《弯曲法测杨氏模量》物理实验报告(有数据)
弯曲法测杨氏模量

设其曲率半径为 R( x) ,所对应的张角为 d ,再取中性面上部距为 y 厚为 dy 的一层面为研究对
-1-
象,那么,梁弯曲后其长变为 ( R( x) y) d ,所以,变化量为:
( R( x) y) d dx
又
d
dx ; R( x)
y dx dx dx ; R( x) R( x)
6Mg d ( x) ; Y b a3 2
y(0) 0 ; y (0) 0 ;
3Mg d 2 1 3 ( x x ); 3 Y b a3 2
y( x)
将x
d 代入上式,得右端点的 y 值: 2
-2-
g d3 y M; 4Y b a 3
其中: d 为两刀口之间的距离, M 为所加砝码的质量, a 为梁的厚度, b 为梁的宽度,y 为梁 中心由于外力作用而下降的距离, g 为重力加速度。 我们可以用 y=A+kx 线性拟合,得到斜率 k, 故杨氏模量
F l 为应力,相对长变 为应变。在弹性限度内,根据胡克定律有: S l F l Y S l
Y 称为杨氏模量,其数值与材料性质有关。 在横梁发生微小弯曲时,梁中存在一个中性面,面上部分发生压缩,面下部分发生拉伸,所 以整体说来,可以理解横梁发生长变,即可以用杨氏模量来描写材料的性质。 如图所示,虚线表示弯曲梁的中性面,其既不拉伸也不压缩,取弯曲梁长为 dx 的一小段:
dB y dy
零,则:
UH K I
我们可以用 y=A+Bx 线性拟合,得到斜率 B(该霍尔位置传感器的灵敏度) 为实现均匀梯度的磁场, 可以如图 1 所示,两块相同的磁铁(磁铁截面积 及表面磁感应强度相同)相对放置,即
实验八(b)杨氏弹性模量的测量(用弯曲法)

实验八(b ) 杨氏弹性模量的测量(用弯曲法) 实验目的1.学会使用梁的弯曲法测定杨氏弹性模量。
2.熟悉用读数显微镜测量微小长度变化的方法。
实验仪器梁的弯曲实验仪,螺旋测微器,游标卡尺,米尺,读数显微镜(或测高仪),砝码。
实验原理设有效长度为l 厚度为h 宽为a 的均匀矩形梁,置在一对平行的刀口上,在矩形梁的中点竖直向下作用一个力F 如图2-8b -1所示,在弹性限度内,梁中点下垂量λ(挠度),在λ<<1时,梁的杨氏模量为 334ah Fl E λ= (2-8b -1)本实验通过测F 、l 、a 、h 、λ而测量E ,由于λ很小,用读数显微镜测出不同F 下的λ的变化值来求E 。
实验内容1.使用梁的弯曲法测定金属梁的杨氏模量(1)将待测材料安放在仪器刀口上,套上金属框架并使其刀刃恰好在仪器刀口中间,框架的下面挂上砝码盘;(2)调读数显微镜的上下位置,使望远镜的轴线对正金属框架上的小窗,调节显微镜的目镜看清十字线,前后移动显微镜,直到从望远镜中看到清楚的梁的边缘,再调整显微镜中十字线与梁的某一边重合,并消除视差;(3)从显微镜中读出初始位置r 0 ;(4)在砝码托盘上加一个砝码记下位置。
这样顺次增加200g 砝码,记下相应的位置(注意在改变砝码时,不要让砝码盘歪斜);(5)顺次将砝码取下,记下相应的位置;(6)用游标卡尺测a ,用千分尺测h ,用米尺测l 。
数据处理1.使用逐差法求挠度λ记录l 、a 、h 的测量数值及误差。
2.计算E 值(1)将l 、a 、h 、λ代入公式(2-8b -1)可以求出E ,并表示成E E E ∆±=的形式。
(2)用作图的方法求出E 的数值。
使用坐标纸,以λ为横坐标,以F 为纵坐标,作F ~λ图,应为一直线,其斜率为334l Eah k = (2-8b -2) 从图上求出k ,则 334aEhkl E = (2-8b -3)思考题1.采用光杠杆和望远镜等组成的测量系统测量λ,应如何安装仪器,简要写出实验步骤。
弯曲法测杨氏模量实验报告

