八年级数学一元二次方程2
初中八年级数学下册【一元二次方程(2)】

0.5 1 1.5 2 28 18 10 4
(4)你知道地毯花边的宽x(m)是多少吗? 还有其他求 解方法吗?与同伴进行交流.
问题2:在上一课中,梯子的底端滑动的距离x满足方 程 x2 +12 x - 15 = 0.
(1) 小明认为底端也滑动了1 m,他的 1m
说法正确吗?为什么?
10m 8m
(2) 底端滑动的距离可能是2 m吗?
由上表可发现,当2<x<3时, -1< x2 - 2x -1 <2;
(2)继续列表,依次取x=2.1,2.2,2.3,2.4,2.5,…
x
2.2 2.3
2.4
2.5
…
x2 - 2x - 1 -0.79 -0.31 -0.04 0.25 …
由表发现,当2.4<x<2.5时,-0.04< x2 -2x-1<0.25; (3)取x=2.45,则x2 - 2x - 1≈0.1025. ∴2.4<x<2.45, ∴x≈2.4.
即 2t2-t-2=0. 根据题意,t的取值范围大致是0<t<3.
完成下表(在0<t<3这个范围内取值计算,逐步逼近):
根据题意,t的取值范围大致是0<t<3. 完成下表(在0<t<3这个范围内取值计算,逐步逼近):
t … 0 1 1.1 1.2 1.3 1.4 2 3 … 2t2-t-2 … -2 -1 -0.68 -0.32 0.08 0.52 4 13 …
根据题意,x的取值范围大致是0 < x < 11. 解方程 x2 + 2x - 120 = 0. 完成下表(在0 < x < 11这个范围内取值计算,逐步逼近):
x x2 +2x – 120
浙教版数学八年级下册《一元二次方程》课件

3
≠
时,是一元二次方程.
2.关于 x 的方程(k2-1)x2 + 2 (k-1) x + 2k + 2=0,
且
当k ≠±1
时,是一元二次方程.,
当k =-1
时,是一元一次方程.
同时满足
联立:联合建立
.
k2-1 = 0
2 (k-1) ≠ 0
.
3.
将一元二次方程(x- 5)(x+ 5)+(2x-1)2=0化为一般形式,
距离为 8m. 如果梯子的顶端下滑 1m,那么梯子的底端滑动多少米?
A
1m
D
设梯子底端滑动 x m,可列出方程
7m
( x + 6 )2 + 72 = 102.
B
6m
C xE
分析:由勾股定理可知,滑动前梯子底端
距墙
6
m. 如果设梯子底端滑动 x m,
那么滑动后梯子底端距墙 x+6 m.
整理得 x2 +12x-15 =0.
4=0
x2 +12x-15 =0.
5x2
+10x-2.2=0.
x2-x-56=0
像这样,两边都是整式,只含有一个未知数且未知数的最高次数是2次的方程
叫做一元二次方程.
学以致用:
判断下列方程是否为一元二次方程:
① 10x2=9
(√ )
③2x2-3x-1=0
(√ )
②2(x-1)=3x ( × )
④
1
2
梯子底端滑动的距离 x (m) 满足方程 ( x + 6 )2 + 72 = 102,
也就是 x2 + 12x - 15 = 0.
