智能电网调度控制系统研究

合集下载

智能电网的智能优化与调度研究

智能电网的智能优化与调度研究

智能电网的智能优化与调度研究智能电网是一种基于信息通信技术和电力系统集成的先进能源传输和分配网络。

它通过实时监测、广域通信、数据分析和智能控制等手段,实现电力系统的高效、可靠、安全和可持续运行。

智能电网的智能优化与调度是实现其高效运行的重要环节,本文将探讨与研究这一领域相关的技术与应用。

一、智能电网的优化问题智能电网作为复杂的电力系统,面临着诸多的优化问题。

其中包括经济性优化、可靠性优化、安全性优化等。

经济性优化是指在满足用户需求和电网安全稳定运行的前提下,最大化电网的经济效益。

可靠性优化是指在保障电网供电可靠性的前提下,通过智能化手段提高电网设备的利用率和运行效率。

安全性优化是指通过智能化监测和预测,提前发现潜在的电网安全隐患,并采取措施防止事故的发生。

二、智能优化技术为了解决智能电网的优化问题,研究人员提出了多种智能优化技术。

以下是其中几种常见的技术:1. 基于人工智能的优化技术人工智能是智能电网优化的核心技术之一。

通过机器学习、数据挖掘、深度学习等技术手段,可以对大量的历史数据进行分析,从而提取出电力系统的规律性和趋势性信息。

同时,人工智能还可以对电力系统进行建模和仿真,通过大规模计算,找寻最优解,从而实现电力系统的经济性和可靠性优化。

2. 基于大数据的优化技术随着电力系统的智能化程度不断提高,系统中产生的数据量也呈现爆发式增长。

利用这些大数据,可以对电力系统的各个环节进行全面监测和精细化分析,从而实现电力系统的智能优化。

例如,通过对用户用电行为进行分析,可以预测用电负荷的变化趋势,为电网调度员提供精准的调度建议。

3. 基于优化算法的优化技术传统的数学优化算法在智能电网的优化中也有着重要的应用。

如线性规划、整数规划、二次规划等。

通过对电力系统的数学建模和求解,可以得到电力系统的最优方案。

同时,还可以结合启发式算法,提高求解速度和求解精度。

三、智能调度技术智能调度是智能电网中的一个重要环节,它涉及到电力系统中各个设备的协调运行和灵活调度。

智能电网中的电力调度与能源管理技术研究

智能电网中的电力调度与能源管理技术研究

智能电网中的电力调度与能源管理技术研究第一章:智能电网概述智能电网是指通过先进的通信、计算和控制技术实现电力系统的自动化、智能化和高效性能的电网系统。

它能够监测、分析和控制电网中的各种电力信息和能源流向,从而实现对电力的调度和能源的管理。

在智能电网中,电力调度和能源管理技术起到了至关重要的作用。

第二章:电力调度技术研究2.1 调度中心智能电网中的电力调度通常由调度中心负责,调度中心是一个集中控制的地方,通过监测和控制电力系统中各个节点的运行状态和电力需求来进行电力的合理调度。