弯曲法测杨氏模量实验报告一、实验目的1、掌握用弯曲法测量金属丝杨氏模量的原理和方法。
2、学会使用读数显微镜、砝码等实验仪器。
3、培养实验数据处理和误差分析的能力。
二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。
当一根长度为L、横截面为 S 的金属丝,在其两端受到力 F 的作用时,金属丝会发生弯曲形变。
根据胡克定律,在弹性限度内,金属丝的弯曲形变与所受的外力成正比。
设金属丝的弯曲形变产生的挠度为δ,根据材料力学理论,有:\\frac{F}{S} = E\frac{\delta}{L^3}\其中,E 为杨氏模量。
通过测量金属丝的长度 L、横截面直径 d(从而计算出 S)、施加的力 F(通过砝码质量计算)以及挠度δ,即可计算出杨氏模量 E。
三、实验仪器1、读数显微镜:用于测量金属丝的挠度。
2、砝码:提供外力。
3、金属丝:实验测量对象。
4、支架:用于固定金属丝。
5、游标卡尺:测量金属丝的直径。
6、米尺:测量金属丝的长度。
四、实验步骤1、用米尺测量金属丝的长度 L,多次测量取平均值,减少误差。
2、用游标卡尺在不同位置测量金属丝的直径 d,测量多次取平均值。
3、将金属丝固定在支架上,使其处于水平状态。
4、调整读数显微镜,使其能够清晰地看到金属丝的下表面,并将显微镜的刻度调零。
5、依次在金属丝的一端缓慢加上砝码,记录每次增加砝码后读数显微镜中金属丝的挠度值。
6、实验结束后,整理实验仪器。
五、实验数据记录与处理1、金属丝长度 L 的测量测量次数:5 次测量值(单位:cm):_____、_____、_____、_____、_____平均值:L =_____ cm2、金属丝直径 d 的测量测量次数:5 次测量值(单位:mm):_____、_____、_____、_____、_____平均值:d =_____ mm3、挠度δ 的测量砝码质量 m(单位:g):_____、_____、_____、_____、_____对应的挠度值δ(单位:mm):_____、_____、_____、_____、_____4、计算横截面积 S\S =\frac{\pi d^2}{4}\5、计算外力 F\F = mg\(其中 g 为重力加速度,取 98 m/s²)6、根据实验数据,计算出杨氏模量 E\E =\frac{mgL^3}{48S\delta}\六、误差分析1、测量误差长度 L、直径 d 和挠度δ 的测量都存在一定的误差,可能是由于测量仪器的精度、读数的误差等因素导致。
测量杨氏模量实验报告

测量杨氏模量实验报告引言杨氏模量是材料力学性质中的一个重要参数,它描述了材料在受力时的弹性性能。
本实验旨在通过测量实验材料的拉伸变形和应力的关系,来确定材料的杨氏模量。
实验原理杨氏模量的定义为单位应力下的应变。
材料受到拉力后会发生变形,变形量与施加的力的大小成正比,与材料的几何尺寸成反比。
在实验中,我们通过施加拉力,测量应变和应力,从而得到材料的杨氏模量。
实验步骤实验器材准备1.弹簧测力计2.样品夹持装置3.悬挂系统实验材料选择选择一种合适的实验材料,如金属丝、橡胶条等。
需要考虑材料的强度、刚性和易于测量的因素。
杨氏模量的计算1.将材料固定在样品夹持装置上。
2.施加拉力,测量弹簧测力计的读数,并记录下拉伸长度的变化。
3.计算应变的大小。
4.计算施加的应力,即材料受到的拉力除以截面积。
5.根据杨氏模量的定义,计算杨氏模量。
多次测量与平均值重复上述实验步骤多次,计算杨氏模量的平均值,以提高实验结果的准确性和可靠性。
实验数据处理与分析将实验数据进行整理和统计。
绘制应力-应变曲线,根据曲线的斜率确定材料的杨氏模量。
分析实验中可能存在的误差来源,如测量误差、材料的不均匀性等。
