﹣∠B=120°﹣60°=60°,∵△ABE≌△ACD,∴∠DAC=∠BAE=60°.故选C.【点评】本题考查了全等三角形对应角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.6.如图,△ACB≌△A′CB′,∠A′CB′=65°,∠A′CB=35°,则∠ACA′的度数()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.【分析】依照全等三角形的性质得出∠A′CB′=∠ACB,求出∠B′CB=∠ACA′,代入=∠BCB′=∠A′CB′﹣∠A′CB求出即可.【解答】解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB,∴∠A′CB′﹣∠A′CB=∠ACB﹣∠A′CB,∴∠B′CB=∠ACA′,∵∠A′CB′=65°,∠A′CB=35°,∴∠ACA′=∠BCB′=∠A′CB′﹣∠A′CB=65°﹣35°=30°,故选B.【点评】本题考查了全等三角形的性质的应用,解此题的关键是求出∠B′CB=∠ACA′,注意:全等三角形的对应角相等,难度适中.7.如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD 的是()A.AD=AE B.∠AEB=∠ADC C.BE=CD D.AB=AC【考点】全等三角形的判定.【专题】推理填空题.【分析】依照AAS即可判定A;依照三角对应相等的两三角形不一定全等即可判定B;依照AAS即可判定C;依照ASA即可判定D.【解答】解:A 、依照AAS (∠A=∠A ,∠C=∠B ,AD=AE )能推出△ABE ≌△ACD ,正确,故本选项错误;B 、三角对应相等的两三角形不一定全等,错误,故本选项正确;C 、依照AAS (∠A=∠A ,∠B=∠C ,BE=CD )能推出△ABE ≌△ACD ,正确,故本选项错误;D 、依照ASA (∠A=∠A ,AB=AC ,∠B=∠C )能推出△ABE ≌△ACD ,正确,故本选项错误; 故选:B .【点评】本题考查了对全等三角形的判定的应用,注意:全等三角形的判定方法只有SAS ,ASA ,AAS ,SSS ,共4种,要紧培养学生的辨析能力.8.长为3cm ,4cm ,6cm ,8cm 的木条各两根,小明与小刚分别取了3cm 和4cm 的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为( )A .一个人取6cm 的木条,一个人取8cm 的木条B .两人都取6cm 的木条C .两人都取8cm 的木条D .C 两种取法都能够【考点】全等三角形的应用;三角形三边关系.【分析】若两个三角形全等,那么它们的三边对应相等,因此第三边应该取同样长度的木条,且要符合三角形三边关系定理,可运用排除法进行求解.【解答】解:若两人所拿的三角形全等,那么两人所拿的第三根木条长度相同,故排除A ; 若取8cm 的木条,那么3+4<8,不能构成三角形,因此只能取6cm 的木条,故排除C 、D ; 故选B .【点评】此题要紧考查了全等三角形的判定以及三角形三边关系的运用,难度不大.9.下列条件中,不能判定△ABC ≌△A 1B 1C 1的是( )A .AB=A 1B 1,∠A=∠A 1,AC=A 1C 1 B .AB=A 1B 1,BC=B 1C 1,AC=A 1C 1C .AB=A 1B 1,∠B=∠B 1,∠C=∠C 1D .AC=A 1C 1,AB=A 1B 1,∠B=∠B 1【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,依照全等三角形的判定定理逐个判定即可.【解答】解:A 、符合全等三角形的判定定理:SAS 定理,即能判定△ABC ≌△A 1B 1C 1,故本选项错误;B 、符合全等三角形的判定定理:SSS 定理,即能判定△ABC ≌△A 1B 1C 1,故本选项错误;C 、符合全等三角形的判定定理:AAS 定理,即能判定△ABC ≌△A 1B 1C 1,故本选项错误;D 、不符合全等三角形的判定定理,即不能判定△ABC ≌△A 1B 1C 1,故本选项正确;故选D .【点评】本题考查了全等三角形的判定定理的应用,要紧考查学生对定理的明白得能力和辨析能力,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,难度适中.10.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D ;④∠B=∠E .其中能使△ABC ≌△AED 的条件有( )A .4个B .3个C .2个D .1个【考点】全等三角形的判定.【分析】∠1=∠2,∠BAC=∠EAD ,AC=AD ,依照三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD ,由∠1=∠2可知∠BAC=∠EAD ,加①AB=AE,就能够用SAS 判定△ABC ≌△AED ;加③∠C=∠D ,就能够用ASA 判定△ABC ≌△AED ;加④∠B=∠E ,就能够用AAS 判定△ABC ≌△AED ;加②BC=ED 只是具备SSA ,不能判定三角形全等.其中能使△ABC ≌△AED 的条件有:①③④故选:B .【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS 、SAS 、SSA 、HL .做题时要依照已知条件在图形上的位置,结合判定方法,进行添加.11.依照下列已知条件,能画出唯独△ABC 的是( )A .AB=3,BC=4,AC=7B .AB=4,BC=3,∠C=30°C .∠A=30°,AB=3,∠B=45°D .∠C=90°,AB=4【考点】全等三角形的判定.【分析】利用全等三角形的判定方法以及三角形三边关系分别判定得出即可.【解答】解:A、3+4=7,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;B、依照AB=4,BC=3,∠A=30°不能画出唯独三角形,故本选项错误;C、∠A=30°,AB=3,∠B=45°,能画出唯独△ABC,故此选项正确;D、∠C=90°,AB=4,不能画出唯独三角形,故本选项错误;故选:C.【点评】此题要紧考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.12.如图,AB=AC,AD=AE,∠BAC=60°,∠C=25°,则∠BMD的度数为()A.50° B.65° C.70° D.85°【考点】全等三角形的判定与性质.【分析】第一依照三角形外角的性质可得∠BDC=25°+60°=85°,然后再证明△AEB≌△ADC,依照全等三角形的性质可得∠B=∠C=25°,再利用三角形内角和定理运算出∠BMD的度数.【解答】证明:∵∠BAC=60°,∠C=25°,∴∠BDC=25°+60°=85°,在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C=25°,∴∠DNB=180°﹣25°﹣85°=70°,故选:C.【点评】此题要紧考查了全等三角形的判定和性质,以及三角形外角的性质,关键是正确证明△AEB ≌△ADC.13.在△ABC中,O为∠CAB和∠CBA的角平分线的交点,若∠AOB=120°,则∠C的度数为()A.120°B.60° C.50° D.30【考点】三角形内角和定理.【分析】依照三角形的内角和求得∠OAB+∠OBA,利用角平分线的定义求得∠CAB+∠CBA,利用三角形的内角和定理列式运算求得答案即可.【解答】解:∵∠CAB与∠CBA的平分线相交于O点,∴∠OAB+∠OBA=(∠ABC+∠BAC)=180°﹣120°=60°,∴∠ABC+∠BAC=120°,∴∠C=180°﹣(∠ABC+∠BAC)=60°.故选:B.【点评】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.14.如图,将矩形ABCD沿AE折叠,使D点落在BC边的F处,若∠BAF=60°,则∠DAE等于()A.15° B.30° C.45° D.60°【考点】矩形的性质.【专题】运算题.【分析】本题要紧考查矩形的性质以及折叠,求解即可.【解答】解:因为∠EAF是△DAE沿AE折叠而得,因此∠EAF=∠DAE.又因为在矩形中∠DAB=90°,即∠EAF+∠DAE+∠BAF=90°,又∠BAF=60°,因此∠AED==15°.故选A.【点评】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,因此折叠前后的两个图形是全等三角形,复合的部分确实是对应量.15.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是()A.40° B.45° C.50° D.60°【考点】直角三角形全等的判定;全等三角形的性质;等腰直角三角形.【分析】先利用AAS判定△BDF≌△ADC,从而得出BD=DA,即△ABD为等腰直角三角形.因此得出∠ABC=45°.【解答】解:∵AD⊥BC于D,BE⊥AC于E,∴∠BEA=∠ADC=90°.∵∠FBD+∠BFD=90°,∠AFE+∠FAE=90°,∠BFD=∠AFE,∴∠FBD=∠FAE,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),∴BD=AD,∴∠ABC=∠BAD=45°,故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS、SAS、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.下列说法中:①角平分线的点到角的两边的距离相等;②一条射线上的点到角的两边的距离相等,则这条射线是角的平分线;③有一直角边和一锐角相等两个直角三角形全等;④有两边和一角对应相等的两个三角形全等;⑤对应角相等的两个三角形是全等的;⑥面积相等两个三角形全等.