调度中心通过建立精确的模型和算法来预测、规划和优化电网中的发电、输电和用电等环节,以确保电力系统的稳定运行和有效利用。

2.2 负荷预测负荷预测是电力调度中的一个关键环节,它通过对历史数据和当前数据的分析,来预测未来一段时间内的负荷需求。

负荷预测可以用于确定发电计划、设定运行策略和规划输电线路等,以提高电力系统的调度效率和能源利用率。

2.3 发电调度发电调度是指根据电力系统的负荷需求和发电资源的情况,合理安排发电机组的运行和发电计划,以满足系统的负荷需求和维持电网的稳定运行。

发电调度通常考虑发电机组的发电能力、传输损耗、环境因素和经济效益等因素,通过优化算法和调度策略,来实现电力的高效供应。

2.4 输电调度输电调度是指根据电力系统的负荷需求和输电线路的容量,合理安排输电功率和输电路径,以保证电力系统的稳定运行和电能的高效传输。

输电调度可以通过智能电网中的迁移计算和分布变电站等技术手段,实现对输电线路的动态调度和优化配置,以降低线损和提高电能传输效率。

第三章:能源管理技术研究3.1 能源监测能源监测是指通过安装传感器和测量设备,对能源的产生、消耗和流向进行实时监测和采集。

能源监测可以获取电力系统各个环节的能源使用情况和数据,从而实现对能源的全面管理和优化利用。

3.2 能源评估能源评估是指通过对能源系统的建模和仿真,对能源的使用效率、经济性和环境影响等进行评估和分析。

智能电网调度控制系统分析

智能电网调度控制系统分析

智能电网调度控制系统分析摘要强化智能电网调度控制系统应用符合加快推动国内智能电网建设的宏观目标,且对于提升电网调度有效性、确保电网运行的可靠与安全意义重大。

本文以智能电网调度控制系统架构设计为切入点,简要分析其应用功能,然后重点对系统应用控制措施进行探讨。

关键词智能电网;调度控制系统;系统构成;控制措施电网系统是一项复杂的刚性系统,缺乏可重组性与动态柔性,影响了电网建设的智能化水平。

如果可以巧妙地引入和应用自动化控制技术,那么可以提升电网的动态柔性,增强配网调度控制有效性,同时也能助于推动国内智能电网建设发展。

而智能电网调度控制系统则是在此背景下所产生的一种智能化调控系统,具有很强实践应用价值和研究价值。

1 智能电网调度控制系统的架构设计1.1 体系架构设计为了实现电网调度控制的各项基本功能,确保可以实现“纵向贯通、横向集成”的目标,需要结合系统功能需求,将该系统划分成操作系统层、支撑平台层与应用功能层,其中操作系统层可以结合实际的硬件平台,灵活选用Windows 系统平台、Unix系统平台和Linux系统平台;支撑平台层主要是满足各种系统应用功能所提供的对应技术支撑,比如系统管理功能或图形界面处理功能等;应用功能层主要是提供监控、调度计划与管理、预警等功能。

1.2 应用功能架构设计智能电网调度控制系统是一套面向于电力企业电网调度业务的集约化系统。

该系统可以为用户提供用户权限设置功能、实时监控与预警功能、安全校核功能等基本功能。

以权限设置功能为例,用户要想进入控制系统中进行操作,那么必须要先输入正确的用户名及其对应密码。

待进入到操作系统后,方可执行调度计划、安全校核、调度管理、实时监控与预警等功能。

比如,其中的安全校核功能主要包括校正稳定裕度、校核静态安全、评估与稳定分析等,可以为智能电网的正常运行操作提供相应的数据支持;调度管理则主要负责评估电网综合分析情况,管理电网的实际运行情况以及开展专业调度管理。

智能电网中的人工智能调度算法研究与创新

智能电网中的人工智能调度算法研究与创新

智能电网中的人工智能调度算法研究与创新近年来,随着科技的飞速发展,智能电网已经成为了电力行业的发展趋势和研究热点。

在智能电网中,人工智能调度算法的研究与创新起着至关重要的作用。

本文将深入探讨智能电网中人工智能调度算法的研究现状及创新方向。

一、智能电网的发展趋势智能电网是指利用先进的感知、通信、计算、控制和优化等技术手段,对电力系统进行智能化改造和升级,实现能源的高效利用、供需的平衡和网内外资源的优化配置。

智能电网通过综合运用各类技术手段,实现电力系统的智能化运行和管理。

智能电网的发展趋势主要表现在以下几个方面:1. 全面智能化:借助先进的通信、计算和控制技术,电力系统能够对能源供需进行智能化预测、调度和控制,以实现电力系统的高效、安全、可靠运行。

2. 分布式能源接入:逐渐摆脱传统的中心化发电方式,鼓励分布式能源接入,通过智能电网的协同管理和调度,使分布式能源能够高效融入电力系统中。

3. 多能互补调度:充分利用多种能源,包括传统能源、可再生能源、储能等,通过智能调度算法进行能源的合理配置,以满足不同区域和用户的能源需求。

4. 微电网发展:通过建设微电网,实现小范围内的能源的自给自足,提高供电可靠性,降低用户的用电成本。

二、智能电网调度算法研究现状在智能电网的运行和管理中,调度算法是关键技术之一,能够根据电力系统的实时状态和用户需求,合理调度和控制电力设备,以实现电力系统的高效运行。

目前,智能电网调度算法主要包括以下几种:1. 遗传算法:模拟生物进化过程的遗传算法可以应用于智能电网的调度中,通过优化遗传算子,如交叉、变异等,使得电力系统的运行效率更高。