结果与讨论通过本实验,我们成功测量出了材料的杨氏模量,并得到应力-应变曲线。
根据实验数据分析,我们发现实验结果与理论值比较接近,说明实验的可行性和准确性。
在实验过程中可能存在的误差将会影响结果,这一点需要在后续研究中进一步探讨。
结论通过本实验,我们成功测量了材料的杨氏模量,并得到了与理论值接近的结果。
实验结果表明,杨氏模量是材料力学性质中的一个重要参数,它描述了材料在受力时的弹性性能。
杨氏模量测量实验报告

杨氏模量测量实验报告引言:杨氏模量是材料力学性能的重要指标之一,能够描述材料在受力后变形程度的大小。
测量杨氏模量是材料力学实验中常用的一种方法。
本实验旨在通过弹性力学实验,测量不同材料样品的杨氏模量,并分析材料的弹性性质。
本实验采用三点弯曲法进行杨氏模量的测量。
实验设备与方法:1. 设备:实验所需设备包括:弯曲试验机、样品夹持器、测量卡尺、金属样品。
2. 方法:1) 准备工作:a. 清洁金属样品,确保表面平整无明显瑕疵。
b. 调整弯曲试验机的夹具位置,使其水平平衡。
2) 安装样品:a. 使用样品夹持器夹持金属样品。
b. 调整夹持器位置,使样品在试验过程中能够受到均匀的力。
3) 开始试验:a. 将夹持器固定在弯曲试验机上。
b. 调整弯曲试验机上的载荷读数器,使其能够读取力的大小。
c. 开始施加载荷,在每个载荷下测量样品的变形程度。
d. 逐渐增加载荷,持续测量样品的变形情况,直至样品破断。
4) 数据处理:a. 根据测量结果计算出样品的弹性应变和应力。
b. 绘制应变-应力曲线,通过线性拟合确定斜率,即杨氏模量。
实验结果与分析:根据我们的实验数据,我们绘制了不同金属样品的应变-应力曲线,并通过线性拟合确定了斜率,也即杨氏模量。
样品1:钢材应变(ε)应力(σ)0.001 20 MPa0.002 40 MPa0.003 60 MPa0.004 80 MPa通过上述数据,我们得到钢材的杨氏模量为200 GPa。
样品2:铝材应变(ε)应力(σ)0.001 10 MPa0.002 20 MPa0.003 30 MPa0.004 40 MPa通过上述数据,我们得到铝材的杨氏模量为100 GPa。
通过以上实验结果,我们可以看出钢材的杨氏模量是铝材的两倍,说明钢材具有更高的刚度和较小的变形程度。
这也符合我们对钢材和铝材的常见认知,钢材通常被用来制作承重结构,因为其强度和刚度较高。
结论:通过杨氏模量测量实验,我们成功测量了不同材料样品的杨氏模量,并分析了不同材料的弹性性质。
杨氏模量实验报告数据

杨氏模量实验报告数据一、实验目的本实验旨在测量金属材料的杨氏模量,了解材料在弹性范围内的力学性能,并通过实验数据的处理和分析,掌握实验原理和方法。
二、实验原理杨氏模量是描述材料在弹性限度内抵抗拉伸或压缩变形能力的物理量。
根据胡克定律,在弹性限度内,材料的应力与应变成正比,即:\\sigma = E\varepsilon\其中,\(\sigma\)为应力,\(\varepsilon\)为应变,\(E\)为杨氏模量。
在拉伸实验中,应力\(\sigma\)等于拉力\(F\)除以横截面积\(S\),应变\(\varepsilon\)等于伸长量\(\Delta L\)除以原始长度\(L\)。
因此,杨氏模量\(E\)可以表示为:\E =\frac{FL}{S\Delta L}\通过测量拉力\(F\)、横截面积\(S\)、原始长度\(L\)和伸长量\(\Delta L\),即可计算出杨氏模量\(E\)。
三、实验仪器1、杨氏模量测定仪:包括光杠杆、望远镜、标尺等。
2、砝码:用于提供拉力。
3、米尺:测量长度。
4、游标卡尺:测量金属丝的直径。
5、螺旋测微器:精确测量金属丝的直径。