其中不正确的说法有()A.2个B.3个C.4个D.5个【考点】全等三角形的判定;角平分线的性质.【分析】依照角的平分线性质和判定即可判定①②;全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,依照判定定理判定③④⑤⑥即可.【解答】解:∵角平分线的点到角的两边的距离相等,∴①正确;∵在角的内部到角的两边的距离相等,则这条射线是角的平分线,∴②错误;如图:在Rt△ACB和Rt△DEF中,∠C=∠E=90°,∠A=∠D,AC=EF,则△ACB和△DEF就不全等,∴③错误;∵当符合SAS时两三角形全等,当符合SSA时,两三角形不全等,∴④错误;如图:DE∥BC,∴∠ADE=∠B,∠AED=∠C,符合两三角形的对应角相等,然而两三角形不全等,∴⑤错误;∵当一个三角形的底为2,高为1,而另一个三角形的底为1,高为2,两三角形的面积相等,但这两个三角形不全等,∴⑥错误;即不正确的有5个,故选D.【点评】本题考查了角的平分线性质,全等三角形的判定定理的应用,能明白得定理和正确运用定理进行判定是解此题的关键,注意:角平分线上的点到角的两边的距离相等,全等三角形的判定定理有:SAS,ASA,AAS,SSS,HL,难度适中,然而比较容易出错.17.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP 的依照是()A.SAS B.ASA C.AAS D.SSS【考点】作图—差不多作图;全等三角形的判定.【分析】认真阅读作法,从角平分线的作法得出△OCP与△ODP的两边分别相等,加上公共边相等,因此两个三角形符合SSS判定方法要求的条件,答案可得.【解答】解:∵以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;在△OCP和△ODP中,,∴△OCP≌△ODP(SSS).故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角18.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①和②去【考点】全等三角形的应用.【专题】应用题.【分析】此题能够采纳全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原先一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原先一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原先一样的三角形,故D选项错误.故选:C.【点评】要紧考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练把握.19.在△ABC中,∠B=90°,CD平分∠ACB,DE⊥AC于点E,若AB=4cm,则AD+DE的值为()A.3cm B.4cm C.5cm D.6cm【考点】角平分线的性质.【分析】先依照角平分线的性质得出BD=DE,进而可得出结论.【解答】解:∵在△ABC中,∠B=90°,CD平分∠ACB,DE⊥AC于点E,∴DE=BD.∵AB=4cm,∴AD+DE=AD+BD=AB=4cm.故选B.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.20.如图是5×5的正方形网格中,以D、E为顶点作位置不同的格点的三角形与△ABC全等,如此格点三角形最多能够画出()A.2个B.3个C.4个D.5个【考点】全等三角形的判定.【专题】网格型.【分析】依照三边对应相等的两个三角形全等画图即可.【解答】解:如图所示:,最多能够画出4个.故选:C.【点评】此题要紧考查了全等三角形的判定,关键是把握三条边分别对应相等的两个三角形全等.二、填空题:21.将△ABC沿BC方向平移3cm得到△DEF,则CF= 3cm ;若∠A=80°,∠B=60°,则∠F= 40°.【考点】平移的性质.【分析】依照平移的性质,结合图形可直截了当求解.【解答】解:观看图形可知,对应点连接的线段是AD、BE和CF.∵△ABC沿BC方向平移3cm得到△DEF,∴BE=CF=3cm,∴∠F=∠ACB=180°﹣∠A﹣∠B=40°,故答案为:3cm,40°.【点评】本题考查平移的差不多性质:①平移不改变图形的形状和大小;②通过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.22.假如两个三角形的三边对应相等,则这两个三角形全等,它也能充分告诉我们:三角形具有稳固性.【考点】全等三角形的判定.【分析】依照判定方法判定解答,三角形全等说明三边一定时可不能有其它形状显现,也就有稳固性.【解答】解:运用三角形全等的判定方法SSS可知,假如两个三角形的三边对应相等,则这两个三角形全等,由此反映了三角形具有稳固性.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有①②③(填序号).【考点】全等三角形的判定.【专题】压轴题.【分析】由已知条件,可直截了当得到三角形全等,得到结论,采纳排除法,对各个选项进行验证从而确定正确的结论.【解答】解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)∵∠CAN=∠BAM,∠B=∠C,AB=AC∴△ACN≌△ABM(③正确)∴CN=BM(④不正确).因此正确结论有①②③.故填①②③.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS、SAS、AAS、ASA.得到三角形全等是正确解决本题的关键.24.如图所示,△BDC′是将长方形纸牌ABCD沿着BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形 4 对.【考点】翻折变换(折叠问题);直角三角形全等的判定.【分析】共有四对,分别是△ABD≌△CDB,△ABD≌△C′DB,△DCB≌△C′DB,△AOB≌△C′OD.【解答】∵四边形ABCD是长方形,∴∠A=∠C=90°,AB=CD,AD=BC,∴△ABD≌△CDB.(HL)∵△BDC是将长方形纸牌ABCD沿着BD折叠得到的,∴BC′=A D,BD=BD,∠C′=∠A.∴△ABD≌△C′DB.(HL)同理△DCB≌△C′DB.∵∠A=∠C′,∠AOB=∠C′OD,AB=C′D,∴△AOB≌△C′OD.(AAS)因此共有四对全等三角形.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,如此的三角形一共能作出7 个.【考点】全等三角形的判定.【专题】压轴题.【分析】只要满足三边对应相等就能保证作出的三角形与原三角形全等,以腰为公共边时有6个,以底为公共边时有一个,答案可得.【解答】解:以AB为公共边有三个,以CB为公共边有三个,以AC为公共边有一个,因此一共能作出7个.故答案为:7.【点评】本题考查了全等三角形的作法;做三角形时要依照全等的判定方法的要求,正确对每种情形进行讨论是解决本题的关键.26.如图,AB⊥AC,且AB=AC,BN⊥AN,CM⊥AN,若BN=3,CM=5,则MN= 2 .【考点】全等三角形的判定与性质.【分析】如图,证明∠B=∠MAC;证明△ABN≌△CAM,得到AM=BN=3,AN=CM=5,即可解决问题.【解答】解:∵BN⊥AN,AB⊥AC,∴∠B+∠BAN=∠BAN+∠CAM,∴∠B=∠MAC;在△ABN与△CAM中,,∴△ABN≌△CAM(AAS),∴AM=BN=3,AN=CM=5,∴MN=5﹣3=2.故答案为2.【点评】该题要紧考查了全等三角形的判定及其性质的应用问题;解题的关键是牢固把握全等三角形的判定及其性质,并能灵活来解题.27.如图,AB∥CD,O为∠BAC、∠DCA的平分线的交点,OE⊥AC于E,且OE=2,则AB与CD之间的距离等于 4 .【考点】角平分线的性质;平行线之间的距离.【分析】过点O作OF⊥AB于F,作OG⊥CD于G,然后依照角平分线上的点到角的两边的距离相等可得OE=OF=OG,再依照两直线平行,同旁内角互补求出∠BAC+∠ACD=180°,然后求出∠EOF+∠EOG=180°,从而判定出E、O、G三点共线,然后求解即可.【解答】解:过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=2,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°﹣∠BAC)+(180°﹣∠ACD)=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=2+2=4.故答案为:4.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,平行线的性质,熟记性质是解题的关键,难点在于作出辅助线并证明E、O、G三点共线.28.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,AB=10,BD是∠ABC平分线,DE⊥AB,垂足为E,则△ADE的周长为8 .【考点】角平分线的性质;全等三角形的判定与性质.【分析】先依照角平分线的性质得出CD=DE,故可得出AD+CD=AD+DE=AC,再依照全等三角形的判定定理得出△BCD≌△BED,故BE=BC,由此可得出AE的长,由△ADE的周长=AE+AD+DE=AE+AC即可得出结论.【解答】解:∵BD是∠ABC平分线,DE⊥AB,AC=6,∴DE=CD,∴AD+CD=AD+DE=AC=6,在Rt△BCD与RtBED中,,∴△BCD≌△BED(HL),∴BE=BC=8,∴AE=10﹣8=2,。

