表面活性剂在纳米材料合成中的应用共22页文档
表面活性剂在纳米八钼酸铵制备中的应用

o t moy d t n t rpa a v o e s a d idiae e b s u a e—a tv g n . ca lb ae o he p e r t e pr c s n n c td t e ts r c i h f cie a e t
Ke r s s r c y wo d : u a e—a t e a e t n n me r mmo i m ca l b ae f ci g n ; a o t a v e n u o tmoy d t
’H E I ’ API CA T1 0 F ’ LI 0 SURFA CE — AC’’VE I I AG E ’ 0 ’’ E I ’ I H PREIARA ’_ , IU l
PRoCESS oF NANoM口 TRE E c AM M oNI M U] oCTAM oLYBDATE DI NG hu S n
粒径。
将 四钼 酸 铵在 一定 的液 固比和反 应 条件 下 , 通
过在 溶液 中的转 化 形成 糊 状 的八 钼 酸 铵 , 这种 八 钼
酸铵 粒径 细小 , 分子 团 聚现 象严重 , 但 必须 经粉 碎才 能达 到适 宜 的 粒 径 , 常 这 种 产 品 的粒 径 在 1—8 通 m左右 , 但该 工艺 操作 简单 且 易控 制 , 此可 用 该 因
方法 生产 塑料抑 烟阻燃 剂用 的八钼 酸铵 。
1 传 统 八 钼 酸 铵 工 艺 概 述
1 1 热分解 法 .
将 二钼 酸铵在 10— 2 8 20℃进行 加热分 解 , 取 制
八钼酸铵 , 这种产品粒度较粗 , 使用时需磨细, 磨碎 工艺不 当将影 响 抑 烟 、 阻燃 效 果 。分解 反 应 的方程
表面活性剂在纳米材料合成中的应用

溶致液晶的结构
三 、前沿应用
4、溶致液晶
两种表面活性剂组 装介孔结构的示意 图及二氧化硅的TEM图
三 、前沿应用
5、囊泡
囊泡具有稳定性和包容性,可以作为“纳米反
应器”制备纳米粒子,也可以制备空心球壳。
四 、结论展望
结论
(1)对纳米粒子具有稳定和分散的作用:
(2)对纳米材料形貌具有调控作用;
表面活性剂在纳米材料合成中的 应用
西北工业大学
蹇木强
报 告 内 容
☞背景及意义
☞作用机理
☞前沿应用 ☞结论展望
一 、背景及意义 1、纳米材料
纳米粒子的团聚
一 、背景及意义 2、表面活性剂
临界胶束浓度(CMC):表面活性剂分子缔合形成
胶束的最低浓度。
一 、背景及意义
2、表面活性剂
有序分子组合体示意图
展望
表面活性剂在纳米材料形貌调控中具有优势,
随着研究的深入,表面活性剂有序分子组合体的
模板功能在纳米材料中将会发挥更大的作用,也
将会与纳米材料的优异性能产生协同作用。
Thank you
三 、前沿应用
3、微乳液
表面活性剂:
2-乙基己基琥珀酸酯磺酸钠(AOT)、SDS、
SDBS、CTAB等
助表面活性剂:
正丁醇、正戊醇、正己醇、正庚醇、正辛醇等
脂肪醇
三 、前沿应用
3、微乳液
(1)配制两种微乳液; (2)物质交换或传递; (3)化学反应并成核; (4)生长成目的产物。
三 、前沿应用
使其反应。
(2)A、B两种反胶束溶液混合,通过反胶束的碰
撞,发生反应,并成核、生长。
(3)反应物由油相进入内部,水解产生纳米微粒。
表面活性剂与纳米材料的制备学习资料