浙教版2022-2023学年数学八年级下册第2章 一元二次方程2

浙教版2022-2023学年数学八年级下册第2章 一元二次方程(解析版)2.3一元二次方程的应用(1)【知识重点】1. 利润问题:总利润=单位利润×销售量;利润=售价-进价;利润率=进价进价售价-×100%. 2. 增长率问题:基数×(1+增长率)2=增长两次后的数量.【经典例题】【例1】疫情期间“停课不停学”,因此王老师在线上开通公众号进行公益授课,4月份该公众号关注人数为6000,6月份该公众号关注人数达到7260,若从4月份到6月份,每月该公众号关注人数的平均增长率都相同,求该公众号关注人数的月平均增长率.【答案】解:设月平均增长率为 x ,根据题意得: 6000(1+x)2=7260 ,解得: x 1=0.1 , x 2=−2.1 (舍去),故该公众号关注人数的月平均增长率为0.1,答:该公众号关注人数的月平均增长率为0.1.【解析】根据题意先求出 6000(1+x)2=7260 , 再解方程即可。
【例2】直播带货逐渐走进了人们的生活,某电商在APP 上对一款成本价为40/件的小商品进行直播销售,如果按每件60元销售,每星期可卖出300件,通过市场调查发现,每件小商品的售价每降价0.5元,每星期可多卖出10件,在顾客得实惠的前提下,电商还想获得6080元利润,每件小商品的售价应定为多少元?这时电商每月能售出小商品多少件?【答案】解:设每件商品售价应定为x 元,则每件商品的销售利润为(x −40)元,每月的销售量为300+60−x 0.5×10=1500−20x (件), 依题意得:(x −40)(1500−20x)=6080,解得x 1=56,x 2=59.∵在顾客得实惠的前提下,∴x =56,当x =56时,1500−20×56=380答:每件小商品的售价应定为56元,这时电商每月能售出小商品380件.【解析】 设每件商品售价应定为x 元,则每件商品的销售利润为(x −40)元,每月的销售量为300+60−x 0.5×10=1500−20x (件), 根据总利润=单件的利润×销售量列出方程并解之即可. 【例3】土豆(马铃薯)色泽光鲜,含淀粉高,不容易腐烂,具有比其它地方土豆多淀粉、蛋白质、维生素C 等营养成分.某合作社2020年到2022年每年种植土豆100亩,2020年土豆的平均亩产量为1000千克,2021年到2022年引进先进的种植技术,2022年土豆的平均亩产量达到1440千克.(1)若2021年和2022年土豆的平均亩产量的年增长率相同,求土豆平均亩产量的年增长率为多少?(2)2023年该合作社计划在保证土豆种植的总成本不变的情况下,增加土豆的种植面积,经过统计调查发现,2022年每亩土豆的种植成本为1200元,若土豆的种植面积每增加1亩,则每亩土豆的种植成本将下降10元,求该合作社增加土豆种植面积多少亩,才能保证土豆种植的总成本不变?【答案】(1)解:设2021年和2022年土豆平均亩产量的年增长率为x .根据题意,得1000(1+x)2=1440.解得x 1=0.2,x 2=−2.2.(不合题意,舍去)答:土豆平均亩产量的年增长率为20%.(2)解:设增加土豆种植面积a 亩.根据题意,得(100+a)(1200−10a)=1200×100.解得a 1=0(不合题意,舍去),a 2=20.答:该合作社增加土豆的种植面积20亩时,才能保证土豆种植的总成本保持不变.【解析】(1)设2021年和2022年土豆平均亩产量的年增长率为x ,根据2020年土豆的平均亩产量×(1+年增长率)2=2022年土豆平均亩产量,列出方程并解之即可;(2)根据2023年每亩土豆的实际成本×亩数=2022年的总成本列出方程并解之即可.【基础训练】1.秦杨商场去年第一季度销售利润是100万元,第二季度和第三季度的销售利润逐步攀升,第三季度销售利润是196万元.设第二季度和第三季度平均增长的百分率为x,那么所列方程正确的是()A.100(1+x)2=196B.100(1+2x)=196C.196(1−x)2=100D.100+100(1+x)+100(1+x)2=196【答案】A【解析】设秦杨商场第二、三季度的利润平均增长率为x,根据题意得:100(1+x)2=196,故A符合题意.故答案为:A.2.