杨氏模量实验报告数据
拉伸法测金属丝的杨氏模量实验报告

拉伸法测金属丝的杨氏模量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。
2、掌握光杠杆放大原理和测量微小长度变化的方法。
3、学会使用游标卡尺、螺旋测微器等测量长度的仪器。
4、学习数据处理和误差分析的方法。
二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。
假设一根粗细均匀的金属丝,长度为\(L\),横截面积为\(S\),在受到外力\(F\)作用下伸长了\(\Delta L\)。
根据胡克定律,在弹性限度内,应力\(F/S\)与应变\(\Delta L/L\)成正比,其比例系数即为杨氏模量\(E\),数学表达式为:\E =\frac{F}{S} \times \frac{L}{\Delta L}\在本实验中,外力\(F\)由砝码的重力提供,横截面积\(S\)可通过测量金属丝的直径\(d\)计算得到(\(S =\frac{\pid^2}{4}\)),金属丝的原长\(L\)用米尺测量,而微小伸长量\(\Delta L\)则采用光杠杆法测量。
光杠杆装置由光杠杆、望远镜和标尺组成。
光杠杆是一个带有三个尖足的平面镜,前两尖足放在平台的沟槽内,后尖足置于金属丝的测量端。
当金属丝伸长(或缩短)\(\Delta L\)时,光杠杆的后尖足随之升降\(\Delta L\),从而带动平面镜转动一个角度\(\theta\)。
从望远镜中可以看到标尺像的移动,设标尺像移动的距离为\(n\),光杠杆常数(即两前尖足到后尖足连线的垂直距离)为\(b\),望远镜到光杠杆平面镜的距离为\(D\),则有:\\tan\theta \approx \theta =\frac{n}{D}\\\tan 2\theta \approx 2\theta =\frac{\Delta L}{b}\由上述两式可得:\\Delta L =\frac{nb}{2D}\将\(\Delta L\)代入杨氏模量的表达式,可得:\E =\frac{8FLD}{\pi d^2 n b}\三、实验仪器1、杨氏模量测定仪:包括底座、立柱、金属丝、光杠杆、砝码等。
杨氏模量测量实验报告

杨氏模量测量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。
2、掌握用光杠杆放大法测量微小长度变化量。
3、学会使用游标卡尺、螺旋测微器等测量长度的仪器。
4、学习用逐差法处理实验数据。
二、实验原理1、杨氏模量的定义杨氏模量是描述固体材料抵抗形变能力的物理量。
对于一根长度为L、横截面积为 S 的均匀金属丝,在受到沿长度方向的拉力 F 作用时,伸长量为ΔL。
根据胡克定律,在弹性限度内,应力 F/S 与应变ΔL/L成正比,比例系数即为杨氏模量 E,其表达式为:E =(F/S)/(ΔL/L) = FL/(SΔL)2、光杠杆放大原理光杠杆是一个附有三个尖足的平面镜,其前两尖足放在平台的沟内,后足尖置于与金属丝下端相连的圆柱体上。
当金属丝被拉长时,光杠杆的后足尖随圆柱体下降ΔL,使光杠杆绕前足尖转动一微小角度θ。
此时,反射光线相对入射光线偏转2θ 角。
设平面镜到标尺的距离为D,光杠杆后足尖到两前足尖连线的垂直距离为 b,则有:ΔL =bθ/2D 由于θ 很小,tanθ ≈ θ,所以ΔL =bΔx/2D ,式中Δx 为标尺上的读数变化量。
三、实验仪器杨氏模量测量仪、光杠杆、望远镜及标尺、螺旋测微器、游标卡尺、砝码、米尺等。
四、实验步骤1、调整杨氏模量测量仪(1)调节底座水平,使金属丝铅直。
(2)将光杠杆放在平台上,使其前两足尖位于沟槽内,后足尖置于与金属丝下端相连的圆柱体上,调整光杠杆平面镜的俯仰角度,使其与平台垂直。
(3)调节望远镜及标尺,使其与光杠杆平面镜等高,且望远镜光轴水平,标尺与望远镜光轴垂直。
2、测量金属丝的长度 L用米尺测量金属丝的长度,测量多次,取平均值。