四、实验步骤1、调节杨氏模量测定仪将光杠杆的后足尖放在固定平台的沟槽内,前足尖放在小圆柱体的下表面,调整望远镜和光杠杆的位置,使望远镜水平对准光杠杆平面镜,在望远镜中能看到清晰的标尺像。
调节望远镜的目镜和物镜,使标尺的像清晰且无视差。
2、测量金属丝的长度\(L\)用米尺测量金属丝的有效长度,测量多次取平均值。
3、测量金属丝的直径\(d\)用游标卡尺在不同位置测量金属丝的直径,测量多次取平均值。
用螺旋测微器在不同位置测量金属丝的直径,测量多次取平均值。
4、挂上砝码,测量伸长量\(\Delta L\)依次增加砝码,记录每次增加砝码后望远镜中标尺的读数。
再依次减少砝码,记录每次减少砝码后望远镜中标尺的读数。
5、数据处理计算每次增加和减少砝码时的伸长量平均值。
杨氏模量实验报告

杨氏模量实验报告实验目的:本次实验旨在通过测量不同材料的伸长变化、载荷变化和变形变化的关系,来计算杨氏模量,从而了解不同材料的物理特性,提高对材料的认识和对力学知识的理解。
实验方法:实验中我们利用了杆子的双支点弯曲原理,采用一条长杆,通过两点支撑以及在中间加上不同重物来测量不同载荷下的伸长变化和变形变化,并以此来计算杨氏模量。
首先我们需要测量松弛度,即不加载荷时杆子的伸长变化,该值将用于后面的数据处理中。
接下来将加上不同重物并测量伸长变化和变形变化,同时记录载荷的变化,获取一组数据,以此可得到载荷与伸长率、载荷与变形率的关系曲线。
根据公式:E=FL3/4bd3δ,其中F为载荷,L为杆子长度,b为杆子宽度,d为杆子厚度,δ为已知的松弛度,计算杆子的杨氏模量。
实验结果:经过反复实验后,我们得出了每组数据的计算结果,并将其绘图得到了载荷与伸长率和载荷与变形率的关系曲线。
通过这些数据并根据我们得到的公式,我们最终得到了不同材料的杨氏模量。
例如,对于积木板,我们得到了以下数据:载荷200N, 伸长率0.09,变形率1.01,杨氏模量为4.2GPa。
同样地,我们对其他不同材料进行了同样的测量,并得出了其对应的杨氏模量。
实验分析:通过本次实验我们可以发现,不同材料的杨氏模量是有区别的,这说明了不同材料在承受载荷时的表现是不同的,从而也可以反映出不同材料的物理特性。
同时我们发现,载荷与伸长率和载荷与变形率的关系曲线是近似线性的,这也说明了杆子在受到载荷时,其表现是尽量保持线性不变的。
在实验中也有一些值得注意的事项。
首先是松弛度的测量,确保该值的准确性对后续计算是至关重要的。
此外,在安装杆子并测量时,需要严格遵守操作步骤,以免对实验结果造成影响。
结论:通过本次实验,我们得到了不同材料的杨氏模量,这为我们了解材料的物理特性提供了重要的实验数据。
同时我们也发现,载荷与伸长率和载荷与变形率的关系曲线是近似线性的,这说明了杆子在承受载荷时尽量保持线性不变的表现,也反映出了杆子的力学性质。
实验3.4 弯曲法测定杨氏模量

目镜调节
镜筒调节
四、给霍尔位置传感器定标
当砝码盘上为初 始负载的情况下, 转动读数鼓轮, 使目镜视场中的 水平准线和铜框 上的基线重合, 记录显微镜上的 初始读数h1;
初始负载
1 2 3 4 5 6 7 8
0.075mm
读数鼓轮
四、给霍尔位置传感器定标
调零,旋转磁铁下面的套筒 螺母和测量仪上的调零旋钮, 使初始负载的情况下测量仪 指示处于零显示;也可不调 零。
铁板的弯曲记录,用最小二乘法计算灵敏度K
i 0 0.00 1 20.00 2 40.00 3 60.00 4 80.00 5 100.00
m /10-3kg(不
计初始负载)
h i/10-3m U i/10-3V
h1 U1
五、测量黄铜的杨氏模量
用直尺测量两立柱刀口间的距离d一次, 并估算误差;用螺旋测微器测量黄铜板 不同部位的厚度a五次,并估算误差; 用游标卡尺测量黄铜板不同位置的宽度 b五次,并估算误差。
谢谢!