华为某型号手机经过2次降价后的价格是2次降价前价格的1625,则每次降价的平均百分比是()A.10%B.20%C.15%D.25%【答案】B【解析】设平均降低率为x,起始价格为m元,根据题意,得m(1−x)2=1625m,解得x=0.2或x=1.8(舍去),故答案为:B.3.随着生产技术的进步,某厂生产一件产品的成本从两年前的100元,下降到现在的64 元,求年平均下降率.设年平均下降率为x,通过解方程得到一个根为1.8,则正确的解释是()A.年平均下降率为80%,符合题意B.年平均下降率为18%,符合题意C.年平均下降率为1.8%,不符合题意D.年平均下降率为180%,不符合题意【答案】D【解析】由已知可得,平均年下降率是大于0且小于1的数,故选项D说法正确.故答案为:D.4.某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P(件)与每件的销售价x(元)满足关系:P=100−2x.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是()A.(x−30)(100−2x)=200B.x(100−2x)=200C.(30−x)(100−2x)=200D.(x−30)(2x−100)=200【答案】A【解析】设每件商品的售价应定为x元,每天要销售这种商品p件.根据题意得:(x-30)(100-2x)=200,整理得:x2-80x+1600=0.故答案为:A5.某超市销售一种商品,其进价为每千克30元,按每千克45元出售,每天可售出300千克,为让利于民,超市采取降价措施,当售价每千克降低1元时,每天销量可增加50千克,若每天的利润要达到5500元,则实际售价应定为多少元?设售价每千克降低x元,可列方程为()A.(45-30-x)(300+50x)=5500B.(x-30)(300+50x)=5500C.(x-30)[300+50(x-45)]=5500D.(45-x)(300+50x)=5500【答案】A【解析】由题意可知,当售价每千克降低x元时,每千克的售价为(45−x)元,此时每天销量为(300+ 50x)千克,则可列方程为(45−x−30)(300+50x)=5500,故答案为:A.6.陕西重型汽车有限公司(简称陕汽重卡)是由湘火炬汽车集团股份有限公司与陕西汽车集团有限责任公司合资组建的大型汽车公司企业,该企业随着生产技术的不断提升,生产的某款汽车的价格由2021年8月份的39万元/辆下降到10月份的31.59万元/辆,若月平均降价的百分率保持不变,则月平均降价率是%.【答案】10【解析】月平均降价率是x,则有39(1−x)2=31.59解得:x1=0.1=10%,x2=1.9(舍去)故答案为:10.7.2021年端午节期间,合肥某食品专卖店准备了一批粽子,每盒利润为50元,平均每天可卖300盒,经过调查发现每降价1元,可多销售10盒,为了尽快减少库存,决定采取降价措施,专卖店要想平均每天盈利16000元,设每盒粽子降价x元,可列方程.【答案】(50−x)(300+10x)=16000【解析】由题意得:(50−x)(300+10x)=16000;故答案为(50−x)(300+10x)=16000.8.随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2019年为10万只,预计2021年将达到12.1万只.求该地区2019年到2021年高效节能灯年销售量的平均增长率.【答案】解:设该地区2019年到2021年高效节能灯年销售量的平均增长率为x,依题意得:10(1+x)2=12.1解得:x1=0.1=10%,x2=−2.1(不合题意,舍去).答:该地区2019年到2021年高效节能灯年销售量的平均增长率为10%.【解析】设该地区2019年到2021年高效节能灯年销售量的平均增长率为x,则2020年为10(1+x)万只,2021年为10(1+x)2万只,然后根据预计2021年将达到12.1万只列出方程,求解即可.9.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场每天要获得利润1200元,请计算出每件衬衫应降价多少元?【答案】解:设每件衬衫应降价x元,由题意得:(40−x)(20+2x)=1200,解得:x1=10,x2=20,∵要尽快减少库存,∴每件衬衫应降价20元.