表面活性剂与纳米材料的制备表面活性剂与纳米催化材料的制备摘要:随着纳米技术的发展,发现与合成新型的、高质量、性能优异的纳米结构材料成为多学科交叉研究的热点。
本论文首先介绍了纳米催化材料的在催化应用方面的优异特性及其制备方法,其次介绍了在纳米催化材料制备中用到的表面活性剂的性质,最后介绍了表面活性剂在纳米催化材料制备中所起的重要作用。
关键词:表面活性剂纳米材料一、研究背景纳米材料出现许多既不同于宏观体系,也不同于微观体系的奇异性能,比如小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,使其得到越来越多的关注。
在催化方面,纳米材料也有很大的用武之地,由于纳米材料极小的尺寸,导致其具有很大的比表面积,更多的活性位将会暴漏出来,显现极高的催化活性。
另外,纳米粒子的表面原子所处晶体场环境及结合能与内部原子不同,存在较多的悬空键,具有不饱和性质,活性很高,使其极易与其他原子或者分子发生相互作用,尤其是在催化方面,能够很好的活化反应分子,降低活化能,极大的提高反应速率。
而合成形貌可控的纳米金属结构的方法中,有些会涉及到了表面活性剂的使用。
二、纳米催化材料特性及其制备方法区别于一般催化剂,纳米催化剂表现出如下这些特性:(1)表面特性:在纳米催化剂颗粒中,由于表面原子与总原子周边缺少相邻原子,因而出现许多悬空键,显示出不饱和性,极易与其它原子结合而稳定下来[1]。
当颗粒直径较接近原子直径时,催化剂表面原子占总原子的百分比急剧增加,催化剂的表面积、表面能及表面结合能都迅速增大,具有很强的化学活性。
(2)吸附特性:氧在纳米催化剂上的吸附则更为明显,几乎所有的纳米颗粒在有氧条件下都能够发生氧化反应,即使是热力学上稳定性很好的贵金属,经纳米技术处理也能发生氧化反应。
氢在催化剂上的吸附方式将对催化反应起着至关重要的作用。
氢在某些过渡金属纳米催化剂表面呈解离吸附,这对催化部分有机化合物的还原有很好的促进作用。
如,镍铝骨架负载高分散性镍所制成的雷尼镍纳米催化剂,呈现了对有机化合物还原反应非常高的活性与选择性。
表面活性剂在纳米技术中的应用研究

表面活性剂在纳米技术中的应用研究随着科技的不断进步和发展,纳米技术已经逐渐成为人们眼中的热门话题。
纳米技术是什么呢?纳米技术是一门专门处理和研究纳米材料的技术,它研究的是在纳米尺度下的物质的性质,并对其使用进行操作和制造。
而在纳米技术中,表面活性剂也是一个重要的研究领域。
那么,表面活性剂在纳米技术中有哪些应用呢?本篇文章将从纳米材料的性质、表面活性剂的作用、纳米技术中表面活性剂的应用三个方面进行探讨。
一、纳米材料的性质在纳米尺度下,由于表面积和界面现象因素的影响,物质的性质和性能都会发生很大的变化。
例如,纳米粒子的比表面积比普通材料更大,电子和离子的运动方式也有所不同,这些都为处理及进行改性提供了很好的基础。
二、表面活性剂的作用表面活性剂是指一类可以吸附在界面上,降低界面张力并改变界面性质的化学物质。
表面活性剂中的两端,一端的亲水性使其能够和水相相容,在水中形成“头”,另一端则是疏水性的,使其能够和油或其他疏水性液体相容,在疏水相中形成“尾”。
表面活性剂具有很好的分散、乳化和表面调节效果,能有效地调节纳米材料的粒径分布和表面性质。
三、纳米技术中表面活性剂的应用1. 纳米颗粒制备通过表面活性剂对纳米粒子进行改性,可以使纳米颗粒更好地分散在溶液中,并且粒径分布更为均匀。
同时,还可以通过调节表面活性剂的种类和用量来精细调控纳米颗粒的形貌和表面性质。
2. 纳米复合材料制备利用表面活性剂对不同的纳米材料进行复合,可以制备出具有良好性能和稳定性的纳米复合材料。
表面活性剂还可以通过改变纳米材料间的相互作用力,提高纳米复合材料的力学性能和导电性能等。
3. 纳米药物制备表面活性剂还可以用于纳米药物制备。
通过控制表面活性剂的存在和用量,可以制备出稳定的纳米药物载体,并且可以将表面活性剂与药物进行结合,提高药物的生物利用度。
总结表面活性剂作为一种重要的界面调节剂,在纳米技术中发挥了重要的作用。
通过表面活性剂的应用,可以使纳米材料更好地进行处理和改性,从而更好地发挥其应用价值。
弱相互作用调控表面活性剂自组装(V)--在纳米材料制备方面的应用

