电力系统状态估计

合集下载

电力系统状态估计

电力系统状态估计



当一个或多个输入量z中存在粗差(gross error,又 称不良数据)时,也会导致潮流计算结果状态量x 出现偏差而无用。
状态估计

在实际应用中,可以获取其它一些量测量,譬如线路 上的功率潮流值P、Q等,这样,量测量z的维数m总大 于未知状态量x的维数n。 而且,由于量测量存在误差,(1)式将变成 z =h(x)+ v (2) z是观测到的量测值, v是量测误差。


(一)状态估计的数学描述

状态估计的量测量主要来自于SCADA的实时数据,在 量测不足之处可以使用预测及计划型数据做伪量测量。 另外,根据基尔霍夫定律可得到部分必须满足的伪量 测量。
量测量:
Pij Qij z Pi Qi V i



分析系统可观测性

当系统不可观测时,决定是否存在一个小于原网络 的较小网络范围,可以进行状态估计计算。(可观 测岛)。

系统不可观测时,另外一个解决办法是:人为添加预 测数据及计划型数据作为伪量测量,以使估计可以正 常进行。 可观测性分析有两类算法:一类是逻辑(拓扑)方法, 另一类是数值分析方法。通常数值分析方法比较直接, 但所需时间比较多。

z = h( x) + v

其中:z是m×1量测向量,h(x)是m×1非线性量测函数 向量,v是m×1量测误差向量,x为n×1状态向量,m、 n分别是量测量及状态量的个数。

量测方程中,量测量的维数大于状态量的维数,而且, 量测量存在随机误差,因此,方程组存在矛盾方程。 这样,不能直接解出状态量的实际数值,但可以用拟 合的办法根据带误差的量测量求出系统状态在某种估 计意义上的最优估计值。

