白话“电力系统状态估计”(于尔铿)

合集下载

第四讲 状态估计

第四讲 状态估计


1. 2. 3.
为什么要进行状态估计?
数据不齐全; 不良数据; 数据不准确;
何为“状态估计”? 去伪存真、去粗取精、填平补齐。

是一种数学滤波方法,用量测信息的冗余度 来提高数据精度,自动排除随机干扰所引起 的错误信息,估计出系统的状态。
电力系统状态估计的历史


1970年前后,美国MIT教授F. C. Schweppe首先借鉴航 天领域的成果,提出了状态估计的概念及其方法,开创 了历史 80年代中期,世界上一半的调度中心应用了状态估计。 现在,所有省级以上调度中心都安装了SE。 国内电科院于尔铿教授、清华张伯明教授等都是较早开 展研究并且由此建立了整套EMS系统 1980年后, Schweppe教授首先提出实时电价的理论,
m
n 2 N 1
x [Vi , i ]T
hl ( x) Pij (i , j ,Vi ,V j ) Vi 2 gij VV j ( gij cos ij bij sin ij ) i hl ( x) Qij (i , j ,Vi ,V j ) Vi 2 (bij bi 0 ) VV j ( gij sin ij bij cosij ) i

量测系统的数学模型:量测方程
z h( x) v
基于基尔霍夫定律和欧姆定 律的量测函数方程, m维 m n 有m-n个多余方程
z x v h( x )
量测量向量,m维 状态向量,n维 误差向量, m维
小例子
电流表 电压表
R 10
(U s 10V )
A +
I 1.04 A V 9.8V
max X j ?
j
output

电力系统状态估计概述

电力系统状态估计概述

电力系统状态估计研究综述摘要:电力系统状态估计是当代电力系统能量管理系统(EMS)的重要组成部分。

本文介绍了电力系统状态估计的概念、数学模型,阐述了状态估计的必要性及其作用,系统介绍了状态估计的研究现状,最后对状态估计的研究方向进行了展望。

关键词:电力系统;状态估计;能量管理系统0引言状态估计是当代电力系统能量管理系统(EMS)的重要组成部分,尤其在电力市场环境中发挥更重要的作用。

它是将可用的冗余信息(直接量测值及其他信息) 转变为电力系统当前状态估计值的实时计算机程序和算法。

准确的状态估计结果是进行后续工作(如安全分析、调度员潮流和最优潮流等)必不可少的基础。

随着电力市场的发展,状态估计的作用更显重要⑴o状态估计的理论研究促进了工程应用,而状态估计软件的工程应用也推动了状态估计理论的研究和发展。

迄今为止,这两方面都取得了大量成果。

然而,状态估计领域仍有不少问题未得到妥善解决,随着电力系统规模的不断扩大,电力工业管理体制向市场化迈进,对状态估计有了新要求,各种新技术和新理论不断涌现,为解决状态估计的某些问题提供了可能。

本文就电力系统状态估计的研究现状和进一步的研究方向进行了综合阐述。

1电力系统状态估计的概念1.1电力系统状态估计的基本定义状态估计也被称为滤波,它是利用实时量测系统的冗余度来提高数据精度,自动排除随机干扰所引起的错误信息,估计或预报系统的运行状态(或轨迹)o 状态估计作为近代计算机实时数据处理的手段,首先应用于宇宙飞船、卫星、导弹、潜艇和飞机的追踪、导航和控制中。

它主要使用了六十年代初期由卡尔曼、布西等人提出的一种递推式数字滤波方法,该方法既节约内存,又大大降低了每次估计的计算量[2,4]o电力系统状态估计的研究也是由卡尔曼滤波开始。

但根据电力系统的特点,即状态估计主要处理对象是某一时间断面上的高维空间(网络)问题,而且对量测误差的统计知识又不够清楚,因此便于采用基于统计学的估计方法如最小方差估计、极大验后估计、极大似然估计等方法,目前很多电力系统实际采用的状态估计算法是最小二乘法。

电力系统网络拓扑分析算法概述

电力系统网络拓扑分析算法概述

电力系统网络拓扑分析算法概述作者:王曼来源:《商场现代化》2010年第36期[摘要]随着电网状态估计技术的发展和使用计算机进行实时监控日益得到的广泛应用,无论是实时监控、在线潮流计算、状态估计都离不开对电力接线图的结构进行分析。