人教版八年级上册数学第12章全等三角形讲义知识点+典型例题

人教版八年级上册数学第12章全等三角形讲义知识点+典型例题

BPAa【变式1】如图,在t R ABC △中,AB AC =,90BAC ∠=︒,过点A 的任一直线AN ,BD AN ⊥于D ,BD AN ⊥于E求证:DE BD CE =-NEDCBA【变式2】如图,在ABC △中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E ,求证:DE AD BE =+.EDCBA专题 三角形的尺规作图知识点解析作三角形的三种类型:① 已知两边及夹角作三角形: 作图依据------SAS ② 已知两角及夹边作三角形: 作图依据------ASA ③ 已知三边作三角形: 作图依据------SSS典型例题【例1】作一条线段等于已知线段。

已知:如图,线段a . 求作:线段AB ,使AB = a .【例2】作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A’O’B’,使A’O’B’=∠AOB【例3】已知三边作三角形已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a.作法:【例4】已知两边及夹角作三角形已知:如图,线段m,n, ∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.【例5】已知两角及夹边作三角形已知:如图,∠α,∠β,线段c .求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.随堂练习1.根据已知条件作符合条件的三角形,在作图过程中主要依据是()A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定2.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()A.作一条线段等于已知线段B.作一个角等于已知角C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边;D.三角形的三个角4.已知三边作三角形时,用到所学知识是()A.作一个角等于已知角B.作一个角使它等于已知角的一半C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线专题利用三角形全等测距离知识点解析一、利用三角形全等测距离目的:变不可测距离为可测距离。

人教版八年级上《第12章全等三角形》单元测试(2)含答案解析

人教版八年级上《第12章全等三角形》单元测试(2)含答案解析

《第12章全等三角形》一、选择题1.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等2.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′5.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA6.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角7.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠28.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F9.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB 于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE ≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④10.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个二、填空题11.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).12.如图,△ABD≌△BAC,若AD=BC,则∠BAD的对应角是.13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为.14.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据可得到△AOD≌△COB,从而可以得到AD= .15.如图,∠A=∠D=90゜,AC=DB,欲证OB=OC,可以先利用“HL”说明得到AB=DC,再利用证明△AOB≌得到OB=OC.16.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.17.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.三、解答题(共29分)18.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD .19.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.20.如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.23.已知:如图,在四边形ABCD中,E是AC上一点,∠1=∠2,∠3=∠4.求证:∠5=∠6.《第12章全等三角形参考答案与试题解析一、选择题1.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.2.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.4.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′【考点】全等三角形的判定.【分析】全等三角形的判定可用两边夹一角,两角夹一边,三边相等等进行判定,做题时要按判定全等的方法逐个验证.【解答】解:A、若添加BC=BˊCˊ,可利用SAS进行全等的判定,故本选项错误;B、若添加∠A=∠A',可利用ASA进行全等的判定,故本选项错误;C、若添加AC=A'C',不能进行全等的判定,故本选项正确;D、若添加∠C=∠Cˊ,可利用AAS进行全等的判定,故本选项错误;故选C.【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定,要认真确定各对应关系.5.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA【考点】全等三角形的判定;等边三角形的性质.【专题】压轴题.【分析】首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.【解答】解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.【点评】此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.6.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【考点】全等三角形的应用.【分析】由已知可以得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选B.【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.7.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2【考点】全等三角形的判定与性质.【分析】先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【解答】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,,∴△ABC≌△CED(AAS),故B、C选项正确;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.【点评】本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.8.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F【考点】全等三角形的判定.【分析】考查三角形全等的判定定理,有AAS,SSS,SAS,ASA四种.根据题目给出的两个已知条件,要证明△ABC≌△FED,需要已知一对对应边相等即可.【解答】解:∵∠C=∠D,∠B=∠E,说明:点C与D,B与E,A与F是对应顶点,AC的对应边应是FD,根据三角形全等的判定,当AC=FD时,有△ABC≌△FED.故选C.【点评】本题考查了全等三角形的判断方法;一般三角形全等判定的条件必须是三个元素,并且一定有一组对应边相等,要找准对应边是解决本题的关键.9.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB 于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE ≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④【考点】全等三角形的判定;等腰三角形的性质.【分析】根据等腰三角形的性质及角平分线定义可得有关角之间的相等关系.运用三角形全等的判定方法AAS或ASA判定全等的三角形.【解答】解:∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE (ASA);③△BDA≌△CEA (ASA);④△BOE≌△COD (AAS或ASA).故选D.【点评】此题考查等腰三角形的性质和全等三角形的判定,难度不大.10.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个【考点】全等图形.【专题】常规题型.【分析】根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.【解答】解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选:C.【点评】本题考查了全等三角形的概念和全等三角形的性质,在解题时要注意灵活应用全等三角形的性质和定义是本题的关键.二、填空题11.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).【考点】全等三角形的判定.【分析】此题不难,关键是找对对应点,即A对应A,B对应B,C对应D,即可.【解答】解:∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题要用SSS.12.如图,△ABD≌△BAC,若AD=BC,则∠BAD的对应角是.【考点】全等三角形的性质.【分析】已知中AD=BC,说明二者为对应边,而AB是公共边,即AB的对应边是BA,所以B的BD对应边只能是AC,根据对应边所对的角是对应角可得答案为∠ABC.【解答】解:∵△ABD≌△BAC,AD=BC,∴∠BAD的对应角是∠ABC.【点评】本题考查了全等三角形性质的应用,确认两条线段或两个角相等,往往利用全等三角形的性质求解.13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等的性质可得点D到AC的距离等于点D到AB的距离DE 的长度.【解答】解:如图,∵AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC,∴DE=DF,∵DE=3cm,∴DF=3cm,即点D到AC的距离为3cm.故答案为:3cm.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.14.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据可得到△AOD≌△COB,从而可以得到AD= .【考点】全等三角形的判定与性质.【专题】计算题.【分析】判定三角形全等,由题中条件,即要利用两边夹一角进行求解,所以找出对应角即可判定其全等,再有全等三角形的性质得出对应边相等.【解答】解:要判定△AOD≌△COB,有OA=OC,OD=OB,所以再加一夹角∠AOD=∠COB,根据两边夹一角,即可判定其全等,又有全等三角形的性质可得AD=CB.故答案为∠COB,SAS,CB.【点评】本题主要考查了全等三角形的判定及性质问题,应熟练掌握.15.如图,∠A=∠D=90゜,AC=DB,欲证OB=OC,可以先利用“HL”说明得到AB=DC,再利用证明△AOB≌得到OB=OC.【考点】全等三角形的判定与性质.【分析】根据HL证Rt△BAC≌Rt△CDB,推出AB=DC,根据AAS证△AOB≌△DOC.【解答】解:∵在Rt△BAC和Rt△CDB中∴Rt△BAC≌Rt△CDB(HL),∴AB=DC,在△AOB和△DOC中∴△AOB≌△DOC(AAS),故答案为:△ABC≌△DCB,AAS,△DOC.【点评】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.16.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.【考点】全等三角形的性质.【分析】第三边所对的角即为前两边的夹角.分两种情况,一种是两个锐角或两个钝角三角形,另一种是一个钝角三角形和一个锐角三角形.【解答】解:当两个三角形同为锐角或同为钝角三角形时,易得两三角形全等,则第三边所对的角是相等关系;当一个钝角三角形和一个锐角三角形时(如图),则第三边所对的一个角与另一个角的邻补角相等,即这两个角是互补关系.故填“相等或互补”.【点评】本题考查全等三角形的性质,应注意的是,两边相等不一定角相等,解题时要多方面考虑.17.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.【考点】全等三角形的应用.【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;两个角及它们的夹边对应相等的两个三角形全等.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.三、解答题(共29分)18.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD .【考点】全等三角形的判定;等腰三角形的性质.【专题】推理填空题.【分析】根据角平分线的定义及全等三角形的判定定理,填空即可.【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).【点评】本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理及角平分线的定义.19.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【考点】全等三角形的性质.【专题】证明题.【分析】(1)根据△EFG≌△NMH,∠F与∠M是对应角可得到两个三角形中对应相等的三边和三角;(2)根据(1)中的对等关系即可得MN和HG的长度.【解答】解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.【点评】本题考查了全等三角形全等的性质及比较线段的长短,熟练找出两个全等三角形的对应角、对应边是解此题的关键.20.如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.【考点】全等三角形的应用.【专题】计算题;作图题.【分析】根据BC=CD,∠CED=∠CAB,∠ACB=∠ECD,即可求证△ABC≌△EDC,根据全等三角形对应边相等的性质可以求得AB=DE.【解答】解:∵DE∥AB,∴∠CED=∠CAB,∴△ABC≌△EDC(AAS),∴AB=ED,答:DE的长就是A、B之间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中正确的求证△ABC≌△EDC是解题的关键.21.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.【考点】全等三角形的判定.【专题】证明题.【分析】根据AB∥DE,BC∥EF,可证∠A=∠EDF,∠F=∠BCA;根据AD=CF,可证AC=DF.然后利用ASA即可证明△ABC≌△DEF.【解答】证明:∵AB∥DE,BC∥EF∴∠A=∠EDF,∠F=∠BCA又∵AD=CF∴AC=DF∴△ABC≌△DEF.(ASA)【点评】此题主要考查学生对全等三角形的判定的理解和掌握,此题难度不大,属于基础题.四、解答题(共20分)22.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据已知利用HL即可判定△BEC≌△DEA;(2)根据第一问的结论,利用全等三角形的对应角相等可得到∠B=∠D,从而不难求得DF⊥BC.【解答】证明:(1)∵BE⊥CD,BE=DE,BC=DA,∴△BEC≌△DEA(HL);(2)∵△BEC≌△DEA,∴∠B=∠D.∵∠D+∠DAE=90°,∠DAE=∠BAF,∴∠BAF+∠B=90°.即DF⊥BC.【点评】此题主要考查学生对全等三角形的判定及性质的理解及运用,做题时要注意思考,认真寻找全等三角形全等的条件是解决本题的关键.23.已知:如图,在四边形ABCD中,E是AC上一点,∠1=∠2,∠3=∠4.求证:∠5=∠6.【考点】全等三角形的判定与性质.【专题】证明题.【分析】因为∠1=∠2,∠3=∠4,AC=CA,根据ASA易证△ADC≌△ABC,所以有DC=BC,又因为∠3=∠4,EC=CE,则可根据SAS判定△CED≌△CEB,故∠5=∠6.【解答】证明:∵,∴△ADC≌△ABC(ASA).∴DC=BC.又∵,∴△CED≌△CEB(SAS).∴∠5=∠6.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.知识像烛光,能照亮一个人,也能照亮无数的人。