第五讲电力系统状态估计概述

第五讲电力系统状态估计概述

第五讲电力系统状态估计概述电力系统状态估计指的是通过对电力系统的监测和测量数据进行处理,推算出电力系统相关参数的过程。

通俗的说,就是在电力系统的运行过程中,通过监测数据估计电力系统的状态,以便于运行员做出更好的决策。

电力系统状态估计的意义电力系统状态估计是电力系统自动化的重要组成部分。

在电力系统运行过程中,状态估计系统可以帮助运行员迅速掌握系统状态,及时调整电力系统的运行方式,保证电力系统的安全运行。

同时,状态估计系统还能够优化系统的经济性,提高电力系统的可靠性。

电力系统状态估计的原理电力系统状态估计是基于电力系统监测数据的处理和分析而实现的。

电力系统监测数据主要包括电压、电流、功率等参数。

通过对这些参数的监测和测量,可以获取电力系统的当前状态。

状态估计系统主要是通过对监测数据的处理和分析,以及对电力系统的模型建立和分析来推算电力系统的状态。

电力系统状态估计的原理和方法很多,但基本流程是相似的。

首先需要对电力系统的模型进行建立和分析,然后根据监测数据和运行状态信息,结合电力系统模型,对电力系统的状态进行估计。

最后根据状态估计结果,进行决策和调整。

电力系统状态估计的关键技术为了实现电力系统状态估计,需要涉及到诸多技术。

其中,关键技术包括:变电站数据采集系统变电站是电力系统中起到极为重要作用的环节,所以变电站的监测数据是状态估计的重要来源之一。

因此,变电站数据采集系统的高可靠性和高稳定性是保证状态估计准确性的关键。

现代电力系统常用的数据采集系统包括智能终端设备、数字遥测与遥控设备等。

电力系统模型状态估计需要基于电力系统模型来进行推算。

电力系统模型就是对电力系统运行模式进行建模和仿真得到的电力系统模拟实验环境。

常见的电力系统模型主要有潮流计算模型、电容器模型和风电模型等。

数据预处理电力系统的监测数据通常包含了大量的噪声,因此需要对数据进行预处理。

常用的数据预处理方法包括滤波、降噪、数据插补等等。

非线性方程组求解电力系统状态估计需要根据监测数据在电力系统模型的基础上求解非线性方程组,所以求解非线性方程组是状态估计的关键技术。

电力系统状态估计技术研究

电力系统状态估计技术研究

电力系统状态估计技术研究随着我国经济快速发展,电力系统的负荷越来越重,保障电网运行稳定成为了很重要的问题。

其中,电力系统状态估计技术研究就显得尤为重要,该技术可以实时地监测电力系统的各个参数,使电力系统更加安全、稳定、高效地运行。

一、电力系统状态估计技术的意义电力系统状态估计技术是指利用现有的测量数据,运用数学模型和算法来估计电力系统中各个设备的参数状态。

这些设备包括发电机、变压器、输电线路、配电设备等。

通过电力系统状态估计技术,可以实时监测电网中各个设备的电流、电压等参数,判断设备是否正常运行,及时发现并排除故障。

电力系统状态估计技术还能够预测电网未来的运行趋势,为电力系统的调度和运行提供可靠的参考依据。

此外,该技术还可以为电力系统的规划、设计提供数据支撑和参考依据。

二、电力系统状态估计技术的研究内容电力系统状态估计技术的研究内容主要包括以下几个方面:1、电力系统状态估计方法研究。

目前,常用的电力系统状态估计方法主要有潮流计算法、拓扑优化算法、卡尔曼滤波算法等。

这些方法各有特点,选择合适的算法能够使电力系统状态估计更加准确。

2、电力系统状态估计模型研究。

电力系统状态估计模型是指根据电力系统的实际情况建立的一个数学模型。

该模型包括各个设备的参数值、拓扑结构、网络拓扑等。

模型的建立需要消耗大量的时间和人力,但是建立好的模型能够为电力系统状态估计提供可靠的参考。

3、电力系统状态估计算法研究。

电力系统状态估计算法是指根据电力系统状态估计模型和测量数据,通过运用数学公式和算法,推导出电力系统各个设备的参数状态。

算法的优劣对电力系统状态估计的准确性和效率有着很大的影响。

三、电力系统状态估计技术的应用电力系统状态估计技术已经广泛应用于电力系统中,主要应用于以下几个方面:1、电力系统运行监测。

电力系统状态估计技术可以实时监测电力系统中各个设备的参数状态,及时发现并解决故障,保障电力系统的稳定运行。

2、电力系统调度。

电力系统状态估计模型与算法研究

电力系统状态估计模型与算法研究

电力系统状态估计模型与算法研究电力系统是现代社会不可或缺的基础设施之一,而电力系统状态估计是电力系统运行和管理的重要环节。

准确的电力系统状态估计模型和算法是确保电力系统安全稳定运行的关键。

一、电力系统状态估计的意义与挑战电力系统状态估计是指利用电力系统的测量数据,估计出系统未测量变量的数值,如节点电压、线路功率等。

它的意义在于为电力系统运行调度和市场交易提供准确的参考数据,支持决策者做出合理的决策,并保证电力系统的安全稳定运行。

然而,电力系统状态估计面临着一系列挑战。

首先,电力系统具有龙头性和复杂性,其结构和拓扑比较复杂,很难通过简单的线性模型进行描述。

其次,电力系统存在各种测量误差和不完全观测,这使得状态估计的结果容易受到干扰而产生误差。

此外,电力系统负荷与供应之间的动态变化也对状态估计算法的准确性提出了更高的要求。

二、电力系统状态估计模型1. 传统电力系统状态估计模型传统的电力系统状态估计模型是基于高斯-牛顿法的线性模型。

该模型假设电力系统满足高斯分布的概率特性,并通过最小二乘法来优化状态估计结果。

传统模型的优点在于计算简单、收敛速度快,但其假设限制了其在复杂系统中的应用。

2. 基于贝叶斯理论的电力系统状态估计模型近年来,基于贝叶斯理论的电力系统状态估计模型备受关注。

这种模型通过引入先验概率信息,结合测量数据进行统计分析,得到更加准确的状态估计结果。

它的优点在于能够处理不确定性和非线性问题,适用于复杂动态电力系统。

三、电力系统状态估计算法1. 基于最小二乘法的电力系统状态估计算法最小二乘法是一种常用且经典的电力系统状态估计算法,它通过最小化测量残差和权重误差的平方和来优化估计结果。