本文重点概述了计算出网络的实时结构拓扑所采用的算法。

[关键词]算法搜索关联矩阵 OSPF协议分电压等级有色Petri法引言拓扑结构不仅是潮流分析、状态估计等高级应用的基础, 它是电力系统网络分析其他应用软件的基础,它的任务是根据电力网络中开关的开断状况,通过一定的算法计算出网络的实时结构拓扑,进而进行更高级运算以了解电力网络的运行状态和安全稳定性,或者得到拓扑数据供电力系统应用程序使用。

同时拓扑分析的效果直接影响着工作人员进行故障估计、诊断和其他应用程序的使用效果。

一、深度或广度搜索法早期的网络拓扑分析是利用堆栈技术进行搜索。

一般是将拓扑结构表述为链表关系,用图论中的搜索技术,如深度优先搜索法和广度优先搜索法分析节点的连通性。

这种方法一般需要建立反映拓扑结构的链表,通过处理链表实现拓扑分析,然后以搜索回溯的框架, 利用堆栈记录划分。

由于其基本算法采用“堆栈”原理——先进后出的搜索逻辑,程序不可避免采用递归的实现形式,因此编程和维护较复杂,效率较低。

况且当应用于实时网络分析时, 在运算时间上不能满足要求。

二、面向对象(OO)的启发式搜索算法由于在电网的实际运行过程中,状态频繁发生变化的开关占少数,因此将追踪技术引入拓扑分析中,仅在开关状态发生改变时进行局部拓扑分析,可以减少拓扑分析的计算量。

在完成网络的初始拓扑分析并构筑了电网的结点树之后,当电网发生开关变位事件时,根据开关变位只造成局都电网拓扑发生变化的特点,采用启发式搜索算法进行电网结点树拓扑的跟踪。

针对不同的变位事件,分开关“开”和“合”两种情况进行分析。

实现拓扑跟踪OO模型的启发式拓扑分析方法,利用OO技术可扩展拓扑算法的适用范围。

电力系统状态估计与实时监测研究

电力系统状态估计与实时监测研究

电力系统状态估计与实时监测研究近年来,随着电力系统的规模逐渐扩大和技术的进步,电力系统状态估计与实时监测变得越来越重要。

电力系统状态估计是指通过测量和分析电力系统中各个节点的电压、电流以及功率等信息,推测系统中各个设备的电气参数,从而实现对电力系统运行状态的准确评估和监测。

本文将探讨电力系统状态估计与实时监测的研究内容,以及其在电力系统安全和稳定运行方面的应用。

电力系统状态估计是电力系统运行与调度过程中一个重要的环节,通过对电力系统的测量信息进行处理和分析,利用数学模型和算法来推测电力系统中未测量的电气参数,如输电线路的功率、发电机的电压和电流等。

电力系统状态估计的目标是实现对电力系统中各个设备的状态的准确估计,包括电压、电流、功率、相角等。

通过准确估计电力系统的状态,可以为电力系统的运行与调度提供重要的参考依据,从而保证电力系统的安全、稳定和经济运行。

电力系统状态估计的方法可以分为潮流估计和状态估计两种。

潮流估计是指在电力系统中只考虑有功功率和无功功率之间的流动关系的估计方法,它假设电力系统中各个节点电压相等,电流按照阻抗幅值和相角的比例来进行估计。

潮流估计方法简单高效,适用于电力系统较小和运行较稳定的情况下。

而状态估计则是指在电力系统中考虑有功功率、无功功率以及各个节点电压之间的关系的估计方法,它通过建立电力系统的数学模型,利用测量信息和状态估计算法对电力系统的各个节点进行估计。