2. 粒子群优化算法:受到鸟群觅食行为的启发,粒子群优化算法通过模拟粒子在解空间中的搜索过程,逐渐找到最佳解,用于智能电网的调度问题上。

3. 人工神经网络算法:利用人工神经网络构建电力系统的模型,通过训练网络参数使得模型输出的结果更加符合实际情况,从而实现智能电网的调度。

智能电网调度控制系统AGC需求分析及关键技术

智能电网调度控制系统AGC需求分析及关键技术

智能电网调度控制系统AGC需求分析及关键技术摘要:火电厂AGC控制系统主要由电网调度中心实时控制系统、信息传输通道、远动控制装置(RTU)、单元机组控制系统组成。

电网调度中心利用控制软件对整个电网的用电负荷情况及机组运行情况进行监视,对掌握的数据进行分析,并对电厂的机组进行负荷分配,产生AGC指令。

AGC指令通过信息传输通道将此指令传送到电厂的RTU装置。

同时,电厂将机组的运行状况及相关信息通过RTU装置和信息传输通道送至电网调度中心的实时控制系统中去。

关键词:智能电网;调度控制系统;AGC前言自动发电控制(AGC)作为调度自动化系统中一项重要的控制功能,是完成频率与有功功率的调整任务的。

其目的是保持电网计划的交换功率和标准频率,并尽可能经济地保持电力系统运行发供电平衡,维持区域间净交换功率为计划值。

1AGC的技术特点1.1AGC涉及的信号AGC指令信号是电网调度中心的计算机产生的被控机组的目标功率,按RTU的通信规定组装成AGC遥调报文输送给电厂RTU,RTU装置将接收到的AGC控制信号转换成4~20mA信号送至发电机组的功率调节系统。

同时,功率变送器将发电机组有功功率转换成4~20mA信号,经过RTU远动装置转换成线性比例的二进制遥测数据,该数据由RTU转换成高频载波信号,送到电网调度实时控制系统中。

电网调度实时控制系统和发电机组控制系统除了上述两个重要参数的沟通外,发电机组还将一些能反映机组控制系统的状态、AGC响应的品质参数及机组的负荷限制参数通过RTU送到电网调度实时控制系统。

1.2AGC指令的生成AGC指令是电网调度实时控制系统中经过负荷预测的调度计划,并在实际运行中根据当前负荷需求和电网频率稳定的要求,每8s运算一次当前被控机组的设定功率。

它是由基本负荷分量和调节分量组成。

基本负荷分量是在短期预测基础上制定的日负荷发电计划中包含的基本发电量;调节分量是指超短期负荷系统,对当前负荷变化情况运算预测出的下一时间段要求改变的系统负荷调节量。

智能电网的需求响应与调度研究

智能电网的需求响应与调度研究

智能电网的需求响应与调度研究在当今能源需求不断增长、环境压力日益增大的背景下,智能电网作为一种创新的电力系统解决方案,正逐渐引起广泛的关注。

其中,需求响应与调度是智能电网中至关重要的环节,对于提高电力系统的效率、稳定性和可靠性具有重要意义。

需求响应是指用户根据电力市场价格或激励机制,主动调整自身的电力消费行为,以达到优化电力资源配置和平衡供需的目的。

过去,电力用户往往是被动的消费者,对电力供应的变化缺乏响应能力。

然而,随着智能电表、通信技术和自动化控制系统的发展,用户现在能够实时获取电力价格信息,并根据自身的需求和经济利益,灵活调整用电设备的运行时间和功率。

例如,在电价较高的高峰时段,用户可以选择减少不必要的用电,如推迟使用大功率电器;而在电价较低的低谷时段,则可以进行一些可调节的用电活动,如充电储能设备或进行批量生产。

需求响应的实现离不开先进的通信技术和智能电表的广泛应用。

智能电表能够实时测量用户的用电数据,并将其传输到电力供应商的控制中心。

通过这些数据,电力供应商可以准确了解用户的用电模式和需求变化,从而制定更加合理的电价策略和供应计划。

同时,通信技术的发展使得电力供应商能够及时向用户传递电价信息和激励措施,引导用户参与需求响应。

除了用户侧的需求响应,电力系统的调度在智能电网中也起着关键作用。

调度的主要任务是根据电力系统的运行状态和预测的负荷需求,合理安排发电资源的输出,以确保电力的稳定供应和电网的安全运行。

在传统电网中,调度主要依靠经验和固定的运行模式,难以应对复杂多变的电力需求和突发情况。

而在智能电网中,借助先进的监测技术、数据分析和预测算法,调度能够更加精准和灵活。

智能电网中的调度系统可以实时监测电网中各个节点的电压、电流、功率等参数,并通过大数据分析和机器学习算法,对未来的电力负荷进行准确预测。

基于这些预测结果,调度系统可以提前安排发电资源的启停和出力调整,以满足负荷需求的变化。

例如,当预测到未来一段时间内电力需求将大幅增加时,调度系统可以提前启动备用发电机组或增加可再生能源的接入;反之,当需求减少时,可以适当降低发电功率,以提高能源利用效率和减少浪费。