该算法简单易用且计算速度快,适用于线性系统。

然而,在存在不完全观测和异常数据情况下,最小二乘法容易产生误差。

2. 基于Kalman滤波的电力系统状态估计算法Kalman滤波是一种递归算法,通过对系统的状态进行预测和更新,实现对系统状态进行估计的优化目标。

电力系统状态估计算法研究与应用

电力系统状态估计算法研究与应用

电力系统状态估计算法研究与应用引言:电力系统状态估计是电力系统运行和调度中的重要步骤,通过利用测量值和系统模型,对电力系统中摄入或虚拟功率进行估计,从而获得电力系统的各个节点的电压、功率等重要信息。

准确的状态估计结果对于电力系统的安全、稳定和经济运行起着关键作用。

本文将研究电力系统状态估计的算法以及在实际应用中的优势与挑战。

一、电力系统状态估计的算法1. 扩展卡尔曼滤波算法 (EKF)扩展卡尔曼滤波是一种基于贝叶斯滤波原理的状态估计算法,通过线性化非线性系统模型来实现状态估计。

在电力系统状态估计中,EKF可以有效地处理非线性的功率流方程,提供较为准确的状态估计结果。

2. 最小二乘算法 (LS)最小二乘算法是通过最小化残差平方和来获得最优解的一种优化算法,常用于电力系统状态估计中。

通过构建电力系统的线性化模型,并利用测量值与估计值之间的残差来优化状态估计结果。

3. 改进的粒子滤波算法 (PF)粒子滤波算法在电力系统状态估计中具有广泛的应用,它通过采样和重采样过程来近似状态后验概率分布,从而获得状态估计结果。

改进的粒子滤波算法结合了传统粒子滤波算法和其他优化方法,能够在保持较高估计精度的同时降低计算复杂度。

4. 雷诺兹平滑算法 (RS)雷诺兹平滑算法是一种基于最优控制理论的状态估计算法,通过最小化状态估计误差的二次范数,在时间和空间上对状态变量进行平滑操作。

雷诺兹平滑算法在电网状态估计中具有较好的平滑效果,能够削弱测量误差对状态估计结果的影响。

二、电力系统状态估计算法的应用1. 电力系统运行监测与调度电力系统状态估计的主要应用领域之一是电力系统的运行监测与调度。

通过实时获取电力系统各个节点的状态估计值,可以对电力系统的电压、功率等重要参数进行监测和预测,确保电力系统的安全、稳定运行。

2. 输电线路参数估计电力系统中输电线路的参数估计对于输电线路的运行和维护具有重要意义。

通过结合电力系统状态估计算法,可以利用实时的测量数据和电网模型,估计输电线路的补偿电容、电感和电阻等参数,为输电线路的运行管理提供决策支持。

第四章 电力系统状态估计

第四章 电力系统状态估计

第四章电力系统状态估计(State Estimation)制作人:雷霞主要内容⏹重点:状态估计的概念⏹难点:状态估计的数学描述⏹概述⏹状态估计的数学模型及算法⏹不良数据的检测与辨识第一节概述⏹一、电力系统状态估计的必要性⏹运行结构和运行参数⏹SCADA数据库的缺点:⏹(1)数据不齐全;⏹(2)数据不精确;⏹(3)受干扰时会出现不良数据;⏹(4)数据不和谐。