状态估计方法较复杂,但准确度相对较高,适用于电力系统规模较大和运行较复杂的情况。

电力系统实时监测是指根据电力系统的实时测量信息,实时对电力系统中各个设备的状态进行监测和评估。

实时监测通过监测电力系统中的电压、电流、功率等参数的变化情况,判断电力系统的运行状态和运行过程中可能存在的问题。

实时监测可以通过实时数据采集和处理技术来实现,一般采用高速通信技术和实时数据处理算法来处理电力系统的测量数据,并进行故障诊断和预警。

通过实时监测,可以及时发现电力系统中潜在的隐患和故障,提高电力系统的可靠性和稳定性,减少事故的发生。

2 电力系统状态估计

2 电力系统状态估计

◆开关错误辨识 ◇线路两端潮流合理而一端开关错开;
◇一个厂站通道坏,通过对端厂站信息判
断;
◇开关合而发电机量测值为零。
◆估计前坏数据辨识
支路潮流不平衡; 10+j6-15-j10=-5-j4 节点注入功率不平衡; Pi-Σpij≠0
i
双母线并列运行而各母线电压不相等;
电压量测不合理,母线电压远远超限; 发电机注入负功率,负荷注入正功率;不合理; 支路无潮流量测; 母线无注入量测; 母线无电压量测; 量测数据是死数据,不变化。
要求计算得到这样的状态变量的估计 值 X ,使其对应的测量估计值 z ˆ 和测量值 z之差的平方和最小为目标准则的估计方 法,称为最小二乘法状态估计。 建立目标函数
J(x)=(z-h(x))T(z-h(x))
对目标函数求导数并取为零,即就可 X。 以求解出状态的估计量 以单变量双量测的直流电路系统为例 进行分析。
5不良数据的辨识 辨识是为了寻找出哪一个数据是不良数据, 以便进行剔除或补充。
通常对不良数据辨识的基本思路是:在检测出不 良数据后,应进一步设法找出这个不良数据并在测 量向量中将其排除,然后重新进行状态估计。 假设在检测中发现有不良数据的存在。一个最简 单的辨识方法,是将m个测量量作一排列,去掉第 一个测量量,余下的m-1个用不良数据检测法检查 不良数据是否仍存在。如果m-1个测量的 J ( x ˆ) 值 ˆ ) 值差不多,则表示刚刚去掉 与原来m个时的 J ( x 的第一个测量量是正常测量,应该予以恢复;然后 试第二个测量量,直到找出不良数据为止。如果存 在两个不良数据,则应试探每次去掉两个测量量的 各种组合。这种方法试探的次数非常多,而且每次 试探都要进行一次状态估计,因此问题的关键在于 如何减少试探的次数。

高等电力系统稳态分析 第三章 电力系统状态估计

高等电力系统稳态分析 第三章 电力系统状态估计

二、电力系统状态估计-必要性


电力系统需要随时监视系统的运行状态 需要提供调度员所关心的所有数据 测量所有关心的量是不经济的,也是不 可能的,需要利用一些测量量来推算其 它电气量 由于误差的存在,直接测量的量不甚可 靠,甚至有坏数据
三、状态估计的作用

降低量测系统投资,少装测点 计算出未测量的电气量 利用量测系统的冗余信息,提高量测数 据的精度
对角元随测量量的增多而减小,亦即测量越多 时,估计越准确。 测量量的测量值与估计值的差,称为残差r, 表达式为:

ˆ Hx v Hx ˆ r zz
[I H(HT R 1H)1 HT R 1 ]v Wv

式中W称为残差灵敏度矩阵,表示残差与测量 误差之间的关系
一、最小二乘原理


J ( x) 0 2500x 3 3400x 5740 x x 1.36x 2.296 0 x 0.9852 x2,3 0.4926 j1.445
3
二、例题


状态的估计值x=0.9852 量测的估计值: 电流I=x=0. 9852 p.u.=0.9852A 电压U=Rx=0.9852p.u.=9. 852V 有功P=Rx2=0.9706p.u.=9.706W 量测的残差值: 电流残差νI=1.05-

由于通常测量误差的均值为零,所以估 计误差的均值为
ˆ ) (HTR 1H)1 HTR 1 E( v) 0 E (x x

在工程中往往以估计误差的协方差阵来 衡量状态量的估计值与真值间的差异, 估计误差的协方差阵为
T 1 1 T 1 T 1 T 1 T 1 1 T
T ˆ ˆ c E[(x x)(x x) ]