八年级数学上册第十二章全等三角形知识点总结全面整理(带答案)

八年级数学上册第十二章全等三角形知识点总结全面整理(带答案)

八年级数学上册第十二章全等三角形知识点总结全面整理单选题AD,BD平分∠ABC,则点D到AB的距离等于( )1、如图,在ΔABC中,∠C=90°,AC=8,DC=13A.4B.3C.2D.1答案:C分析:如图,过点D作DE⊥AB于E,根据已知求出CD的长,再根据角平分线的性质进行求解即可.如图,过点D作DE⊥AB于E,AD,∵AC=8,DC=13∴CD=8×1=2,1+3∵∠C=90°,BD平分∠ABC,∴DE=CD=2,即点D到AB的距离为2,故选C.小提示:本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.2、如图,在△ADE和△ABC中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DE交CB的延长线于点G,连接AG.四边形DGBA的面积为12,AF=4,则FG的长是()A.2B.2.5C.3D.103答案:C分析:过点A作AH⊥BC于H,证△ABC≌△AED,得AF=AH,再证Rt△AFG≌Rt△AHG(HL),同理Rt△ADF≌Rt△ABH,得S四边形DGBA=S四边形AFGH=12,然后求得Rt△AFG的面积=6,进而得到FG的长.如图所示,过点A作AH⊥BC于H,在△ABC与△ADE中,{AC=AE∠C=∠E BC=DE,∴△ABC≌△ADE(SAS),∴AD=AB,S△ABC=S△AED,又∵AF⊥DE,∴12×DE×AF=12×BC×AH,∴AF=AH,∵AF⊥DE,AH⊥BC,∴∠AFG=∠AHG=90°,在Rt△AFG和Rt△AHG中,,{AG=AGAF=AH∴Rt△AFG≌Rt△AHG(HL),同理:Rt△ADF≌Rt△ABH(HL),∴S四边形DGBA=S四边形AFGH=12,∵Rt△AFG≌Rt△AHG,∴SRt△AFG=6,∵AF=4,∴1×FG×4=6,2解得:FG=3.故选:C.小提示:本题考查全等三角形的判定与性质,综合运用各知识点是解题的基础,作出合适的辅助线是解此题的关键.3、如图,在△ABC中,∠C=90°,以点B为圆心,任意长为半径画弧,分别交AB、BC于点M、N.分别以点M、MN的长度为半径画弧,两弧相交于点P,过点P作线段BD,交AC于点D,过点D作N为圆心,以大于12∠ABC;③BC=BE;④AE=BE中,一定正确的是()DE⊥AB于点E,则下列结论①CD=ED;②∠ABD=12A.①②③B.①②③④C.②④D.②③④答案:A分析:由作法可知BD是∠ABC的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL可得Rt△BDC≌Rt△BDE,故BC=BE,③正确,解:由作法可知BD是∠ABC的角平分线,故②正确,∵∠C=90°,∴DC⊥BC,又DE⊥AB,BD是∠ABC的角平分线,∴CD=ED,故①正确,在Rt△BCD和Rt△BED中,{DE=DC,BD=BD∴△BCD≌△BED,∴BC=BE,故③正确.故选A.小提示:本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键.4、如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为ΔABC,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC答案:C分析:根据SSS,SAS,ASA逐一判定,其中SSA不一定符合要求.A. AB,BC,CA.根据SSS一定符合要求;B. AB,BC,∠B.根据SAS一定符合要求;C. AB,AC,∠B.不一定符合要求;D. ∠A,∠B,BC.根据ASA一定符合要求.故选:C.小提示:本题考查了三角形全等的判定,解决问题的关键是熟练掌握判定三角形全等的SSS,SAS,ASA三个判定定理.5、如图,点B,C,E在同一直线上,且AC=CE,∠B=∠D=90°,AC⊥CD,下列结论不一定成立的是()A.∠A=∠2B.∠A+∠E=90°C.BC=DE D.∠BCD=∠ACE答案:D分析:根据直角三角形的性质得出∠A=∠2,∠1=∠E,根据全等三角形的判定定理推出△ABC≌△CDE,再逐个判断即可.解:∵AC⊥CD,∴∠ACD=90°,∵∠B=90°,∴∠1+∠A=90°,∠1+∠2=90°,∴∠A=∠2,同理∠1=∠E,∵∠D=90°,∴∠E+∠2=∠A+∠E=90°,在△ABC和△CDE中,{∠A=∠2∠B=∠D AC=CE,∴△ABC≌△CDE(AAS),∴BC=DE,∴选项A、选项B,选项C都正确;根据已知条件推出∠A=∠2,∠E=∠1,但是∠1=∠2不能推出,而∠BCD=90°+∠1,∠ACE=90°+∠2,所以∠BCD=∠ACE不一定成立故选项D错误;故选:D.小提示:本题考查了全等三角形的判定定理和直角三角形的性质,能灵活运用知识点进行推理是解此题的关键,注意:全等三角形的判定定理有:ASA,SAS,AAS,SSS,两直角三角形全等,还有HL.6、在△ABC中,AB=4,AC=6,AD是BC边上的中线,则AD的取值范围是()A.0<AD<10B.1<AD<5C.2<AD<10D.0<AD<5答案:B分析:延长AD至点E,使得DE=AD,可证△ABD≌△CDE,可得AB=CE,AD=DE,在△ACE中,根据三角形三边关系即可求得AE的取值范围,即可解题.解:延长AD至点E,使得DE=AD,∵在△ABD和△CDE中,∵{AD=DE∠ADB=∠CDEBD=CD,∴△ABD≌△CDE(SAS),∴AB=CE,AD=DE∵△ACE中,AC﹣AB<AE<AC+AB,∴2<AE<10,∴1<AD<5.故选:B.小提示:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD≌△CDE是解题的关键.7、如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB,若AB=4,CF=3,则BD的长是( )A.0.5B.1C.1.5D.2答案:B分析:根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出ΔADE≅ΔCFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.∵CF//AB,∴∠A=∠FCE,∠ADE=∠F,在ΔADE和ΔFCE中{∠A=∠FCE∠ADE=∠FDE=FE,∴ΔADE≅ΔCFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB−AD=4−3=1.故选B.小提示:本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定ΔADE≅ΔFCE是解此题的关键.8、下列选项可用SAS证明△ABC≅△A′B′C′的是()A.AB=A′B′,△B=△B′,AC=A′C′B.AB=A′B′,BC=B′C′,△A=△A′C.AC=A′C′,BC=B′C′,△C=△C′D.AC=A′C′,BC=B′C′,△B=△B′答案:C分析:根据全等三角形SAS的判定逐项判定即可.解:A.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意;B.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意;C.满足SAS,能证明△ABC△△A′B′C′,故该选项符合题意;D.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意,故选:C.小提示:本题考查全等三角形的判定,熟练掌握全等三角形的判定条件是解答的关键.9、如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为().A.4B.3C.2D.1答案:B分析:根据题意逐个证明即可,①只要证明△AOC≌△BOD(SAS),即可证明AC=BD;②利用三角形的外角性质即可证明; ④作OG⊥MC于G,OH⊥MB于H,再证明△OCG≌△ODH(AAS)即可证明MO平分∠BMC.解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,{OA=OB∠AOC=∠BODOC=OD,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,{∠OCA=∠ODB∠OGC=∠OHDOC=OD,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;正确的个数有3个;故选B.小提示:本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.10、如图,AB=AC,AD=AE,∠BAC=∠DAE,点B,D,E在同一直线上,若∠1=25°,∠2=35°,则∠3的度数是()A.50°B.55°C.60°D.70°答案:C分析:由∠BAC=∠DAE可证得∠BAD=∠CAE,继而证明△BAD≅△CAE(SAS),由全等三角形对应角相等得到∠2=∠CAE,∠ABD=∠1,最后由三角形的外角性质解答即可.解:∵∠BAC=∠DAE∴∠BAC−∠DAC=∠DAE−∠DAC∴∠BAD=∠CAE∵AB=AC,AD=AE,∴△BAD≅△CAE(SAS)∴∠2=∠CAE,∠ABD=∠1∵∠1=25°,∠2=35°∴∠3=∠2+∠ABD=∠2+∠1=60°故选:C.小提示:本题考查全等三角形的判定与性质、三角形的外角性质等知识,是重要考点,掌握相关知识是解题关键.填空题11、如图,在Rt△ABC中,∠ACB=90°,△ABC的角平分线AD,BE相交于点P,过P作PF⊥AD,交BC延长线于F,交AC于H,则下列结论:①∠APB=135°;②BF=BA;③PH=HC;④PH=PD;其中正确的有____________________.