二、状态估计的基本原理⏹1、测量的冗余度⏹测量系统的冗余度=系统独立测量数/系统状态变量数=(1.5~3.0)⏹2、状态估计的步骤⏹(1)假定数学模型⏹(2)状态估计计算⏹(3)检测⏹(4)识别第二节状态估计的数学模型及算法一、状态估计的数学描述数学模型量测量⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=i i i ij ij V Q P Q P z 待求的状态量⎥⎦⎤⎢⎣⎡=i i V θx一、状态估计的数学描述⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=)(),(),(),(),(i i ij ij i ij ij i ij ij ij ij ij ij V V V Q V P V Q V P θθθθh(x)量测方程一、状态估计的数学描述∑∑∈∈+=+=-=+-+-=--=i j ij ij ij ijji i i j ij ij ij ij j i i ji ij ij j i ij j i c i ij ijj i ij j i i ij B G V V Q B G V V P b V V g V V y b V Q b V V g V V g V P )cos sin ()sin cos (cos sin )(sin cos 22θθθθθθθθθθθ一、状态估计的数学描述[][])()(min )(1x h z R x h z x J T --=-状态估计的目标函数伪量测数据:第1类基尔霍夫型伪量测量:无源母线,注入量为0;第2类基尔霍夫型伪量测量:0阻抗支路),(0),(0ZBR j i V V ZBR j i j i j i ∈=-∈=-θθ),(ZBR j i Q P x ij ij ∈⎥⎥⎦⎤⎢⎢⎣⎡=二、基本加权最小二乘法状态估计数学模型[][])ˆ()ˆ()ˆ()ˆ(ˆ)(1)()(1)()(l l T l l T l R R x h z x H x H x H x -=∆--)()()1(ˆˆˆl l l x x x∆+=∆+迭代修正式x x h x H ∂∂=)()(雅可比矩阵ε<∆max x 迭代收敛的判断二、基本加权最小二乘法状态估计数学模型三、快速分解状态估计算法⎥⎦⎤⎢⎣⎡=r a z z z 量测量⎥⎦⎤⎢⎣⎡=V θx 状态量量测方程⎥⎦⎤⎢⎣⎡=),(),()(V θh V θh x h r a三、快速分解状态估计算法00=∂∂=∂∂θh V h ra 和01cos 0sin V V V j i ij ij ≈≈≈=和,θθ假设修正方程)()()()(l l l l B A bVaθ=∆=∆三、快速分解状态估计算法[][][][])()(120)()()(120)(120120,)()(,)()()()()()(l l rrrT rl l l aaaTal rrT ra a Ta R B V R B V B R B V B B R B V A θVh z b θV h z a --=--=--=--=----第三节不良数据的检测与辨识⏹不良数据:误差大于某一标准(如3~10倍标准方差)的量测数据。

05第五讲电力系统状态估计概述

05第五讲电力系统状态估计概述

05第五讲电力系统状态估计概述电力系统是由各种电力设备组成的复杂系统,包括发电机、变压器、传输线路等。

电力系统状态估计是指根据系统的输入输出数据,通过对系统的各个变量进行估计,得到系统的真实状态。

电力系统状态估计是电力系统运行与管理的基础,对于电力系统的实时监测、故障诊断、调度运行等具有重要的意义。

电力系统的状态估计主要包括以下四个方面的内容:1.变量选择和观测:电力系统状态估计的第一步是确定需要估计的变量,如电压、电流等,并选择适当的观测点进行观测。

观测点的选择应综合考虑电力系统设计、安装以及经济等因素。

3.状态估计模型:电力系统状态估计的核心是建立状态估计模型。

状态估计模型通常是基于电力系统的物理特性和运行规律建立的,通过对电力系统进行建模和仿真,可以得到系统各个变量之间的关系。

4.估计算法和优化方法:电力系统状态估计的最后一步是通过估计算法和优化方法来实现对系统状态的估计。

常用的估计算法包括最小二乘法、卡尔曼滤波、粒子滤波等,优化方法包括线性规划、非线性规划等。

电力系统状态估计的目标是得到系统的真实状态,以便进行系统的运行、监控和控制。

通过对电力系统的状态进行估计,可以实现以下几个方面的功能:1.实时监测:通过对电力系统状态的估计,可以实时监测电力系统的运行状况,及时发现和处理异常情况,提高系统的可靠性和安全性。

2.故障诊断:电力系统状态估计可以帮助人们对电力系统故障进行诊断,找出故障的原因和位置,以便进行及时修复,减少故障对系统运行的影响。

3.调度运行:电力系统状态估计可以提供实时的系统状态信息,帮助电力系统调度员进行系统的调度运行,包括发电机的运行控制、变压器的升降压控制等。

4.能源管理:电力系统状态估计可以实现对系统能源的实时监测和管理,帮助人们对系统的能源消耗进行评估和优化,提高能源利用效率。

总之,电力系统状态估计是电力系统运行与管理的基础,通过对电力系统的运行数据进行处理和分析,可以实现对系统状态的准确估计,提高电力系统的运行效果及可靠性。

3 电力系统状态估计算法

3 电力系统状态估计算法


量测雅克比矩阵 信息矩阵 H R H 状态估计误差方差阵
T 1
h( x ) H x
ˆ(k ) x x
T T 1 ˆ x x ˆ E x x H R H
1