基于智能电网的电力调度优化研究

基于智能电网的电力调度优化研究随着人们对“绿色能源”的关注度不断提高,电力行业也在不断地发展、进步、创新。

在能源行业,电力的调度和优化就成为了全行业最关键的问题之一——如何在满足用户需求的情况下,尽量避免能源浪费,降低能源成本,确保电力行业可持续发展呢?基于智能电网的电力调度优化研究为我们提供了一种风格全新的解决方案。

一、智能电网的概念智能电网,又称为智能电力系统,是在现有电力系统的基础上,在集成多种新技术和新元素的基础上推出的新一代电力系统。

它利用先进的通信、计算、软件和控制技术,实现了电力系统的自学习、自适应、自愈合、自优化等自主智能运行。

智能电网不仅满足了人们对电力质量、供电可靠性和安全性的要求,同时还兼顾了能源的可持续性和环境保护。

它能够有效地节能减排、优化电网结构、提高电网效率、提高供电可靠性和电力质量。

二、智能电网的电力调度优化智能电网的一个主要特征就是它的智能化调度和优化。

合理的电力调度和优化可以有效地提高电网的效率和可靠性,提高能源利用效率,减少能源浪费和污染排放。

为了实现智能化的电力上网和调度优化,我们必须在电力系统中引入一些新型的技术和手段。

1、分布式能源的接入分布式能源是指在不同区域内分散布置的、独立的、可控的、可调度的能源来源,如光伏发电、小水电、风能发电等。

分布式能源的接入可以有效地减少传统能源消耗,提高能源利用效率,使能源更加清洁。

2、动态负荷预测与管理负荷预测是智能电网中的一个重要技术。

通过对负荷进行动态预测,可以合理规划供应方案、合理控制电网的负荷,从而提高了电网的运行效率和质量。

3、能量存储技术在智能电网中,能量存储技术可以有效地储存多余的电能或低谷时段的电能,以便高峰时段向用户供应电力。

这样可以有效地平衡电网负荷,减少高峰时段的能源浪费,提高能源利用效率。

4、智能配电网智能配电网是一个智能化的、集成传感器和数据处理技术的电网。

它可以实时监测电网的状态和负荷状况,并对电力调度和优化提供数据支持,从而最大限度地提高电网的效率和可靠性。

基于人工智能的智能化电网调度控制系统设计与实现

基于人工智能的智能化电网调度控制系统设计与实现随着科技的进步和发展,人工智能(Artificial Intelligence, AI)在各行各业中发挥着越来越重要的作用。

其中,智能化电网调度控制系统设计与实现是一个备受关注的课题。

本文将对基于人工智能的智能化电网调度控制系统的设计和实现进行探讨。

一、智能化电网调度控制系统的重要性随着电力系统规模的扩大和复杂程度的增加,传统的电网调度控制方法逐渐无法满足需求。

智能化电网调度控制系统的设计和实现,可以通过人工智能技术提高电网的可靠性、稳定性和安全性,进一步提高电网的运行效率和经济性。

二、基于人工智能的智能化电网调度控制系统的设计原理1. 数据采集与处理智能化电网调度控制系统通过传感器等设备采集电力系统的各种数据,包括供电负荷、电压、电流等。

通过人工智能算法对采集到的数据进行处理和分析,形成对电力系统状态的准确描述和预测。

2. 智能化调度决策基于人工智能的智能化电网调度控制系统利用优化算法对电力系统进行调度决策,并实时对电力系统进行优化控制。

通过对电力系统历史数据和实时数据的学习,系统可以不断提升调度控制能力,适应复杂多变的运行环境。

3. 智能化设备协同智能化电网调度控制系统可以通过与各类电力设备的通信协议,实现与电力设备的协同控制。

通过与变压器、开关设备、智能电表等设备的联动,实现电力系统的智能化运行和优化控制。

三、智能化电网调度控制系统的关键技术1. 数据挖掘和建模技术通过对大量历史数据的挖掘和建模,可以帮助智能化电网调度控制系统准确预测电力系统未来的负荷和运行状态,为调度决策提供准确的依据。