答案:①②④分析:由角平分线的定义,可得∠PAB+∠PBA=45°,由三角形内角和定理可得结论①;由△BPA≌△BPF可得结论②;由△APH≌△FPD可得结论④;若PH=HC,则PD=HC,由AD>AC可得AP>AH不成立,故③错误;解:∵∠CAB+∠CBA=90°,AD、BE平分∠CAB、∠CBA,∴∠PAB+∠PBA=1(∠CAB+∠CBA)=45°,2△PAB中,∠APB=180°-(∠PAB+∠PBA)=135°,故①正确;∵∠ADF+∠F=90°,∠ADF+∠DAC=90°,∴∠F=∠DAC=∠DAB,△BPA和△BPF中:∠PBA=∠PBF,∠PAB=∠PFB,BP=BP,∴△BPA≌△BPF(AAS),∴BA=BF,PA=PF,故②正确;△APH和△FPD中:∠PAH=∠PFD,PA=PF,∠APH=∠FPD=90°,∴△APH≌△FPD(ASA),∴PH=PD,故④正确;若PH=HC,则PD=HC,AD>AC,则AD-PD>AC-HC,即AP>AH,不成立,故③错误;综上所述①②④正确,所以答案是:①②④小提示:本题考查了三角形内角和定理,全等三角形的判定和性质等知识;掌握全等三角形的判定和性质是解题关键.12、如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,过点D作DE⊥AB,若CB=7,则DE+ DB=______.答案:7分析:先利用角平分线性质证明CD=DE,再求出DE+DB的值即可.解:∵AD平分∠BAC交BC于点D,∠C=90°,DE⊥AB,∴CD=ED.∵CB=7,∴BD+CD=7,∴DE+DB=7,所以答案是:7.小提示:本题主要考查了角平分线的性质,解题的关键是熟练掌握角平分线的性质.13、如图,在△ABC中,A(0,1),B(3,1),C(4,3),D是坐标平面上一点,若以A,B,D为顶点的三角形与△ABC全等,则点D的坐标是________.答案:D1(-1,3),D2(4,-1),D3(-1,-1)分析:若要△ABD≌△ABC,则D点可在AB的上方或下方,分别讨论即可.如图,要和△ABC全等,且有一边为AB的三角形,D点可为:D1(-1,3),D2(4,-1),D3(-1,-1)所以答案是:D1(-1,3),D2(4,-1),D3(-1,-1).小提示:本题考查判定全等三角形的概念,注意不要遗漏可能的情况是解题关键.14、如图,在△ABC中,∠A=90°,DE⊥BC,垂足为E.若AD=DE且∠C=50°,则∠ABD=_____°.答案:20分析:利用三角形的内角和定理先求解∠ABC,再利用角平分线的性质定理的逆定理证明:BD平分∠ABC,从而可得答案.解:∵∠A=90°,∠C=50°,∴∠ABC=180°−90°−50°=40°,∵∠A=90°,DE⊥BC,DA=DE,∴BD平分∠ABC,∠ABD=1∠ABC=20°,2所以答案是:20小提示:本题考查的是三角形的内角和定理,角平分线的定义及性质定理的逆定理,掌握角平分线的性质定理的逆定理是解题的关键.15、如图,已知AB=CB,要使△ABD≌△CBD(SSS),还需添加一个条件,你添加的条件是__________.答案:AD=CD分析:要利用SSS判定△ABD≌△CBD,已知AB=CB,公共边BD=BD,只需要再添加一组对边相等即可.解:∵AB=CB,BD=BD,∴要利用SSS判定△ABD≌△CBD,只需要在添加一组对边相等即可.∴AD=CD,所以答案是:AD=CD.小提示:本题考查用三边对应相等判定三角形全等,根据图形找到相关的条件是解题关键.解答题16、如图,在△ABC中,AD是高,E、F分别是AB、AC的中点,AB=8,AC=6.(1)求四边形AEDF的周长;(2)若∠BAC=90°,求四边形AEDF的面积.答案:(1)14;(2)12.分析:(1)延长DE到G,使GE=DE,连接BG,根据线段中点的定义求出AE=4,AF=3,并利用SAS证明AB=4,△AED≌△BEG,由全等三角形的性质并再次利用全等三角形的判定得出△GBD≌△ABD,可证得DE=12同理DF=1AC=3,即可计算出四边形的周长;2(2)利用SSS可证△AEF≌△DEF,根据直角三角形的面积计算方法求出△AEF的面积,则四边形的面积即可求解.解:(1)延长DE 到G ,使GE =DE ,连接BG ,∵E 、F 分别是AB 、AC 的中点,AB =8,AC =6,∴AE =BE =12AB =4,AF =CF =12AC =3.在△AED 和△BEG 中,{AE =BE∠AED =∠BEG DE =GE,∴△AED ≌△BEG (SAS ).∴AD =BG ,∠DAE =∠GBE .∵AD ⊥BC ,∴∠DAE +∠ABD =90°.∴∠GBE +∠ABD =90°.即∠GBD =∠ADB =90°.在△GBD 和△ABD 中,{BG =DA∠GBD =∠ADB BD =DB,∴△GBD ≌△ABD (SAS ).∴GD =AB .∵DE =12GD ,∴DE =12AB =4.同理可证:DF =12AC =3.∴四边形AEDF 的周长=AE +ED +DF +FA =14.(2)由(1)得AE =DE =12AB =4,AF =DF =12AC =3, 在△AEF 和△DEF 中,{AE =DEAF =DF EF =EF,∴△AEF ≌△DEF (SSS ).∵∠BAC =90°,∴S △AEF =12AE•AF =12×4×3=6. ∴S 四边形AEDF =2S △AEF =12.小提示:本题主要考查了全等三角形的判定与性质,掌握全等三角形的判定与性质并能利用倍长中线法构造全等三角形是解题的关键.17、已知:如图1,在Rt △ABC 中,∠ACB =90°,∠B =60°,AD ,CE 是角平分线,AD 与CE 相交于点F ,FM ⊥AB ,FN ⊥BC ,垂足分别为M ,N .【思考说理】(1)求证:FE =FD .【反思提升】(2)爱思考的小强尝试将【问题背景】中的条件“∠ACB =90°”去掉,其他条件不变,观察发现(1)中结论(即FE =FD )仍成立.你认为小强的发现正确吗?如果不正确请举例说明,如果正确请仅就图2给出证明.答案:(1)证明见详解;(2)正确,证明见详解;分析:(1)由角平分线的性质、三角形内角和定理证RtΔFDN ≅RtΔ∠FEM (AAS )即可求解;(2)在AB上截取CP=CD,分别证ΔCDF≅ΔCPF(SAS)、ΔAFE≅ΔAFP(ASA)即可求证;证明:(1)∵AD平分∠BAC,CE平分∠ACB,∴点F是ΔABC的内心,∵FM⊥AB,FN⊥BC,∴FM=FN,∵∠ACB=90°,∠ABC=60°,∴∠CAB=30°∴∠CAD=15°∴∠ADC=75°∵∠ACE=45°∴∠CEB=75°∴∠ADC=∠CEB∴RtΔFDN≅RtΔ∠FEM(AAS)∴FE=FD(2)如图,在AB上截取CP=CD,在ΔCDF和ΔCPF中,∵{CD=CP∠DCF=∠PCFCF=CF∴ΔCDF≅ΔCPF(SAS)∴FD=FP,∠CFD=∠CFP,∵AD平分∠BAC,CE平分∠ACB,∴∠CAD=∠BAD,∠ACE=∠BCE,∵∠B=60°,∴∠ACB+∠BAC=120°,∴∠CAD+∠ACE=60°,∴∠AFC=120°,∵∠CFD=∠AFE=180°-∠AFC=60°,∵∠CFD=∠CFP,∴∠AFP=∠CFP=∠CFD=∠AFE=60°,在ΔAFE和ΔAFP中,∵{∠AFE=∠AFP AF=AF∠PAF=∠EAF∴ΔAFE≅ΔAFP(ASA)∴FP=EF∴FD=EF.小提示:本题主要考查三角形的全等证明及性质,角平分线的性质,掌握相关知识并正确作出辅助线构造全等三角形是解题的关键.18、(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D,E.求证:DE=BD+CE.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB,AC 向外作正方形ABDE和正方形ACFG,AH是BC边上的高.延长HA交EG于点I.若S△AEG=7,则S△AEI=______.答案:(1)见解析;(2)结论成立,理由见解析;(3)3.5分析:(1)由条件可证明△ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;(2)由条件可知∠BAD+∠CAE=180°-α,且∠DBA+∠BAD=180°-α,可得∠DBA=∠CAE,结合条件可证明△ABD≌△CAE,同(1)可得出结论;(3)由条件可知EM=AH=GN,可得EM=GN,结合条件可证明△EMI≌△GNI,可得出结论I是EG的中点.解:(1)证明:如图1中,∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,{∠ABD=∠CAE∠BDA=∠CEAAB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(2)解:成立.理由:如图2中,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠DBA=∠CAE,在△ADB和△CEA中,{∠BDA=∠AEC∠DBA=∠CAEAB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(3)如图3,过E作EM⊥HI于M,GN⊥HI的延长线于N.∴∠EMI=∠GNI=90°由(1)和(2)的结论可知EM=AH=GN∴EM=GN在△EMI和△GNI中,{∠GIN=∠EIM EM=GN∠GNI=∠EMI,∴△EMI≌△GNI(AAS),∴EI=GI,∴I是EG的中点.∴S△AEI=12S△AEG=3.5.所以答案是:3.5.小提示:本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.。