【解析】设每件衬衫应降价x元,降价后每件衬衫的利润为(40-x)元,销售的数量为(20+2x)件,根据每一件衬衫的利润×销售量=1200,据此列方程,然后求出方程的解,根据要尽快减少库存,可得到符合题意的x的值.10.2022年冬季奥运会和冬季残奥会两件赛事在我国首都北京和河北省石家庄市举行,某商家购进了冬季残奥会吉祥物“雪容融”纪念品,每个的进价是30元.为了增大“雪容融”类纪念品的销售量,商家决定对“雪容融”类纪念品进行降价销售,当销售价为每个44元时,每天可以售出20个,每降价1元,每天将多售出5个.请问商家应将“雪容融”类纪念品每个降价多少元时,每天售出此类纪念品能获利400元?【答案】解:设降价x元,每天售出此类纪念品能获利400元,由题意得:(44−x−30)(20+5x)=400解得:x1=4,x2=6,答:商家应将“雪容融”类纪念品每个降价4元或6元时,每天售出此类纪念品能获利400元.【解析】设降价x元,每天售出此类纪念品能获利400元,由题意可得每个的利润为(44-x-30)元,每天的销售量为(20+5x)个,然后根据每个的利润×销售量=总利润可得关于x的方程,求解即可.【培优训练】11.某电影上映第一天票房收入约1亿元,以后每天票房收入按相同的增长率增长,三天后累计票房收入达到4亿元.若增长率为x,则下列方程正确的是()A.1+x=4B.(1+x)2=4C.1+(1+x)2=4D.1+(1+x)+(1+x)2=4【答案】D【解析】由题意得:1+(1+x)+(1+x)2=4;故答案为:D.12.某市积极响应国家的号召“房子是用来住的,不是用来炒的”,在宏观调控下,商品房成交价由今年1月份的每平方米10000元下降到3月份的每平方米8100元,且今年房价在2月份、3月份、4月份的下降率保持一致,则4月份的房价单价为每平方米().A.7300元B.7290元C.7280元D.7270元【答案】B【解析】设房价的下降率为x,根据题意得:10000(1−x)2=8100,解得:x1=0.1,x2=1.9(舍去)∴房价的下降率为10%,∴4月份的房价单价为每平方米8100(1−10%)=7290元.故答案为:B.13.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175亿元,二月、三月平均每月的增长率是多少?若设平均每月的增长率为x,根据题意,可列方程为()A.50(1+x)2=175B.50+50(1+x)+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)2=175【答案】B【解析】二月份的产值为:50(1+x),三月份的产值为:50(1+x)(1+x)=50(1+x)2,故第一季度总产值为:50+50(1+x)+50(1+x)2=175.故答案为:B.14."桃花流水窅然去,别有天地非人间."桃花园景点2017年三月共接待游客a万人,2018年三月比2017年三月旅游人数增加5%,已知2017年三月至2019年三月欣赏桃花的游客人数平均年增长率为8%,设2019年三月比2018年三月游客人数增加b% ,则可列方程为()A.a(1+5%)(1+b%)=a(1+8%×2)B.a(1+5%)(1+b%)=a(1+8%)2C.a(1+5%)(1+8%)=a(1+b%×2)D.a(1+5%)(1+8%)=2a(1+b%)2【答案】B【解析】2018年三月共接待游客a(1+5%) 万人,2019年三月共接待游客a(1+5%)(1+b%) 万人,又2017年三月至2019年三月欣赏桃花的游客人数平均年增长率为8%,则2019年三月共接待游客a(1+8%)2,故方程为:a(1+5%) (1+b%)=a(1+8%)2 .故答案为:B.15.某超市销售一批玩具,平均每天可售出120件,每件盈利4元,市场调查发现售价每涨1元,销售量减少10件;售价每降1元,销售量增加10件。
鲁教版数学八年级下册课件:8.2用配方法解一元二次方程 (2)

随堂练习
解下列方程:
1. x2 – 2 = 0; 8. (2x+3)²=5 ;
2. 16x2 – 25 = 0; 9. 2x²=128 ;
3. (x + 1)2 – 4 = 0; 10. x2 - 10x +25 = 0
4. x2-144=0
11. x2 +6x =1;
5. 6.
y2-7=0
你还能规范解下列方程吗?
x2+6x= -8, x2+12x-15=0.