2. 优化算法通过使用优化算法,智能化电网调度控制系统可以对电力系统进行最优调度,实现最佳的供电效果和经济效益。

优化算法可以有遗传算法、模拟退火算法等。

3. 通信与协议技术智能化电网调度控制系统需要与各种电力设备进行通信和数据交换。

通信与协议技术的应用可以实现系统与设备之间的信息交互和协同控制,实现电力系统的智能化运行。

电网智能调度自动化系统研究现状及发展趋势

电网智能调度自动化系统研究现状及发展趋势摘要:在电网运行中,对电力的调度处于中枢地位,调度的自动化、智能化也就成为了电网运行的基础。

我国电网调度自动化目前取得了较为长足的发展,不过若是电网处在非正常状态下,则依旧需要依靠人工经营对问题进行处理。

然而随着电网规模的不断扩大,对于人工经验的依耐性应当是需要日益减少的,因此,我国的电力智能调动自动化还有较长的一段路要走。

关键词:智能调度;调度自动化;智能电网1我国电网智能调度自动化系统的发展现状电网调度是为了确保电网可以安全使用,从而为人们提供稳定的电能,其在电网运行中发挥着基础性的作用。

随着社会经济的发展,电网的规模也日益扩大。

传统调度的方式存在着很多弊端,并且日益暴露出来,因此,要迫切实现电网智能调度的自动化,提高调度的自动化水平。

就我国电网智能调度自动化建设成果来说,我国电力资源在区域上分布不平衡,而且用电负荷也存在着地域间的差别,电网调度的自动化系统的技术水平还远远不够,和社会的需求不相适应。

而且,就硬件配备来说,网络架构、输电设备等比较落后,无法实现较高的社会需求,而且未能充分利用可再生能源和清洁能源,在环境保护上还有待提高,难以实现我国能源的可持续发展。

同时,和国际上的标准比较,我国的电网调度自动化系统的技术水平还远远落后于一些发达国家。

所以,在建设电网智能调度自动化系统中,需要进行进一步的完善。

就世界的发展角度来说,电网智能调度自动化系统的发展还处于初始的阶段,很多国家也在根据自身情况的基础上,不断探索电网智能调度自动化系统。

目前,随着城市的发展,人们对城市供电的要求也越来越高,但是,目前调度的技术水平有限,再加上受到具体的地理位置的限制,因此,我国自动化技术水平还比较落后,因此,我国要充分结合自身的实际情况,研究具有中国特色的自动化系统。

自动化系统研究者要和时代发展相结合,把握好能源的利用结构,并根据产业布局的情况,从而增强我国电网的安全性,有利于充分节能减排的功效,推动环境保护,从而有利于推进自动化系统建设的步伐,推动我国社会的可持续发展。