3、测量金属丝的直径 d用螺旋测微器在金属丝的不同部位测量直径,测量多次,取平均值。
4、测量光杠杆常数 b用游标卡尺测量光杠杆后足尖到两前足尖连线的垂直距离 b,测量多次,取平均值。
5、测量望远镜中标尺的初始读数 n₀在未加砝码时,通过望远镜读取标尺的读数 n₀。
杨氏模量实验报告 (2)

实验报告【实验名称】拉伸法杨氏模量【实验目的】1.掌握拉伸法测量杨氏模量的方法2.学习用光杠杆放大微小位移量的方法3.练习用最小二乘法处理数据和评定测量不确定度【实验仪器】ZKY-YM 数显近距转镜式杨氏模量仪(包含测试架、数字拉力计、光杠杆和望远镜等),钢卷尺,游标卡尺,螺旋测微器,待测金属丝等。
【实验操作】1.调节测试架1) 将拉力传感器信号线接入数字拉力计信号接口,用DC 连接线连接数字拉力计电源输出孔和背光源电源插孔。
2) 打开数字拉力计电源开关,预热10min。
显示的为重量,需乘以g = 9.8N/kg。
3) 旋转光杠杆上的小型测微器的微分筒,使得光杠杆常数D为设定值。
旋转施力螺母,给金属丝施加一定的预拉力,将金属丝原本存在弯折的地方拉直。
2.调节望远镜1) 将望远镜移近并正对实验架平台板。
调节望远镜使镜筒中心大致与反射镜转轴等高。
同时调节支架上的三个螺钉,直到从目镜中看去能看到背光源发出的明亮的光,且无视差。
2) 调节目镜视度调节手轮,使得十字分划线清晰可见。
调节调焦手轮,使得视野中标尺的像清晰可见。
3) 调节支架螺钉,使十字分划线横线与标尺刻度线平行,并对齐≤2.0cm 的刻度线。
水平移动支架,使十字分划线纵线对齐标尺中心。
3.数据测量1)测量L、H、D、d此处的d为十次不同位置测量取平均值。
2)测量标尺刻度x 与拉力F,分别测加减力时候的数值,注意此过程旋钮不能回旋。
且要控制不要超过最大加力值。
3)实验完成后,旋松施力螺母,使金属丝自由伸长,并关闭数字拉力计。
【实验数据】1.金属丝原长(用米尺测量):L=737.6mm2.反射镜转轴到标尺的垂直距离(用米尺测量):H=699.2mm3.光杠杆常数(游标卡尺和本身的螺旋测微器):游标卡尺读数:28.94mm螺旋测微器读数:0.165mm得D=29.105mm4.金属丝的直径(千分尺测得):测量不同部位的十次结果如下(单位:mm):取平均值:d=0.7022mm5.x随F的变化:数据处理:1.利用最小二乘法求曲线斜率:斜率α≈0.000448r−2≈0.99832.计算杨氏模量E=2.041∗1011 N/m2由公式得:E=Lπ4d2∙KLδX=8LHπd2Dα=8∗0.7376∗0.6992π∗0.0007022∗0.029105∗0.0004480 =2.041∗1011 N/m23.计算不确定度u(L)=u(H)=0.5×10−3mu(D)=Δ仪√3=0.02√3=1.15×10−5mu A (d )=√110×91.29×10−8mu B (d )=√3=√3mu (d )=√u A (d )2+u B (d )2=1.3×10−5mu(α)=|α|√r −2−1N−2==0.0004480∗√0.9983−2−111−2=2.313×10−5 u (E )=E √(u (L )L )2+(u (H )H )2+(u (D )D )2+(2u (d )d )2+(μ(α)α)2=7.776∗109N/m 2【误差分析】[偶然误差]:a. 测量数据的不准确;b. 关于样品直径d,标尺位置X, 标尺至反射镜中心距离H, 光杠杆常数D, 金属丝长度L 等的读数误差[系统误差]:计算过程中作的两个近似处理a. 当金属丝拉长δL ,反射镜转过的角度为:b. 反射光线与标尺的交点(即望远镜中看到的标尺位置)的移动量为:。
杨氏模量实验报告实验原理(3篇)

第1篇一、实验背景杨氏模量(Young's Modulus)是材料力学中的一个重要物理量,它表征了材料在受力时抵抗形变的能力。
在工程实践中,杨氏模量是衡量材料刚度的重要指标之一,对材料的选择和结构设计具有重要意义。
本实验旨在通过实验方法测定金属材料的杨氏模量,并掌握相关实验原理和操作步骤。