例题解析
例2 解方程:x2+8x-9=0. 解:可以把常数项移到方程的右边,得
x2+8x=9. 两边都加上42(一次项系数8的一半的平方), 得 x2+8x+42=9+42. (x+4)2=25. 开平方,得 x+4=±5, 即 x+4=5,或x+4=-5.
12. 49x2 - 42x – 1 = 0
12(2 - x)2 - 9 = 0
7. x2+5=0 ;
课堂小结
▪ 本节课复习了哪些旧知识呢?
▪ 会见了两个“老朋友”:
▪ 平方根的意义:如果x2=a,那么x= a.
▪ 完全平方式:式子a2±2ab+b2叫完全平方式,且
a2±2ab+b2 =(a±b)2.
8.2 用配方法解一元二 次方程(1)
复习旧知
平方根的意义:
解方程: x2=9.
解:因为9的平方根是+3和3,
所以
.
所以xx2=9有两个根3
x1=3,x2=-3.
老师提示: 这里是解一 元二次方程的
基本格式,要
按要求去做.
八年级数学下册 一元二次方程的解法例题选2优秀文档

z
例2 若x2-4x+y2+6y+ +13=0,求(xy)z的值.
可求解. 错答:原方程可变为4x2+8x=-1,两边同时加上
的值恒大于零吗?为什么?
数化为1,然后在方程两边加上一次项系数一半
解:∵x -4x+y +6y+ z2 +13=0, 2 2 (3)二次项系数化为1,得x2+2x- =0.
3
得x2- 2 x=-1. 配方得(x- 1 )2=-8 . 方程无解.
3
3
9
注意点:运用配方法解一元二次方程时,先移
项,把含有未知数的项移到方程的左边,常数
项移到方程的右边,然后把二次项系数化为1,
(3)2x2+再4x-9=在0; 方程的左右两边同时加上一次项系数一半
注意点:运用配方法解一元二次方程时,先移项,把含有未知数的项移到方程的左边,常数项移到方程的右边,然后把二次项系数化
解:(1)移项,得x2-x=6. 配方,
得x2-x+
1 2
2
=6+
1 2
2
,即
x
1
2
2
25 4
.
直接开平方,得 x 1 5 ,或 x 1 5 .
22
22
解得x1=3,x2=-2.
(2)移项,得3y2-2 3 y+1=0,即( 3 y-1)2=0.
直接开平方,得
3 y-1=0.
解得y1=y2=
答案:恒大于零. 理由如下:
∵x2-2 2 x+5- 2 =x2-2 2 x+( 2)2 - ( 2)2 =(x- 2 )2+3- 2 ,
八年级数学一元二次方程的解法

主 讲
一元二次方程的解法
v
1) 直接开平方法
v
2) 配方法
v
3) 公式法
v
4) 因=0
解: (x-4)(x+4)=0 我们知道0的一个特性,0与
任何数相乘都等于0.
如果两个数相乘积等于0,那么
这两个数中至少有一个为0.