纳米材料是指在三维空间中至少有一维处于纳米
尺寸(0.1~100 nm)或由它们作为基本单元构成的材 料。由于其具有独特的表面效应、尺寸效应等,在电 学、光学、生物学等领域具有广阔的应用前景。表面 活性剂可以作为包覆剂精确控制材料的生长,也可以 和前驱体发生静电相互作用、配位相互作用等,影响 最终产物的形貌。有的表面活性剂还可以和前驱体形 成配合物,从而作为模板来决定纳米材料的生长。目 前,带有不同疏水链长、头基、反离子及分子构型的 多种表面活性剂都被应用于纳米材料的可控制备。
利用表面活性剂形成的有序分子聚集体作为模 板的软模板法在纳米材料的制备中已有比较成熟的报 道,如介孔二氧化硅的合成等。而对于贵金属纳米材 料,由于合成通常需要更为精细的还原条件,以表面 活性剂形成的有序分子聚集体作为模板的软模板法制 备贵金属纳米材料仍然具有一定的挑战性。研究者们 通常是利用小分子量的表面活性剂如十六烷基三甲基 溴化铵(CTAB)、油酸、油胺等作为表面的封端剂或 者作为软模板制备金纳米线或纳米棒。
表面活性剂在溶液中可以组装成丰富的有序分 子聚集体,如胶束、囊泡、液晶等。而聚集结构的形 成是表面活性剂分子之间、表面活性剂分子与溶剂分 子之间相互作用的结果。通过加入添加剂或使用外部 刺激,可以调节分子之间的弱相互作用(疏水相互作 用、静电相互作用、氢键作用力、π-π堆积相互作 用等),从而改变聚集体的形态。利用这种独特的性 质,可以将其应用于纳米材料的制备。
表面活性剂在纳米材料形貌调控中的作用及机理研究进展

Vol 135No 16化基金项目:河南省杰出青年科学基金项目(No.0312*******);河南省教育厅自然科学基金项目作者简介:王培义(1960-),男,教授,硕士生导师,主要研究方向:精细化学品和功能材料。
表面活性剂在纳米材料形貌调控中的作用及机理研究进展王培义 张晓丽 徐甲强(郑州轻工业学院材料与化工学院,郑州450002)摘 要 介绍了表面活性剂在纳米材料合成中的软模板作用和稳定分散作用,重点综述了利用表面活性剂在溶液中聚集形成的胶团、反胶团、微乳液、囊泡、液晶等各种有序聚集体辅助制备纳米材料的作用机理。
展望了表面活性剂在纳米材料形貌调控中的应用前景。
关键词 纳米材料,形貌调控,表面活性剂,有序聚集体,作用机理Progress in f unction and mechanism of surfactant incontrolling of size and shape of nanomaterialsWang Peiyi Zhang Xiaoli Xu Jiaqiang(College of Material and Chemistry Engineering ,Zheng Zhou University ofLight Indust ry ,Zhengzhou 450002)Abstract The f unction of surfactants in controlling size and shape of nanomaterial particles ,which are template ac 2tion and dispersion property ,were anized surfactant assembles ,including micelles ,reverse micelles ,microe 2mulsion ,surfactant liquid crystal and surfactant vesicles are introduced and their mechanism in assistant formation of nano 2materials are summarized.the direction of research of surfactant in controlling of size and shape of nanomaterials is viewed.K ey w ords nanomaterial ,controlling shape ,surfactant ,organized assemble ,mechanism 在纳米材料研究过程中,只有实现对纳米材料微结构的有效控制,才有可能将其更有效地应用于微电子器件等高科技领域中,因此,纳米材料的形貌控制成为当前材料科学研究的前沿与热点。
表面活性剂在纳米材料制备领域的研究概况