下午4:20、晚上9:00开始签名,下午5: 00、晚上9:20结束实验离场。 原始记录数据写在一张空白纸上,不要 写在预习报告或书上。 两个预习报告签一个名即可。
横梁 铜框
三、实验仪器预调整
调节显微镜的高度,在砝码盘上加20g 后,使镜筒轴线和铜框上的基线等高。
三、实验仪器预调整
调节目镜,使眼睛在目镜内看清分划板 上的数字和准线;前后调节镜筒,使能 清晰地看清铜框上的基线;转动镜筒, 使准线内的水平线与铜框上的基线平行。
三、实验仪器预调整
1 2 3 4 5 6 7 8
五、测量黄铜板的杨氏模量
黄铜板的弯曲记录
i 1 2 10.00 3 20.00 4 30.00 5 40.00 6 50.00 7 60.00 8 70.00
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弯曲法测定杨氏模量
一、实验目的
1.学习用弯曲法测量金属的杨氏模量。
2.学习用读数显微镜法测量微小位移。
3.掌握用最小二乘法及逐差法处理数据。
二、实验仪器
读数显微镜;套筒螺母;砝码盘;立柱刀口;横梁;铜框上的基线
图1:弯曲法测杨氏模量实验仪器构成
三、实验原理
杨氏模量E的测量表达式
E=
d3mg 4a3b∆z
式中,d 为两刀口之间的距离,m 为所加码的质量,a为梁的厚度,b为梁的宽度,∆z为梁中心由于外力作用而下降的距离,g 为重力加速度。
四、实验内容和步骤
(一)实验仪器预调整
1.调节显微镜的高度。
在码盘上加 20g 后使镜简轴线和铜上的基线等高。
2.调节目镜使眼睛在目镜内看清分划板上的数字和准线,前后调节镜筒使能
清晰地看清铜框上的基线,转动镜简使准线内的水平线与铜框上的基线平行。
(二)记录弯曲数据
1.当砝码盘上为初始负载的情况下,转动读数鼓轮使目镜视场中的水平准线
和铜框上的基线重合,记录显微镜上的初始读数。
2.在初始负载20g的基础上向砝码盘上逐次加10g的砝码,记录数据。
(三)测量黄铜的杨氏模量
1.用直尺测量两立柱刀口间的距离一次,并估算不确定度;用螺旋测微器测
量黄铜板不同部位的厚度共五次,并估算不确定度;用游标卡尺测量黄铜板不同的位置的宽度共五次,并估算不确定度。
2.重复(二)中的步骤,向砝码盘中逐次加10g的砝码,测出相应的8个值,
用同样的方法测量并记录黄铜板的弯曲记录。
3.用逐差法处理数据,计算在40g重力下的黄铜板中心下降的距离,并计算
黄铜的杨氏模量E及其误差。
五、数据处理
d=230mm,a=0.8mm,b=23.34mm
=130GPa
E=d3mg
4a3b∆z
六、实验结论和分析
可以根据实验结果,分析样品的结构特性。
杨氏模量是描述材料刚度和弹性特性的重要参数,对于材料的设计和性能评估具有重要意义。
需要注意的是,弯曲法测定杨氏模量是一种近似方法,实验结果可能受到多种因素的影响。
因此,在进行实验结论和分析时,应充分考虑实验条件、样品准备和测量误差等因素,以得出准确和可靠的结论。