量测估计误差
ˆ) H(x ˆ )x ˆ H(x ˆ )( x x ˆ) ˆ z h( x zz

收敛条件
ˆi ( l ) x
max i
x
ˆ (l ) ) J ( x ˆ ( l 1) ) J J(x ˆ (l ) x

三个收敛条件 任选其一即可

概述
WLS
FDSE
变换量测
比较
1
示例
ˆ (k ) ) z ( k ) z h( x
R 1 H H T R 1z ( k ) x ˆ ( k 1) x ˆ ( k ) x ˆ (k ) x
WLS与FDSE 求解方法的 区别?
l=l+1
计算b;求解△ v( l ) v 否 是
Q-V迭代
vi( l )
max
v ?
KQ=1 v(l+1)=v(l)+△v(l) 否
KQ=0 KP=0? 是
概述
WLS
FDSE
变换量测
比较
示例
WLS与FDSE的区别
算法 求解方式 方程维数 系数矩阵 WLS 同时求解 θ 和 v n=na+nr 变化的 FDSE 分别求解 θ 和 v na和nr 常数

采用PQ分解法求解潮流 的思想,将有功和无功 解耦以及雅克比矩阵常 数化的方法用在加权最 小二乘法中,形成了快 速分解状态估计算法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

状态估计的定义(课后题)
状态估计的作用和步骤(课后题)
状态估计与潮流计算的联系和区别(课后题)
各种状态估计模型和算法的特点(课后题)
相关的概念和定义(课后题)
电力系统状态估计的主要内容是什么?有哪些变量需要状态估计?(06B)
通常称能够表征电力系统特征所需最小数目的变量为电力系统的状态变量。

电力系统的状态估计就是要求能在测量量有误差的情况下,通过计算以得到可靠的并且为数最小的状态变量值。

电力系统的测量量一般包括支路功率、节点注入功率、节点电压模值等;状态变量是各节点的电压模值和相角。

什么是状态估计?
环境噪声使理想的运动方程无法精确求解。

测量系统的随机误差,使测量向量不能直接通过理想的测量方程求出状态真值。

通过统计学的方法加以处理以求出对状态向量的估计值。

这种方法,称为状态估计。

按运动方程与以某一时刻的测量数据作为初值进行下一时刻状态量的估计,叫做动态估计,仅仅根据某时刻测量数据,确定该时刻的状态量的估计,叫做静态估计。

电力系统状态估计的必要性?
1)电力系统需要随时监视系统的运行状态;
2)需要提供调度员所关心的所有数据;
3)测量所有关心的量是不经济的,也是不可能的,需要利用一些测量量来推算其它电
气量;
4)由于误差的存在,直接测量的量不甚可靠,甚至有坏数据;
状态估计的作用和流程?(下图左)
1)降低量测系统投资,少装测点;
2)计算出未测量的电气量;
3)利用量测系统的冗余信息,提高量测数据的精度(独立测量量的数目与状态量数目
之比,成为冗余度)。

状态估计与潮流计算的关系?(上图右)
1)潮流计算是状态估计的一个特例;
2)状态估计用于处理实时数据,或者有冗余的矛盾方程的场合;
3)潮流计算用于无冗余矛盾方程的场合;
4)两者的求解算法不同;
5)在线应用中,潮流计算在状态估计的基础上进行,也就是说,由状态估计提供经过
加工处理过的熟数据,作为潮流计算的原始数据。

状态估计基本思路:
1) 电力系统的测量量一般包括支路功率、节点注入功率、节点电压模值等;状态变量
是各节点的电压模值和相角。

2) 定义测量量向量为Z ,待求的系统状态量为X ,通过网络方程可以从估计的状态
量X ∧ ,求出估计的计算值Z ∧,如果测量有误差,则计算值Z ∧
与实际值Z 之间有误差Z Z ∧
-,称为残差向量。