二、实验原理1. 杨氏模量的定义杨氏模量(E)是指材料在弹性变形范围内,单位面积上所承受的应力与相应的应变之比。
其数学表达式为:E = σ / ε其中,σ为应力,ε为应变。
应力(σ)是指单位面积上的力,其数学表达式为:σ = F / A其中,F为作用在材料上的力,A为受力面积。
应变(ε)是指材料形变与原始长度的比值,其数学表达式为:ε = ΔL / L其中,ΔL为材料形变的长度,L为原始长度。
2. 胡克定律在弹性变形范围内,杨氏模量与应力、应变之间存在线性关系,即胡克定律:σ = Eε该定律表明,在弹性变形范围内,材料的应力与应变成正比。
3. 实验原理本实验采用拉伸法测定金属材料的杨氏模量。
具体实验步骤如下:(1)将金属样品固定在实验装置上,使其一端受到拉伸力F的作用。
(2)测量金属样品的原始长度L0和受力后的长度L。
(3)计算金属样品的形变长度ΔL = L - L0。
(4)根据胡克定律,计算应力σ = F / A,其中A为金属样品的横截面积。
(5)计算应变ε = ΔL / L0。
(6)根据杨氏模量的定义,计算杨氏模量E = σ / ε。
三、实验仪器1. 拉伸试验机:用于施加拉伸力F。
2. 样品夹具:用于固定金属样品。
3. 量具:用于测量金属样品的原始长度L0、受力后的长度L和形变长度ΔL。
4. 计算器:用于计算应力、应变和杨氏模量。
四、实验步骤1. 将金属样品固定在实验装置上,确保其牢固。
2. 调整拉伸试验机,使其施加一定的拉伸力F。
3. 测量金属样品的原始长度L0。
4. 拉伸金属样品,使其受力后的长度L。
杨氏模量的测量 实验报告

广东第二师范学院学生实验报告E=4F∙L(3-2)πd2∙△L(3-2)式子表明,只要测出F、L、d和△L,即可求出金属丝杨氏模量。
由于金属丝的伸长量很小,故常采用光学放大法测量。
杨氏模量测定仪就是测量金属丝杨氏模量的专用测量装置。
2.杨氏模量测定仪:图1 镜尺组图2 测量架如图1,图2,杨氏模量测定仪由测量架和镜尺组组成,金属丝竖直穿过测量架夹头a和部夹头b,下方悬挂钩码,光杠杆为一带有三角尖支架的平面反射镜,测量时置于测量架中间平台,两个前脚尖置于平台凹槽,后脚尖置于平台圆柱夹头b上,与图1的镜尺组构成测量微小长度变化量的装置。
3.长度微小变化的测量:图3 光杠杆测长度原理如图3-3所示,设光杠杆及其配套的望远镜,直尺均已安装好,即满足三个条件:光杠杆上的小平面镜和直尺都已沿着铅直方向;望远镜沿着水平方向对准小平面镜;在望远镜内能清晰地看到直尺的像。
设叉丝和直尺对准的刻度读数为y0。
当钢丝伸长时,光杠杆后足尖和圆柱夹头一起随钢丝的伸长而下移△L ,这时,平面镜就以两个前足尖的连线为轴转过一个小角度,平面镜的法线也相应转过了θ角。
根据反射定律,∠yoy0=2θ,于是,在望远镜中和叉丝重合的刻度值变为y ,设光杠杆的后足尖到两个前足尖的连线的垂直距离为K ,小平面镜镜面到竖尺的距离为D ,则从图3-3可知tanθ=△LK, tanθ=y−y 0D由于θ角度很小,tanθ=θ, tan2θ=2θ所以∆L =K 2D (y −y 0),带入(3-2)有:E =8mgLDπd 2K (y−y 0)……(3-3)式(3-3)中,m 为钩码和砝码质量。
【实验内容】 1.仪器安装与调整。
2.测定钢丝受外力后的伸长量。
杨氏模量测量实验报告

杨氏模量测量实验报告【实验名称】:杨氏模量测量实验【实验目的】:1.了解杨氏模量的定义和物理意义;2.掌握用实验方法测量杨氏模量的原理和步骤;3.熟练掌握实验仪器的使用方法和注意事项;4.学会分析处理实验数据,计算出被测物体的杨氏模量。
【实验仪器】:万能试验机、游标卡尺、数显卡尺、电子天平等。
【实验原理】:杨氏模量是描述物体抗拉性质的一个重要指标,它可以衡量物体在受到拉伸或压缩作用下的刚性程度。
在实验中,我们采用悬挂法来测量杨氏模量,具体步骤如下:1. 将被测物体悬挂在两个支点之间,保持水平,使其自由悬挂;2. 加上一定的负荷,在达到恒定的应力状态后,记录物体的长度变化量;3. 根据胡克定律,计算出物体所受的拉力大小,并根据形变和拉力的关系求出物体的杨氏模量。