电力系统状态估计概述

电力系统状态估计概述

电力系统状态估计研究综述摘要:电力系统状态估计是当代电力系统能量管理系统(EMS)的重要组成部分。

本文介绍了电力系统状态估计的概念、数学模型,阐述了状态估计的必要性及其作用,系统介绍了状态估计的研究现状,最后对状态估计的研究方向进行了展望。

关键词:电力系统;状态估计;能量管理系统0 引言状态估计是当代电力系统能量管理系统(EMS)的重要组成部分, 尤其在电力市场环境中发挥更重要的作用。

它是将可用的冗余信息(直接量测值及其他信息)转变为电力系统当前状态估计值的实时计算机程序和算法。

准确的状态估计结果是进行后续工作(如安全分析、调度员潮流和最优潮流等)必不可少的基础。

随着电力市场的发展,状态估计的作用更显重要[1]。

状态估计的理论研究促进了工程应用,而状态估计软件的工程应用也推动了状态估计理论的研究和发展。

迄今为止,这两方面都取得了大量成果。

然而,状态估计领域仍有不少问题未得到妥善解决,随着电力系统规模的不断扩大,电力工业管理体制向市场化迈进,对状态估计有了新要求,各种新技术和新理论不断涌现,为解决状态估计的某些问题提供了可能。

本文就电力系统状态估计的研究现状和进一步的研究方向进行了综合阐述。

1 电力系统状态估计的概念1.1电力系统状态估计的基本定义状态估计也被称为滤波,它是利用实时量测系统的冗余度来提高数据精度,自动排除随机干扰所引起的错误信息,估计或预报系统的运行状态(或轨迹)。

状态估计作为近代计算机实时数据处理的手段,首先应用于宇宙飞船、卫星、导弹、潜艇和飞机的追踪、导航和控制中。

它主要使用了六十年代初期由卡尔曼、布西等人提出的一种递推式数字滤波方法,该方法既节约内存,又大大降低了每次估计的计算量[2,4]。

电力系统状态估计的研究也是由卡尔曼滤波开始。

但根据电力系统的特点,即状态估计主要处理对象是某一时间断面上的高维空间(网络)问题,而且对量测误差的统计知识又不够清楚,因此便于采用基于统计学的估计方法如最小方差估计、极大验后估计、极大似然估计等方法,目前很多电力系统实际采用的状态估计算法是最小二乘法。

电力系统自动化-电力系统自动化-《电力系统自动化》课程教学大纲

电力系统自动化-电力系统自动化-《电力系统自动化》课程教学大纲

《电力系统自动化》课程教学大纲Power System Automation课程编号:130201021学时:32 学分:2.0适用对象:电气工程及其自动化专业先修课程:电力系统分析,自动控制原理,电力电子技术等一、课程的性质和任务(四号黑体加粗,描述文字用四号小宋体(下同))本课程是电气工程及其自动化专业一门学科方向类必修课程。

电力系统自动化是保证电力系统安全、优质、经济运行的综合性技术,涉及电力系统运行理论、自动控制理论、计算机控制技术、网络通信技术等多方面的知识,包括发电机励磁自动控制、发电厂自动化、电网调度自动化、配电网自动化、变电站自动化等,是自动控制技术、信息技术在电力系统中的应用,已经成为电气工程类专业学生必备的专业知识之一。

该课程可以支撑电气工程及其自动化专业毕业要求2(问题分析)、3(设计/开发解决方案)、4(研究)的达成。

本课程的主要任务是:1、使学生对电力系统相关问题形成较为系统的认识和理解;2、使学生掌握发电机自动励磁控制的基本原理和方法,深入了解发电机同步并列的条件与过程,以及自动准同期装置的工作原理,分析在电力系统运行过程中不满足并列条件对电网产生何种影响,为分析复杂工程问题奠定基础。

3、使学生了解电力系统频率调整及电压调整的基本问题,掌握电力系统功频特性、自动发电控制、经济调度的原理和方法,掌握电力系统电压控制措施,为进一步分析和研究电力系统运行问题打下良好的基础;4、使学生掌握电力系统自动化的基本工作原理、装置的调试方法以及装置的设计方法,并且学习自动装置对电力系统运行影响的分析方法,为设计、研发电力系统自动控制装置和解决电力系统复杂运行工程问题奠定基础。

二、教学目的与要求本课程的教学目的是使学生掌握电力系统自动化的基本知识,熟悉电网调度自动化、配电网自动化、变电站自动化的相关问题,训练和培养学生独立思考、解决电力系统实际复杂工程问题的能力。

具体要求如下:1、掌握发电机同步并列的条件,以及自动准同期装置的工作原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档