新能源电力系统中的智能调度与优化技术研究

新能源电力系统中的智能调度与优化技术研究随着全球能源需求的不断增长和环境问题的日益突出,新能源电力系统作为一种可持续发展的能源选择受到了广泛关注。

与传统的电力系统不同,新能源电力系统主要依赖于可再生能源如太阳能和风能等,其特点是不稳定且具有一定的间歇性。

因此,如何在新能源电力系统中实现智能调度和优化,以提高系统的稳定性和效率,成为了当前研究的热点。

新能源电力系统中的智能调度与优化旨在通过合理安排能源的生产、消费和储存,使系统的供需平衡得到有效管理。

一方面,通过智能调度可以实现对可再生能源的最大利用,减少对传统能源的依赖。

另一方面,智能调度可以优化能源系统的运行,减少能源的浪费和损耗,提高系统的效率。

下面将介绍一些主要的智能调度与优化技术。

首先,新能源电力系统中的智能调度与优化可以借助电力预测技术。

利用大数据、人工智能等相关技术,对电力需求和电力生产进行准确预测,有助于优化能源的调度安排。

电力预测技术可以根据历史数据、天气状况、用电负荷等因素,预测未来一段时间内的电力需求和可再生能源生产情况。

基于这些预测结果,可以合理安排能源的调度,以提高系统的供需平衡。

其次,新能源电力系统中的智能调度与优化还可以借助储能技术。

储能技术可以将过剩的可再生能源转化为电能并储存起来,以供系统在需要时使用。

通过智能调度和优化,可以合理安排储能的使用和充放电时间,以最大程度地减少系统的能源浪费和损耗。

例如,在太阳能和风能丰富的时段,可以将多余的电能储存起来;而在能源短缺的时段,则可以利用储能系统提供额外的电能,确保系统的供需平衡。

此外,新能源电力系统中的智能调度与优化还可以借助供需协调技术。

供需协调技术可以根据实际需求和可再生能源的产生情况,合理地安排能源的供应和消费。

通过与用户的需求进行精确匹配,减少能源的浪费,并优化系统的能源利用效率。

供需协调技术可以通过智能电网和智能计量等手段,实现对能源的精确控制和调度,确保系统的供需平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能电网调度控制系统研究
摘要:近年来,我国的电网调度行业得到了飞速发展,自动化程度逐渐提高。

随着以现代化信息技术为支撑的智能电网调度控制系统在我国各个地区的应用,
总系统控制、地区性技术分配、电力引流等各个技术内容都实现了差异化的发展,满足系统信息化标准构建要求的同时兼顾地区性需求,使得电力调度不仅具有较
高的安全性和稳定性,还不失灵活性和可靠性,资源的应用效率大大提高。

本文
分析了智能电网调度控制系统技术的应用现状和存在的问题,提出了智能电网调
度控制系统应用技术的发展展望。

关键词:智能电网;调度控制;系统研究
引言
我国的电网调度控制系统技术起源于上个世纪的80年代,当时以国、内外技术要点吸收和必备材料的准备为重点。

我国在20世纪90年代开始进行技术的自
主研发和创新应用,在进入到21世纪以后,我国依靠于技术的技术研发和电网
城市建设工程,在全国范围内构建了现代化智能电网调度控制系统,电力调度工
作效率显著提高。

1 智能电网调度控制系统概述
1.1 智能电网与传统电网的对比分析
智能电网实际上就是一种可以实现对电力系统进行自动控制和自主监测的电
力传输网络,主要目的是为了保证输电网络运行的稳定和安全情况。

智能电网是
在利用集成的、高速的、双向性通信网络技术结合原有的电网基础上,对传统电
网进行更新和升级,确保电网系统能够进行自动化与高效化的运行工作。

智能电
网在运行过程中主要运用传感技术、控制技术、测量技术以及感应技术等来实现
对电网系统的控制和监测的,所以与传统电网相比,智能电网的优势更加明显。

1.2智能电网调度控制系统结构特点
我国智能电网调度控制系统构建的过程中,由国家电力网络科学院和中电科
学院负责技术的研发,各级调度控制中心负责设计具体的技术线路,而这些工作
都是在我国电力网络总公司的组织下进行的。

该公司的科研力量雄厚,正是有了
这种技术支持,调度控制中心部门能更好地对该系统进行总体结构设计和功能设计。

在对总体结构进行设计的过程中,充分考虑到了软硬件的安全性。

此外,还
需要通过计算机技术的辅助,实现对智能电网调度系统的控制,从而使这个系统
的电网运行过程中的能力得到提升,且可靠性得到增强。

在智能电网调度控制系
统的总体设计过程中,可使用SOA体系结构。

这种结构能够提高控制系统的互联
能力。

2 智能电网调度控制系统核心创新技术及其应用效果分析
2.1 特大电网的可观测性和可控性得到显著提高
首先,我国研发出了开放式的C6000电网平台系统,能够实现从横向集中扩
展到纵向拓展的双向调度控制,为特大电网的多级协调调度创造了技术的前提。

第二,我国扩大了时间发展序列技术的范围,不但能够实现历史数据库的信息研
究还能实现实践序列库的数据研究,因此提高了数据存储的容量和性能,满足特
大电网的可观测性能的实际需要。

例如,这项技术能够保障资源数据信息激增的
时候也能实现信号的实时监控,从而降低信号对特大电网的干扰。

同时,我国研
发的IEC61970等模型的电网实时监控技术与硬件加密远程控制技术、综合智能报警等技术实现了特大电网的实时可控,即使发生安全问题也能够第一时间进行处
理。

2.2 提高电网抵抗灾害的能力
从电网的外部来看,抗灾能力主要就是指地理条件、气候等自然灾害的能力;从内部看就是指电网自身的安全性能灾害的抵抗能力。

我国智能电网调度控制系
统实行的是省级以下划分体系技术,即在可能发生重大自然灾害的地区允许一定
的调度控制技术空间,满足其抵抗自然灾害的要求;而在省级以上构建特大协调
控制系统实现容灾数据、业务等内容的备用。