所以上式可转化为
x-4=0 或 x+4=0
绒的豪华地毯……远远看去,这次理论实践所用的器物很有特色。只见在巨硕烟状塔下面摆放着闪着奇光的湖蝎翡翠桌!那上面悬浮着七块破地毯!在七块破地毯上面
悬浮着缓慢旋转的七只哈巴狗,再看巨硕烟状塔的上空,只见那上面悬浮飘动着壮观的五大广场,这五大广场一边晃动、一边发出古怪声响,此时巨硕烟状塔顶部十分
奇异的计量仪器
解得 x1=2
x2=3
交流
1) x2+3x=0 解:x(x+3)=0 因此有 x=0或 (x+3)=0 解得 x1=0 ,x2=-3
2) x2=x 解:x2-x=0 x(x-1)=0 x=0 或 x-1=0 ∴ x1=0 x2=1
,就像仙女绚丽的长裙在风中飘舞。再看场地西南方的看台之间,那里生种植橙白色的雄胆桐和深橙色的松泪樱,中间还夹杂着纯黑色的豺臂藤,从远处看去就像一幅
美妙的立体油画在波动。l场的西北向,那里生长着暗黑色的小胸谷和浓黑色的桑头神丝花,另外还有一些纯黑色的豺臂藤,给人的感觉犹如一片宁静而神奇的海洋。
再看l场的东南方,那里生种植墨黑色的晨脸麦和纯黑色的蟹筋榕,还有浅灰色的狼耳蕉,其间各种美丽的动物和鸟儿时隐时现,那里真的美如一片天然的园林。在场
x1=4
x2=-4
因此,我们把方程的左边因式分解,
第3讲数学第2章《一元二次方程》

八年级数学下第3讲《一元二次方程》()重点难点分析:1、一般形式中的a ,b ,c 分别是二次项的系数,一次项系数和常数项。
2、因式分解法是解一元二次方程的最常用的方法。
3、“a ≠0”是一元二次方程的前提,是一个重要的隐含条件。
4、因式分解法将一元二次方程转化成一元一次方程来解,体现了“转化化归”的数学思想。
例题精选:例1、把方程(2x -1)(3x+2)=x 2+2化成一般形式,并指出二次项系数、一次项系数和常数项.例2、已知关于x 的方程()()012112=--+++x m x m m,问:(1)m 取何值时,它是一元二次方程?并猜测方程的解; (2)m 取何值时,它是一元一次方程?例3、用因式分解法解方程:(1)2x 2-5x =0 (2)x (2x -7) + (2x -7)=0(3)4x 2-9=0 (4)25(x+3)2-16=0(5)(2x+1)2=2(2x+1) (6)4x 2-4x+1=0(7)4(y -1)2=(3y+1)2 (8)(3x+2)2-2(3x+2)-3=0例4(1)若一元二次方程ax2-bx-2017=0有一个根是-1,则a+b= . (2)若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m的值为()A. 1B. 2C. 1或2D. 0(3)解方程3x(x+2)=5(x+2)时,两边同除以x+2,得3x=5.你认为对还是错: . (4)若x=n是关于x的方程x2+mx+2n=0的非零实数根,则m+n的值为 .(5)已知实数m,n满足3m2+6m-5=0,3n2+6n-5=0,且m≠n,则nm + mn= .例5、已知a,b为实数,关于x的方程x2-(a-1)x+b+3=0的一个根为a+1,(1)用含a的代数式表示b;(2)求代数式b2-4a2+10b的值.例6、(1)已知m是方程x2-x-2=0的一个实数根,求代数式(m2-m)(m-2m+ 1)的值. (2)已知m2+m-1=0,求m3+2m2-2018的值.(3)已知3x2-x=1,求9x4+12x3-2x2-7x +2018 的值学生练习:1关于x的一元二次方程(m2-m-2)x2+mx+1=0成立的条件是()A.m≠-1B. m≠2C. m≠-1 或 m≠2 D . m≠-1 且 m≠22、下列方程中,一元二次方程共有()①x2-2x-1=0;②1y+ 3y-5=0;③-x2=0④(x+1)2+y2=2;⑤(x-1)(x-3)=x2.A. 1个B. 2个C. 3个D. 4 个3、若关于x的一元二次方程()1-a x2+x+a-1=0的一个根是0,则实数a的值为()A.-1B. 0C. 1D.-1或14、利用平方法可以构造一个整系数方程.如:当x=12+时,移项得x-1=2,两边平方得(x-1)2=()22,所以得x 2-2x -1=0.依照上述方法,当x =216-时,可以构造出一个整系数方程是( ) A. 4x 2+4x+5=0 B. 4x 2+4x -5=0 C. x 2+x+1=0 D. x 2+x -1=05已知一元二次方程ax 2+bx+c =0,若4a -2b+c =0,则它的一个根是( )A.