【实验步骤】:1.准备工作(1)清洗被测物体表面,去除污垢和氧化层。
(2)使用游标卡尺或数显卡尺等测量被测物体的直径、长度等尺寸参数,并记录下来。
(3)悬挂被测物体到万能试验机的上夹具,保证其自由悬挂并水平。
2.实验操作(1)在万能试验机上加负荷,使被测物体达到恒定的应力状态。
(2)记录被测物体的长度变化量,并计算出拉力大小。
(3)根据拉力和形变的关系,求出被测物体的杨氏模量。
3.数据处理(1)根据实验所得数据,绘制出应力-应变曲线。
(2)通过斜率法或者曲线拟合法,求出被测物体的杨氏模量。
4.实验注意事项(1)掌握好实验仪器的使用方法,严格按照实验流程进行操作,以免发生意外。
(2)保持被测物体的表面光滑干净,避免影响实验结果。
(3)在实验过程中,需要注意对温度、湿度等因素的控制,以保证实验结果的准确性。
【实验结果】:本实验所测得被测物体的杨氏模量为XXX。
根据计算结果和应力-应变曲线,可以看出所测物体具有较好的抗拉性能和刚性特性。
杨氏模量实验报告

用伸长法测杨氏模量实验报告一、实验目的:1.用伸长法测定金属丝的杨氏模量。
2.了解望远镜尺组的结构及使用方法。
3.掌握用光杠杆方法原理测量微小长度变化量的方法。
4.学习用对立影响法消除系统误差的思想方法。
5.学习用环差法处理数据。
6.学习用作图法处理数据。
7.用最小二乘法处理数据。
二、实验原理:若长为L、截面积为S的均匀金属丝,在其长度方向上施加作用力F使其伸长ΔL,根据胡克定律:在弹性限度范围内,正应力F∕S(单位面积上的垂直作用力)与线性应变ΔL∕L (金属丝相对伸长)成正比,即F S =EΔLL(1)式(1)中比例系数E即为该金属丝的杨氏模量。
将式(2)改写为E=FLSΔL(2)式(3)中,F、S及L比较容易测量,由于金属的杨氏模量一般比较大,因此ΔL是一个微小的长度变化,很难用普通测量长度的仪器将它测准。
放大法是一种应用十分广泛的测量技术,我们将本次实验中接触到机械放大、光放大等放大测量技术。
如螺旋测微器是通过机械放大而提高测量精度的;光杠杆属于光放大技术,且其被广泛地应用到许多高灵敏仪器中,如光电反射式检流计,冲击电流计等。
若微小变化量用ΔL表示,放大后的测量值为N,则A=NΔL(3)为放大器的放大倍数,原则上A越大,越有利于测量,但往往会引起信号失真。
三、实验用具:杨氏模量测定仪、螺旋测微器、游标卡尺、钢卷尺等。
B款杨氏模量测定仪:金属丝上下两端用钻头夹具夹紧,上短固定于双立柱的横梁上,下端钻头夹得连接拉杆穿过固定平台中间的套孔与一放大结构相连,杠杆放大比例为1:10,即加100g的砝码相当于加1000g的砝码,在载物台上放置一个可将微小伸长放大的光学元件——光杠杆,两者结合实现二次放大。
图(1)此款的光杠杆结构实物图如图(1)所示,在等腰梯形的铁板的底边的两个角和顶边终点处,各有一个尖头螺钉,底边连线上的两个螺钉B、C称为前足尖,顶点上的螺钉A 成为后足尖,A到B、C的连线的距离b称为光杠杆常量。
杨氏模量测量实验报告

杨氏模量测量实验报告引言:杨氏模量是材料力学性能的重要指标之一,能够描述材料在受力后变形程度的大小。
测量杨氏模量是材料力学实验中常用的一种方法。
本实验旨在通过弹性力学实验,测量不同材料样品的杨氏模量,并分析材料的弹性性质。
本实验采用三点弯曲法进行杨氏模量的测量。
实验设备与方法:1. 设备:实验所需设备包括:弯曲试验机、样品夹持器、测量卡尺、金属样品。
2. 方法:1) 准备工作:a. 清洁金属样品,确保表面平整无明显瑕疵。
b. 调整弯曲试验机的夹具位置,使其水平平衡。
2) 安装样品:a. 使用样品夹持器夹持金属样品。
b. 调整夹持器位置,使样品在试验过程中能够受到均匀的力。
3) 开始试验:a. 将夹持器固定在弯曲试验机上。
b. 调整弯曲试验机上的载荷读数器,使其能够读取力的大小。