此外,在系统内部则构建了ECC调
度数据证书、专用网双平面技术等实现调度系统的深度安全控制,提高自身抵御
系统攻击的能力。

2.3 降低电网系统的运行成本
节能性与经济性是现代智能化生活的一个重要理念,在我国智能电网调度控
制系统中研发了SCUC、SCED等关键性技术要点,能够实现系统自由耦合性调度,降低系统运行成本。

同时利用多时间尺度母线负荷预测技术、静、动、暂态三位
一体的安全校核技术要点,提高了调度控制系统中主线路与分区线路的协调搭配,有效节约了系统监控和管理的成本并提高线路运行的效率,其节能经济性能十分
突出。

3 智能电网调度控制系统发展存在的问题
3.1 信息感知与同步的支撑能力较弱
电网交直流高度融合,一体化特征凸显,电网事故的关联性、复杂性越来越高。

电网运行中智能控制、处置协同尤为迫切。

实现跨越调度管辖、跨越电力范畴、跨越专业管理的信息共享与同步提升是解决问题的基础。

3.2 电网在线分析的支撑能力有待提升
当前电网在线分析软件使用的模型采用的模式,相对外部融合度较高的电网,存在明显缺陷,影响在线分析结果准确性,导致在线分析软件实用性不高。

急需
加强技术创新,实现基于实时电网全模型的在线分析,提升对在线分析的实用化
水平。

3.3 调度管理精益化的支撑能力不足
调度管理目前主要存在横向不统一、纵向不一致、数据同步性不高及关联性
差的问题。

模型数据没有实现源端维护,全局共享,数据业务融合度低,数据同
步性不高,难以自动汇集和广域检索。

3.4 数据深度应用挖掘不够
数据存储时间长短不一,未做到统筹规划,导致数据存储能力不足。

数据没
有按对象或事件分类,未有效开展数据的清洗、处理和加工。

数据挖掘应用较少、挖掘深度不够,缺少通用挖掘算法。

4 智能化调度自动化设想
未来的智能调度自动化系统具有很大的发展空间,它将是一个庞大的智能化
系统,这个系统在高级测量体系的前提基础上将使负荷数据和系统联系起来。


时智能调度自动化系统还包括三维GIS地理信息子系统,高级智能配网子系统等。

因为所有区域性智能调度自动化系统可以进行相互的传输,彼此能够兼容,有强
大的互动性,而且完全没有信息孤岛。

因为系统具备着冗余和组合能力可以整合
在全局范围内的数据。

同时电网数据可以在各个区域性系统数据中得到调用,进
而形成一种人工智能且完整统一的电网模型,同时这种电网模型具备全局性的电
网拓扑能。

智能系统的特点就是具有扁平的结构,有多层的分布,并且具有可组
的功能和灵活的布置。

因为层次构架的建立,使其具有更加强大的交互和共享功
能,如此还可以有效地避免无谓的或有害的海量信息。

另外,智能化信息交互平台能够带给用户更加坚固、灵活、抗攻击和自防御的作用。

而且智能化调度自动化系统可以统一发电、输电、配电以及用户信息,使电网的双向互动供电得到成立。

另外,双向交互式的信息沟通使信息能够得到真实有效的传递,最终使电网的智能化得到更加理想的展现,能够和用户建立更加紧密的关系,使用户需求得到更好的实现,,使企业更好的履行社会责任,最终确保电网的稳定运行,使用户能够自觉的进行节能。

结语
在各行业电能需求量不断增多的情况下,电网调度工作变得至关重要,智能电网调度控制系统的运用能够促进电网的高效率运行。

电力企业可以根据自身情况及时代发展要求做好智能电网调度控制系统相关技术的创新工作,进而提升其智能化及自动化水平,为进一步发展提供更多的有利条件。

参考文献:
[1]辛耀中,石俊杰,周京阳,等.智能电网调度控制系统现状与技术展望[J].电力系统自动化,2015(1).
[2]秦琳.智能电网调度控制系统现状与技术展望[J].建筑工程技术与设计,2016(25).
[3]夏晓龙.智能电网调度控制系统现状与技术展望[J].中国高新技术企业(中旬刊),2016(12).。

相关文档
最新文档