第十二章 全等三角形单元测试卷(含解析)

第十二章 全等三角形单元测试卷(含解析)

第十二章全等三角形单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.在△ABC和△DEF中,∠A=50°,∠B=70°,AB=3cm,∠D=50°,∠E=70°,EF=3cm.则△ABC与△DEF()A.一定全等B.不一定全等C.一定不全等D.不确定2.下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是()A.①②B.②③C.①③D.①②③3.某同学不小心把一块玻璃打碎了,变成了如图所示的三块,现在要到玻璃店配一块完全一样的玻璃,那么应带哪块去才能配好()A.①B.②C.③D.任意一块4.如图,在四边形ABCD中,AD∥BC,若∠DAB的角平分线AE交CD于E,连接BE,且BE边平分∠ABC,则以下命题不正确的个数是①BC+AD=AB;②E为CD中点;③∠AEB=90°;④S△ABE=S四边形ABCD;⑤BC=CE.()A.0个B.1个C.2个D.3个5.下列画图的语句中,正确的为()A.画直线AB=10cm B.画射线OB=10cmC.延长射线BA到C,使BA=BC D.画线段CD=2cm6.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.B.C.D.7.AD与BE是△ABC的角平分线,D,E分别在BC,AC上,若AD=AB,BE=BC,则∠C=()A.69°B.°C.°D.不能确定8.已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误 B.①错误,②正确 C.①,②都错误D.①,②都正确9.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A.1 B.2 C.5 D.无法确定10.如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A 折叠,使C落在AB上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP =S△APF.正确的个数是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.如图:已知DE=AB,∠D=∠A,请你补充一个条件,使△ABC≌△DEF,并说明你判断的理由:或.12.如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,△ABD、△BCE均为等边三角形,DE、AB交于点F,AF=3,则△ACE的面积为.13.在△ABC中,∠BAC=120°,AB=AC,∠ACB的平分线交AB于D,AE平分∠BAC交BC 于E,连接DE,DF⊥BC于F,则∠EDC=°.14.如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△ABD≌△CEB.15.如图,线段AC、BD相交于点0,OA=OC,OB=OD,那么AB、CD的位置关系是.16.如图,将一张直角三角形纸片对折,使点B、C重合,折痕为DE,连接DC,若AC=6cm,∠ACB=90°,∠B=30°,则△ADC的周长是cm.三.解答题(共8小题,满分72分)17.(8分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.18.(8分)如图,△ABC是等边三角形,AN=BM,BN,MC相交于O,CH⊥BN于点H,求证:2OH=OC.19.(8分)已知:如图,在△ABC中,AB=AC,∠BAC=90°,D是BC上一点,EC⊥BC,EC=BD,DF=FE.求证:(1)△ABD≌△ACE;(2)AF⊥DE.20.(8分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.21.(8分)如图所示,已知△ABC中,D为BC上一点,E为△ABC外部一点,DE交AC 于一点O,AC=AE,AD=AB,∠BAC=∠DAE.(1)求证:△ABC≌△ADE;(2)若∠BAD=20°,求∠CDE的度数.22.(10分)已知:如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD交于点F.若AE、CD为△ABC的角平分线.(1)求证:∠AFC=120°;(2)若AD=6,CE=4,求AC的长?23.(10分)有一座锥形小山,如图,要测量锥形小山两端A、B的距离,先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,量出DE的长为50m,你能求出锥形小山两端A、B的距离吗?24.(12分)探究问题1 已知:如图1,三角形ABC中,点D是AB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF.若DE=kDF,则k的值为.拓展问题2 已知:如图2,三角形ABC中,CB=CA,点D是AB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE=DF.推广问题3 如图3,若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.参考答案与试题解析1.解:∵在△ABC和△DEF中,∠A=50°,∠B=70°,∠D=50°,∠E=70°,EF=3cm,AB=3cm 若是AB=DE,则可以推出两三角形全等此处是EF与AB相等,设DE=3,则DE=EF,则∠D=∠E显然与已知相违背,所以此假设不成立所以两三角形一定不全等.故选C.2.解:①正确.可以用AAS或者ASA判定两个三角形全等;②正确.可以用“倍长中线法”,用SAS定理,判断两个三角形全等;如图,分别延长AD,A′D′到E,E′,使得AD=DE,A′D′=D′E′,∴△ADC≌△EDB,∴BE=AC,同理:B′E′=A′C′,∴BE=B′E′,AE=A′E′,∴△ABE≌△A′B′E′,∴∠BAE=∠B′A′E′,∠E=∠E′,∴∠CAD=∠C′A′D′,∴∠BAC=∠B′A′C′,∴△BAC≌△B′A′C′.③不正确.因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等了.故选:A.3.解:只有①中包含两角及夹边,符合ASA.故选A.4.解:∵AD∥BC,∴∠ABC+∠BAD=180°,∵AE 、BE 分别是∠BAD 与∠ABC 的平分线, ∴∠BAE=∠BAD ,∠ABE=∠ABC , ∴∠BAE +∠ABE=(∠BAD +∠ABC )=90°, ∴∠AEB=180°﹣(∠BAE +∠ABE )=180°﹣90°=90°, 故③小题正确;延长AE 交BC 延长线于F , ∵∠AEB=90°, ∴BE ⊥AF , ∵BE 平分∠ABC , ∴∠ABE=∠FBE , 在△ABE 与△FBE 中,,∴△ABE ≌△FBE (ASA ), ∴AB=BF ,AE=FE , ∵AD ∥BC , ∴∠EAD=∠F ,在△ADE 与△FCE 中,,∴△ADE ≌△FCE (ASA ), ∴AD=CF ,∴AB=BC +CF=BC +AD ,故①小题正确; ∵△ADE ≌△FCE ,∴CE=DE ,即点E 为CD 的中点,故②小题正确; ∵△ADE ≌△FCE , ∴S △ADE =S △FCE , ∴S 四边形ABCD =S △ABF , ∵S △ABE =S △ABF ,∴S △ABE =S 四边形ABCD ,故④小题正确;若AD=BC ,则CE 是Rt △BEF 斜边上的中线,则BC=CE ,∵AD与BC不一定相等,∴BC与CE不一定相等,故⑤小题错误.综上所述,不正确的有⑤共1个.故选:B.5.解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.6.解:∵围成两个全等的三角形可得两个三角形的周长相等∴x+y+z=,∵y+z>x∴可得x<,又因为x为最长边大于∴x≥综上可得≤x<故选:A.7.解:∵AD=AB,∴∠ADB=(180°﹣∠BAC)=90°﹣∠BAC,∴∠C=∠ADB﹣∠DAC=(180°﹣∠BAC)=90°﹣∠BAC﹣∠BAC=90°﹣∠BAC;∵BE=BC,∴∠C=∠BEC=∠BAC+∠ABE=∠BAC+(180°﹣∠BAC)=∠BAC+45°﹣∠BAC=45°+∠BAC,∴90°﹣∠BAC=45°+∠BAC,解得∠BAC=,∴∠C=90°﹣=.