3) 求出的状态量不可能使残差向量为零,但可以得到一个使残差平方和为最小的状态
估计值。

各种状态估计算法的特点:
1) 基本加权最小二乘法的估计质量和收敛性最好,是状态估计的经典解法和理论基础,
适合各种类型的量测系统。

缺点是使用内存多,计算量大,计算时间长,不适用于大型电力系统的实时状态估计。

2) 快速解耦法估计质量和收敛性能在实用精度范围内与基本加权最小二乘法相近,而
在计算速度和内存耗量方面优于基本加权最小二乘法,很实用,缺点是使用内存较多,程序也比较复杂。

3) 仅用支路量测量的唯支路法计算速度快,内存省,对于纯支路量测系统可以得到满
意的估计结果,且运行经验丰富,缺点是不能处理注入型量测量。

4) 递推状态估计使用内存最少,对注入型量测量具有一定的适应能力,程序简单。


点是收敛速度慢,计算时间长,估计质量差。

几个概念:
1) 可检测:可以判断系统中是否有坏数据;可辨识:若有坏数据,可以找出谁是坏数
据(量测冗余度越大,坏数据的可检测和可辨识性越好)。

2) 不良数据:是指误差大于某一标准(例如3~10倍标准方差)的测量数据。

3) 通常测量错误数据分为两类:一类是稳定的错数(属于设备和维修问题);另一类是
在一次采样周期中随机出现的错误数据(即下一次采样不一定还是那几个错误数据)。

状态估计现场安装后一段时间主要是消除第一类错数,或者是设备损坏,或者是符号相反。

随着状态估计使用时间加长和维护工作的完善,第一类错数逐步减少,正常运行中往往开关状态错误(测量错或无测量)是引起这一类错数的主要原因。

第二类错数是由测量与传送系统质量以及受到干扰而产生的。

4) 不良数据检测:判断某次量测采样中是否存在不良数据。

不良数据辨识:通过检测确知量测采样中存在不良数据后,确定不良数据具体侧点
位置。

不良数据估计:不仅能确定不良数据具体侧点位置,还能给出不良数据估计值。


良数据辨识定量化。

状态估计修正:根据不良数据估计值,对原来受不良数据影响的状态估计进行修正,
从而排除不良数据的影响,获得可靠状态估计。

5) 不同水平的检测与辨识
量测量的极限检查:超出正常运行条件下的可能范围,而系统又没有事故或异常。

量测量的突变检查:在平稳负荷条件下,某一量测量超过正常变化速率或发生突变,
随后下一采样时刻又恢复了。

量测量的相关检查:一个量测量变化后,检查与其紧密相关的数据是否也相应变化。

状态估计中的检测与辨识。

一个测量系统利用状态估计排除错误数据的能力与测量设备的数量及其分布有关,
一是要求测量量总数M 大于待求的状态量数N(冗余度K):K=m-n >0。

二是测量量分布要均匀,即这些测量量的测量方程能覆盖住全网每一个状态量还有
余度。

状态估计辨识不良数据的能力来自于测量系统的冗余度,能够估计出全部状态量的测量系统具有可观测性,而去掉不良数据仍保持可观测性的测量系统具有可辨识性。

6) 能够利用量测系统算出的系统的状态(电压幅值和角度)叫可观测。

不良数据辨识残差搜索辨识法
1) 基本思路是将量测按残差(加权残差或标准化残差)由大至小排队,去掉残差最大的
测量量,重新进行状态估计;再进行残差检测,还有可疑数据时继续上述过程. 2) 如果检测是成功的,那么残差搜索辨识过程也应该是成功的,只是要进行多次状态
估计计算而耗费过多的时间,在大型电力系统的多不良数据辨识中无法实时应用。

3) 为了缩短辨识时间,辩识技术沿着两个方向前进:一是可疑数据组合辨识,二是避
免重新进行状态估计迭代。

不良数据的估计辨识法
应该说量测系统辨识不良数据的最大能力不会超过冗余度K ,而且由于不良数据分布的不均匀性先破坏了局部可观测性,实际上辨识能力远远低于这一数量。

假设在一次测量中包含p 个不良数据,而且由一可靠的检测系统检测出S 个可疑数据,这里不妨用p 和S 分别表示不良数据和可疑数据的集合与数量,检测功能可表示为,p S p S K ∈≤<,前一式表示不良数据已包含在可疑数据中,后一式表示这些不良数据可辨识。

不良数据检测方法的比较:。

相关文档
最新文档