构 成 的两 亲性 分 子 , 由于其 两 亲分 子结 构 在溶 液 中 产 生疏 水效 应 ,使表 面 活性 剂 分 子在 一定 条 件下 ,
可 以有 序 的排 列 形 成 各 种 结 构 的表 面 活 性 剂 分 子
Ab t a t S r e a t r es t e a h p i c moe u e i h n w d y r p l d i n il s rn i g sr c : u f t n sa e v rai mp i h l lc lswh c o a a sa e a p i n ma y f d ,a gn a l i e e fo n n p ril e lt g t rp r t e o g n c c e s y F r t e s nh ss o a o tras mir e lin r m a o a t e t mp ai o p e a ai r a i h mit . o h y t e i fn n ma e il c n v r c o mu so s r p e e t l e t b i e e h i u h tc n b s d t o t l h a t l ie o n n r a i a d o g n c e r s n wel sa l h d t c n q e t a a e u e o c n r e p r ce sz fma y i o g n c n r a i a — s ot i ma r l. h s r ve te i s n t i e iw,we d s c s e h e e ttn e ce fs ra tn sa d t e u e omir e lin o h a I is u s d t e r c n e d n is o u fc a t n h s f c o mu so s fr t e
纳米材料的化学合成

纳米材料的化学合成纳米材料是指具有纳米级尺寸(1-100纳米)的材料,具有独特的物理、化学和生物学性质。
纳米材料的合成方法多种多样,其中化学合成是最常用的方法之一。
化学合成方法可以通过控制反应条件和反应物的选择来实现对纳米材料的精确控制和调控。
本文将介绍几种常见的纳米材料化学合成方法。
一、溶剂热法溶剂热法是一种常用的纳米材料合成方法,其原理是在高温高压的条件下,通过溶剂中的化学反应来合成纳米材料。
溶剂热法可以实现对纳米材料的尺寸、形貌和结构的精确控制。
例如,可以通过调节反应温度、反应时间和反应物的浓度来控制纳米材料的尺寸;通过添加表面活性剂或模板剂可以控制纳米材料的形貌;通过改变反应条件可以合成不同结构的纳米材料。
二、溶胶-凝胶法溶胶-凝胶法是一种将溶胶转变为凝胶的方法,通过溶胶中的化学反应来合成纳米材料。
溶胶-凝胶法可以实现对纳米材料的形貌和结构的控制。
其原理是在溶胶中加入适当的凝胶剂,通过凝胶剂的作用使溶胶形成凝胶,然后通过热处理或其他方法将凝胶转变为纳米材料。
溶胶-凝胶法可以合成多种纳米材料,如氧化物、金属和半导体纳米材料。
三、气相沉积法气相沉积法是一种将气体反应物在高温条件下沉积在基底上形成纳米材料的方法。
气相沉积法可以实现对纳米材料的尺寸、形貌和结构的控制。
其原理是将气体反应物通过载气输送到高温反应室中,反应物在高温下发生化学反应并沉积在基底上形成纳米材料。
气相沉积法可以合成多种纳米材料,如纳米颗粒、纳米线和纳米薄膜。
四、电化学合成法电化学合成法是一种利用电化学反应来合成纳米材料的方法。
电化学合成法可以实现对纳米材料的尺寸、形貌和结构的控制。
其原理是在电解质溶液中,通过外加电压使电极发生氧化还原反应,从而在电极表面沉积纳米材料。
电化学合成法可以合成多种纳米材料,如纳米颗粒、纳米线和纳米薄膜。
总结起来,纳米材料的化学合成方法多种多样,每种方法都有其独特的优点和适用范围。
通过合理选择合成方法和调控反应条件,可以实现对纳米材料的精确控制和调控,从而获得具有特定性质和应用的纳米材料。