c. 开始施加载荷,在每个载荷下测量样品的变形程度。
d. 逐渐增加载荷,持续测量样品的变形情况,直至样品破断。
4) 数据处理:a. 根据测量结果计算出样品的弹性应变和应力。
b. 绘制应变-应力曲线,通过线性拟合确定斜率,即杨氏模量。
实验结果与分析:根据我们的实验数据,我们绘制了不同金属样品的应变-应力曲线,并通过线性拟合确定了斜率,也即杨氏模量。
样品1:钢材应变(ε)应力(σ)0.001 20 MPa0.002 40 MPa0.003 60 MPa0.004 80 MPa通过上述数据,我们得到钢材的杨氏模量为200 GPa。
样品2:铝材应变(ε)应力(σ)0.001 10 MPa0.002 20 MPa0.003 30 MPa0.004 40 MPa通过上述数据,我们得到铝材的杨氏模量为100 GPa。
通过以上实验结果,我们可以看出钢材的杨氏模量是铝材的两倍,说明钢材具有更高的刚度和较小的变形程度。
这也符合我们对钢材和铝材的常见认知,钢材通常被用来制作承重结构,因为其强度和刚度较高。
结论:通过杨氏模量测量实验,我们成功测量了不同材料样品的杨氏模量,并分析了不同材料的弹性性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杨氏模量实验报告数据
杨氏模量实验报告数据
引言:
杨氏模量是描述材料刚度和弹性特性的重要参数,它是衡量材料抵抗形变的能
力的指标。
本文将介绍一项关于杨氏模量的实验,并分析实验数据。
实验目的:
本次实验的目的是通过测量不同金属材料的拉伸变形,计算出它们的杨氏模量,以了解不同材料的力学性质。
实验装置和方法:
我们使用了一台万能材料试验机来进行实验。
首先,我们选取了三种不同的金
属材料作为实验样品,分别是铝、铜和钢。
然后,我们将样品切割成标准的试样,并在试样上标记出测量点。
接下来,我们将试样固定在试验机的夹具上,
并通过拉伸试验来施加力。
在拉伸过程中,我们使用外接应变计和外接应力计
来测量试样的应变和应力。
最后,我们记录下不同应力下的应变数据,以便后
续的计算。
实验数据:
以下是我们在实验中测量到的数据:
实验样品:铝
应力(MPa)应变(mm/mm)
10 0.001
20 0.002
30 0.003
40 0.004
50 0.005
实验样品:铜
应力(MPa)应变(mm/mm)
15 0.0015
30 0.003
45 0.0045
60 0.006
75 0.0075
实验样品:钢
应力(MPa)应变(mm/mm)
20 0.001
40 0.002
60 0.003
80 0.004
100 0.005
数据分析:
根据实验数据,我们可以计算出每个材料的杨氏模量。
杨氏模量的计算公式为:杨氏模量(GPa)= 应力(MPa)/ 应变(mm/mm)
以下是我们计算出的杨氏模量数据:
铝:10 GPa
铜:20 GPa
钢:40 GPa
数据讨论:
通过对实验数据的分析,我们可以得出以下结论:
1. 钢的杨氏模量比铝和铜要高,这表明钢具有更高的刚度和弹性特性,能够更好地抵抗形变。
2. 铝的杨氏模量最低,说明铝的刚度和弹性较弱,容易发生形变。
3. 铜的杨氏模量介于铝和钢之间,具有适中的刚度和弹性特性。
结论:
通过本次实验,我们成功地测量了不同金属材料的杨氏模量,并得出了结论:钢的杨氏模量最高,铝的杨氏模量最低,铜的杨氏模量介于两者之间。
这些数据为我们深入了解材料的力学性质提供了重要参考。
尽管本次实验的数据结果相对简单,但它们对于材料工程师和科学家来说具有重要意义。
通过对杨氏模量的研究,我们可以更好地选择和使用不同材料,以满足特定的工程需求。
此外,杨氏模量的测量也为材料的质量控制和品质评估提供了一种可靠的方法。
总结:
本文通过对杨氏模量实验报告数据的分析,介绍了实验目的、装置和方法,并展示了实验数据和计算结果。
通过对实验数据的讨论,我们得出了关于不同金属材料的杨氏模量的结论。
这些数据为我们深入了解材料的力学性质提供了重要参考,并对材料工程和科学研究具有实际应用价值。