故选:C.8.解:∵△A1B1C1,△A2B2C2的周长相等,A1B1=A2B2,A1C1=A2C2,∴B1C1=B2C2,∴△A1B1C1≌△A2B2C2(SSS),∴①正确;∵∠A1=∠A2、∠B1=∠B2,∴△A1B1C1∽△A2B2C2,设相似比为k,即===k,∴=k,∵△A1B1C1,△A2B2C2的周长相等,∴k=1,即A1B1=A2B2,B1C1=B2C2,A1C1=A2C2,∴△A1B1C1≌△A2B2C2,∴②正确;故选:D.9.解:过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,∵∠EDF+∠FDC=90°,∠GDC+∠FDC=90°,∴∠EDF=∠GDC,于是在Rt△EDF和Rt△CDG中,,∴△DEF≌△DCG,∴EF=CG=BC﹣BG=BC﹣AD=3﹣2=1,=(AD×EF)÷2=(2×1)÷2=1.所以,S△ADE故选:A.10.解:①正确.作EM ∥AB 交AC 于M . ∵CA=CB ,∠ACB=90°, ∴∠CAB=∠CBA=45°,∵∠CAE=∠BAE=∠CAB=22.5°, ∴∠MEA=∠EAB=22.5°,∴∠CME=45°=∠CEM ,设CM=CE=a ,则ME=AM=a ,∴tan ∠CAE===﹣1,故①正确,②正确.△CDA ≌△CDB ,△AEC ≌△AEF ,△APC ≌△APF ,△PEC ≌△PEF ,故②正确, ③正确.∵△PEC ≌△PEF , ∴∠PCE=∠PFE=45°, ∵∠EFA=∠ACE=90°, ∴∠PFA=∠PFE=45°,∴若将△PEF 沿PF 翻折,则点E 一定落在AB 上,故③正确. ④正确.∵∠CPE=∠CAE +∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°, ∴∠CPE=∠CEP , ∴CP=CE ,故④正确, ⑤错误.∵△APC ≌△APF , ∴S △APC =S △APF ,假设S △APF =S 四边形DFPE ,则S △APC =S 四边形DFPE , ∴S △ACD =S △AEF ,∵S △ACD =S △ABC ,S △AEF =S △AEC ≠S △ABC , ∴矛盾,假设不成立. 故选:D .11.解:∵已知DE=AB,∠D=∠A,∴根据ASA判断全等添加∠B=∠E;根据AAS判断全等添加∠ACB=∠DFE;根据SAS判断全等添加AF=CD.故填空答案:∠B=∠E或∠ACB=∠DFE或AF=CD.12.解:如图所示,过D作DG⊥AB于G,EK⊥AC交AC的延长线于K.∵△ABD是等边三角形,DG⊥AB,∴AG=BG=AB,由勾股定理得:DG=AG,∵∠BAC=30°,∴AC=AB,∴AG=AC=AB,∵由勾股定理得:BC=AC,∴DG=BC=BE,∵∠EBA=60°+30°=90°,∴EB⊥AB.∴DG∥EB.∴∠BEF=∠GDF,∠DGB=∠EBF=90°,在△DGF与△EBF中,∵,∴△ADF≌△GEF(AAS),∴DF=EF,GF=BF,∵AG=BG,AF=3,∴FG=,AG=2,∴AB=4AC=2,EC=BC=AC=6,在Rt△CEK中,EK=EC=3,∴S=•AC•EK=•2•3=6.△ACE故答案为6.13.解:过D作DM⊥AC交CA的延长线于M,DN⊥AE,∵CD平分∠ACB,∴DF=DM,∵∠BAC=120°,∴∠DAM=60°,∵AE平分∠BAC,∴∠BAE=60°,∴∠DAM=∠BAE,∴DM=DN,∵DF⊥BC,∴DE平分∠AEB,∵AB=AC,AE平分∠BAC交BC于E,∴AE⊥BC,∴∠AEB=90°,∴∠DEF=45°,∵∠B=∠C=30°,∴∠DCF=15°,∴∠EDC=30°,故答案为:30.14.解:已知∠B=∠B,∠BDA=∠BEC=90°,则再添加一个边相等即可,所以可添加BD=BE或AD=CE或BA=BC,从而利用AAS或ASA来判定△ABD≌△CEB,故答案为:BD=BE或AD=CE或BA=BC.15.解:在△AOB和△COD中,,∴△AOB≌△COD(SAS),∴∠A=∠C,∴AB∥CD.故答案为:AB∥CD.16.解:根据折叠前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周长是18cm.17.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.18.证明:∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠ABC=∠ACB=60°,在△BAN和△CBM中,,∴△BAN≌△CBM(SAS),∴∠ABN=∠BCM,∵∠ABN+∠OBC=60°,∴∠BCM+∠OBC=60°,∵∠NOC为△OBC的外角,∴∠NOC=∠BCM+∠OBC=60°,在Rt△OHC,∠HCO=30°,则2OH=OC.19.证明:(1)∵AB=AC,∠BAC=90°,∴∠B=∠BCA=45°,∵EC⊥BC,∴∠ACE=90°﹣45°=45°,∴∠B=∠ACE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)由(1)知,△ABD≌△ACE,∴AD=AE,等腰△ADE中,∵DF=FE,∴AF⊥DE.20.解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.21.证明:(1)在△ABC和△ADE中,,∴△ABC≌△ADE(SAS);(2)∵△ABC≌△ADE,∴∠BAC=∠DAE,∠E=∠C,∵∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∠BAD=20°,∴∠CAE=∠BAD=20°,∵∠E=∠C,∠AOE=∠DOC,∴∠CAE=∠CDE,∴∠CDE=20°.22.解:(1)∵AE、CD分别为△ABC的角平分线,∴∠FAC=,∠FCA=,∵∠B=60°∴∠BAC+∠BCA=120°,∴∠AFC=180﹣∠FAC﹣∠FCA=180°﹣×120°=120°.(2)在AC上截取AG=AD=6,连接FG.∵AE、CD分别为△ABC的角平分线∴∠FAC=∠FAD,∠FCA=∠FCE,∵∠AFC=120°,∴∠AFD=∠CFE=60°,在△ADF和△AGF中,∴△ADF≌△AGF(SAS)∴∠AFD=∠AFG=60°,∴∠GFC=∠CFE=60°,在△CGF和△CEF中,∴△CGF≌△CEF(ASA),∴CG=CE=4,∴AC=10.23.解:在△ABC和△EDC中,∴△ABC≌△EDC,∴AB=DE=50.答:锥形小山两端A、B的距离为50m.24.解:(1)∵AE⊥BC,BF⊥AC∴△AEB和△AFB都是直角三角形∵D是AB的中点∴DE和DF分别为Rt△AEB和Rt△AFB的斜边中线∴DE=AB,DF=AB(直角三角形斜边中线等于斜边的一半)∴DE=DF∵DE=kDF∴k=1(2)∵CB=CA∴∠CBA=∠CAB∵∠MAC=∠MB∴∠CBA﹣∠MBC=∠CAB﹣∠MAC即∠ABM=∠BAM∴AM=BM∵ME⊥BC,MF⊥AC∴∠MEB=∠MFA=90又∵∠MBE=∠MAF∴△MEB≌△MFA(AAS)∴BE=AF∵D是AB的中点,即BD=AD又∵∠DBE=∠DAF∴△DBE≌△DAF(SAS)∴DE=DF(3)DE=DF如图1,作AM的中点G,BM的中点H,∵点D是边AB的中点∴DG∥BM,DG=BM同理可得:DH∥AM,DH=AM∵ME⊥BC于E,H 是BM的中点∴在Rt△BEM中,HE=BM=BH∴∠HBE=∠HEB∠MHE=∠HBE+∠HEB=2∠MBC又∵DG=BM,HE=BM∴DG=HE同理可得:DH=FG,∠MGF=2∠MAC∵DG∥BM,DH∥GM∴四边形DHMG是平行四边形∴∠DGM=∠DHM∵∠MGF=2∠MAC,∠MHE=2∠MBC 又∵∠MBC=∠MAC∴∠MGF=∠MHE∴∠DGM+∠MGF=∠DHM+∠MHE∴∠DGF=∠DHE在△DHE与△FGD中,∴△DHE≌△FGD(SAS),∴DE=DF21世纪教育网–中小学教育资源及组卷应用平台21世纪教育网。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 全等三角形知识点总结一、全等三角形的性质;全等三角形的对应边相等,全等三角形的对应角相等。