-2B. -12 C. -4 D. 26若关于x 的方程x 2+(m+1)x + 12=0的一个实数根的倒数恰好是它本身,则m 的值为( )A.-52B. 12C.- 52或12 D. 17、若x 0是方程ax 2+2x+c =0的一个根,设M =1-ac ,N =(ax 0+1),则M 与N 的大小关系正确的是( ) A .M>N B. M =N C. M<N D. 不确定8、若a 是方程x 2-2x -1=0的解,则代数式2a 2-4a+2017的值为 .9、已知关于x 的方程()()012342=-++---m x m x m m m是一元二次方程,则m = .10、已知m ,n 都是方程x 2+2017x -2019=0的根,则(m 2+2017m -2018)(n 2+2017n -2020)=- .11、若关于x 的方程a(x+m)2+b =0的解是x 1=-2,x 2=1 (a ≠0),则方程a(x+m+2)2+b =0的解是 .12、解方程:(1)2x 2-6=0 (2)(x -4)2=16(3)2(3x -2)2=34 (4)3(x+5)2=11(5)(x -1)2-2(x -1)=0 (6)(2x+1)2=6x+3(7)(3x-4)(x+1)+4=0 (8)x(x-10)+25=02 是方程x2-4x+c=0的一个根,求c的值.13、已知x=514、若方程x2-6x-k-1=0与x2-kx-7=0仅有一个公共的实数根,试求k的值和公共的根.15、已知m是方程x2-2x-5=0的一个根,求下列代数式的值:(1)m3-2m2-5m-9;(2)m3+m2-11m-916、设a>2,b>2,试判断关于x的方程x2-(a+b)x+ab=0与x2-abx+(a+b)=0有没有公共根,请说明理由.17、选取二次三项式ax2+bx+c(a0)中的两项,配成完全平方式的过程叫配方.例如:①选取二次项和一次项配方:x2-4x+2=(x-2)2-2;②选二次项和常数项配方:x2-4x+2=(x-2)2+(22-4)x或原式=(x+2)2+(22+4)x③选取一次项和一次项配方:x2-4x+2=(2x-2)2-x2.根据以上材料,解决下列问题:(1)写出x2-8x+4的两种不同形式的配方;(2)已知x2+y2+xy-3y+3=0,求y x的值.八年级数学下第3讲《一元二次方程》()重点难点分析:1、一般形式中的a ,b ,c 分别是二次项的系数,一次项系数和常数项。
一元二次方程的应用PPT课件

2、教学目标
知识目标: 能用一元二次方程解决简单的几何 型应用问题。
能力目标: 进一步提高数学建模的能力,培养学 生动手操作、观察归纳能力,培养学 生问题意识能力。
情感目标: 帮助学生体验数学学习活动中的成功 与快乐,使他们认识到数学来源于生 活,在生活中学习数学,学好数学更 好地为生活服务。
3、重难点分析:
)
又AC=AC (
)
所以△ABC≌△CDA (
)
所以: AB=CD,AD=B 平(行四边形的)性质定理:平行四边形 的两组对边分别相等。
❖(1)定义、命题、公理、定理的概 念。
❖(2)命题的真假。
❖(3)命题的形式与命题的题设和结 论。
(4) 说明一个命题是假命题,只需举 一反例
❖
(假)
3、圆的切线垂直于圆的半径。 (假)
4、等腰三角形的底角必是锐角。 (真)
5、正数与负数的和仍是负数。
(假)
6、一个数的平方必是正数。
(假)
7、一个三角形的两个角、一边和另一三角形的两个
角、一边分别相等的三角形全等。
(假)
阅读理解
阅读教材P93第二段及以后的内 容并回答下列内容: ❖ 1、公理与定理有什么区别? ❖ 2、公理与定理有什么相同的? 有什么作用? 3、你能说出一个学过的定理吗?
小考卷2
一、把下面的命题改写成“如果……那 么……”的形式。 1、两直线平行,同旁内角互补。 2、同圆的半径相等。 3、有两个角相等的两个三角形相似。 4、等角的补角相等。 5、圆是轴对称图形,又是中心对称图形。
小考卷3
判断下列命题的真假:
细心!
1、相等的两角是对顶角。 (假)
2、若XY=0,则X=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。