二、全等三角形的判定方法:一般三角形的判定方法:边角边(SAS )、角边角(ASA )、角角边(AAS )、边边边(SSS )直角三角形的判定方法:除了以上四种方法之外,还有斜边、直角边(HL )全等三角形的证明过程: ①找已知条件,做标记;②找隐藏条件,如对顶角、等腰三角形、平行四边形、公共边、公共角等; ③对照定理,看看还是否需要构造条件。

全等三角形的证明思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 三、角平分线的性质:角的平分线上的点到角的两边的距离相等。

符号语言:∵OP 平分∠MON (∠1=∠2),PA ⊥OM ,PB ⊥ON , ∴PA =PB .四、角平分线的判定方法:角的内部到角的两边的距离相等的点在角的平分线上。

符号语言:∵PA ⊥OM ,PB ⊥ON ,PA =PB ∴∠1=∠2(OP 平分∠MON )角平分线的画法:第十一章 全等三角形测试题(A )一、选择题(每小题4分,共40分) 1、下列说法正确的是( )A :全等三角形是指形状相同的两个三角形 C :全等三角形的周长和面积分别相等C :全等三角形是指面积相等的两个三角形D :所有的等边三角形都是全等三角形 2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为( ) A :2 B :3 C :5 D :2.53、如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论:①△ABD ≌△ACD ,②∠B=∠C ,③BD=CD ,④AD ⊥BC 。

其中正确的个数有( ) A :1个 B :2个 C :3个 D :4个4、如图:AB=AD ,AE 平分∠BAD ,则图中有( )对全等三角形。

A :2 B :3 C :4 D :55、如图:在△ABC 中,AD 平分∠BAC 交BC 于D ,AE ⊥BC 于E ,∠B=40°,∠BAC=82°,则∠DAE=( )A :7B :8°C :9°D :10° 6、如图:在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AC 于E ,DF ⊥AB 于F ,且FB=CE ,则下列结论::①DE=DF ,②AE=AF , ③BD=CD ,④AD ⊥BC 。

其中正确的个数有( ) A :1个 B :2个 C :3个 D :4个 7、如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要( )A :AB=CDB :EC=BFC :∠A=∠D D :AB=BC8、如图:在不等边△ABC 中,PM ⊥AB ,垂足为M ,PN ⊥(第2题)F E CBA(第4题)EDCBA(第7题)FEDCB A(第3题)D CBA (第5题)DCBAF E (第6题)CB ANMQ (第8题)CBAAC ,垂足为N ,且PM=PN ,Q 在AC 上,PQ=QA ,下列结论:①AN=AM ,②QP ∥AM ,③△BMP ≌△QNP ,其中正确的是( ) A :①②③ B :①② C :②③ D :①9、如图:直线a ,b ,c 表示三条相互交叉环湖而建的公路,现在建立个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A :1个 B :2个 C :3个 D :4个10、如图:△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB=6㎝,则△DEB 的周长是( ) A :6㎝ B :4㎝ C :10㎝ D :以上都不对二、填空题(每小题4分,共40分)11、如图:AB=AC ,BD=CD ,若∠B=28°则∠C= ;12、如图:在∠AOB 的两边截取OA=OB ,OC=OD ,连接AD ,BC交于点P ,则下列结论中①△AOD ≌△BOC ,②△APC ≌△BPD , ③点P 在∠AOB 的平分线上。

正确的是 ;(填序号) 13、如图:将纸片△ABC 沿DE 折叠,点A 落在点F 处,已知∠1+∠2=100°,则∠A= 度; 14、如图,△ABC 中,∠C =90°,AD 平分∠BAC , AB =5,CD =2,则△ABD 的面积是______;15、如图:在△ABC 中,AD=AE ,BD=EC ,∠ADB=∠AEC=105°,∠B=40°,则∠CAE= ;16、如图:在△ABC 中,AB=3㎝,AC=4㎝,则BC 边上的中线AD 的取值范围是 ;17、如图:∠B=∠C=90°,E 是BC 的中点,DE 平分 ∠ADC,∠CED=35°,则∠EAB = ;cb a(第9题)(第10题)EDCBA(第11题)D CBA(第14题)DCBA E (第15题)D C BAE(第17题)DCBAO(第19题)DC BAO(第12题)DC BA21F E (第13题)D CBA(第16题)D C BA4321FE(第18题)DCBA18、如图:在四边形ABCD 中,点E 在边CD 上,连接AE 、BE 并 延长AE 交BC 的延长线于点F ,给出下列5个关系式::①AD ∥BC , ②,DE=EC ③∠1=∠2,④∠3=∠4,⑤AD+BC=AB 。

将其中三个关系式作为已知,另外两个作为结论,构成正确的命题。

请用序号写出两个正确的命题:(书写形式:如果……那么……)(1) ;(2) ;19、如图:AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB ,你补充的条件是 ;20、如图:在△ABC 中,∠B=∠C=50°,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,则∠BAD= 。

三、解答题(共70分)21、(10分)如图:AC=DF ,AD=BE ,BC=EF 。

求证:∠C=∠F 。

22、(10分)如图:AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC ,FD=CD 。

求证:BE ⊥AC 。

23、(12分)如图:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足为C ,D 。

求证:(1)OC=OD ,(2)DF=CF 。

FE(第20题)D C B AC FEBDACF E B DA OFEDCBA24、(12分)如图:在△ABC ,AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 相交于F 。

求证:AF 平分∠BAC 。

25、(12分)如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 。

求证:(1)AD=AG ,(2)AD 与AG 的位置关系如何。

26、(14分)如图:在△ABC 中,∠C=90°,AC=BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N 。

(1)求证:MN=AM+BN 。

(2)若过点C 在△ABC 内作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N ,则AM 、BN 与MN 之间有什么关系?请说明理由。

三角形全等的判定专题训练题1、如图(5):AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE 。

求证:AC ⊥CE 。

GHFEDCBAC FEBDA N MCBANMC BAE(图5)DCBA2、如图(2):AC ∥EF ,AC=EF ,AE=BD 。

求证:△ABC ≌△EDF 。

3.如图(3):DF=CE ,AD=BC ,∠D=∠C 。

求证:△AED ≌△BFC 。

4.如图(4):AB=AC ,AD=AE ,AB ⊥AC ,AD ⊥AE 。

求证:(1)∠B=∠C ,(2)BD=CE 5.如图(6):CG=CF ,BC=DC ,AB=ED ,点A 、B 、C 、D 、E 在同一直线上。

求证:(1)AF=EG ,(2)BF ∥DG 。

6.如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN=BC 。

求证:(1)MN 平分∠AMB ,(2)∠A=∠CBM 。

7.如图(8):A 、B 、C 、D 四点在同一直线上,AC=DB ,BE ∥CF ,AE ∥DF 。

求证:△ABE ≌△DCF 。

F E D C B A FE (图3)D C B A E (图4)D CB A GF E(图6)D CBA N M(图7)C BA F E(图8)DC B A8.如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。

求证:AM 是△ABC 的中线。

9.如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC 上任一点。

求证:PA=PD 。

10如图(12)AB ∥CD ,OA=OD ,点F 、D 、O 、A 、E 在同一直线上,AE=DF 。

求证:EB ∥CF 。

11.如图(13)△ABC ≌△EDC 。

求证:BE=AD 。

12.如图(14)在△ABC 中,∠ACB=90°,AC=BC ,AE 是BC 的中线,过点C 作CF ⊥AE 于F ,过B 作BD ⊥CB 交CF 的延长线于点D 。

(1)求证:AE=CD ,(2)若BD=5㎝,求AC 的长。

M F E (图9)C BA P 4321(图11)D BA FE E (图13)D CB A FE(图14)DCBA13.如图15△ABC 中,AB=2AC ,∠BAC=90°,延长BA 到D ,使AD=12AB ,延长AC 到E ,使CE=AC 。

求证:△ABC ≌△AED 。

14.如图(16)AD ∥BC ,AD=BC ,AE=CF 。

求证:(1)DE=DF ,(2)AB ∥CD 。

15.如图17:在△ABC 中,AD ⊥BC 于D ,AD=BD ,CD=DE ,E 是AD 上一点,连结BE 并延长交AC 于点F 。

求证:(1)BE=AC ,(2)BF ⊥AC 。

16.如图18:在△ABC 中,∠ACB=90°,AC=BC ,D 是AB 上一点,AE ⊥GD 于E ,BF ⊥CD 交CD 的延长线于F 。

相关文档
最新文档