九年级数学上册知识点---- 一元二次方程的根与系数的关系

合集下载

北师大版初中九年级上册数学课件 《一元二次方程的根与系数的关系》一元二次方程PPT优质课件

北师大版初中九年级上册数学课件 《一元二次方程的根与系数的关系》一元二次方程PPT优质课件
第二章 一元二次方程
*2.5 一元二次方程的根与系数的关系
教学目标
1. 了解一元二次方程的根与系数的关系. 2. 利用一元二次方程的根与系数的关系解决简单问题.
课前预习
(一)知识探究 那么1x.1+如x果2=方-程-baax2+,bxx1+x2=c=0(aca≠0.)有两个实数根 x1,x2,
2. 利用根与系数的关系,求方程的两根之和、两根之积, 通常是将方程化为 一一般般 形式,计算 b2-4ac 的值并确定方 程有两个实根,再利用根与系数的关系加以计算.
两根之和或积
问题
方法
求方程中字母 根据已知条件并借助根与系数的关系列出关于
系数的值 字母的方程或不等式
求方程
逆用根与系数的关系确定一次项系数及常数项
解:∵x1,x2 是方程 3x2-3x-5=0 的两个根,∴x1+x2 =1,
x1x2=-53. x12+x22=(x1+x2)2-2x1x2=12+2×53=133.
例2 已知 x1,x2 是方程 3x2-3x-5=0 的两个根,不解 方程,求下列代数式的值:
(2)x11+x12.
【思路点拨】根据异分母分式的加法法则进行变形处理, 代入求值.
解:∵x1,x2 是方程 3x2-3x-5=0 的两个根,∴x1+x2=1, x1x2=-53. x11+x12=xx1+1xx2 2=-153=-35.
【归纳总结】 用根与系数的关系解题时常用的一些变形式: ①x21+x22=(x1+x2)2-2x1x2; ② 1 +1 =x1+x2;
x1 x2 x1x2 ③(x1-x2)2=(x1+x2)2-4x1x2; ④xx21+xx12=xx21+1x2x22=(x1+xx2)1x22-2x1x1.

人教版同步教参数学九年级-一元二次方程:根的判别式和根与系数的关系

人教版同步教参数学九年级-一元二次方程:根的判别式和根与系数的关系

一元二次方程第2节 根的判别式和根与系数的关系【知识梳理】1、一元二次方程根的判别式关于x 的一元二次方程)0(02≠=++a c bx ax ,用配方法可得222442a ac b a b x -=+)(ac b 42-=∆称为根的判别式0>∆,则方程有两个不相等的实数根 0<∆,则方程没有实数根0=∆,则方程有两个相等的实数根反过来也成立。

2、一元二次方程根与系数的关系如果21,x x 是方程)0(02≠=++a c bx ax 的两个根, 则acx x a b x x =-=+2121 【诊断自测】1.一元二次方程的两个根x 1、x 2和系数a 、b 、c 的关系:。

2.若方程3x 2−4x −4=0的两个实数根分别为x 1,x 2,则x 1+x 2=( ) A .−4B .3C .−43D .433.已知x 1、x 2是一元二次方程x 2−4x+1=0的两个根,则x 1•x 2等于( ) A .−4B .−1C .1D .44.已知x 1、x 2是一元二次方程3x 2=6−2x 的两根,则x 1−x 1x 2+x 2的值是( )A .B .83C .−83D 【考点突破】类型一:根的判别式常见题型1、已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).答案:见解析。

解析:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,∵(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=﹣1代入3m2+3m+5得:3m2+3m+5=3×1﹣3+5=5.例2、已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0(1)求证:无论k取何值,这个方程总有实数根;(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.答案:见解析解析:对于等腰三角形,需要讨论a是腰还是底边。

第二十一章21.2.4一元二次方程的根与系数的关系

第二十一章21.2.4一元二次方程的根与系数的关系

在ax2+bx+c=0(a≠0)中,当b2-4ac≥0时,由求根公式可得x1= b
b2 4ac 2a
b b2 4ac
,x2= 2a
,
所以x1+x2=b
b2
2a
4ac
&(b2 4ac) 4a 2
=
c a
=-
b a
,x1·x2=
*21.2.4 一元二次方程的根与系数的关系
栏目索引
4.(2016山东德州中考)方程2x2-3x-1=0的两根为x1,x2,则 x12 + x22 =
.
13
答案 4
解析 由根与系数的关系可得x1+x2=- ba = 32 ,x1·x2= ac =- 12 ,∴ x12 + x22 =(x1+x2)2-
*21.2.4 一元二次方程的根与系数的关系
栏目索引
5.(2018上海静安期末)已知关于x的方程x2+(3-2k)x+k2+1=0的两个实数
根分别是x1、x2,当|x1|+|x2|=7时,k的值是
.
答案 -2
解析 由题意得Δ=(3-2k)2-4×1×(k2+1)≥0,9-12k+4k2-4k2-4≥0,∴k≤ 5 ,
12
∵x1·x2=k2+1>0,∴x1、x2同号.分两种情况:①当x1、x2同为正数时,x1+x2=7,
把x1+x2、x1·x2的值整体代入,即可求出所求代数式的值.
*21.2.4 一元二次方程的根与系数的关系
题型三 利用根与系数的关系求字母的值或取值范围
栏目索引
例3 (2018湖北仙桃中考)已知关于x的一元二次方程x2+(2m+1)x+m2-2=0. (1)若该方程有两个实数根,求m的最小整数值; (2)若方程的两个实数根为x1,x2,且(x1-x2)2+m2=21,求m的值.

一元二次方程的根与系数的关系-九年级数学上册(人教版)

一元二次方程的根与系数的关系-九年级数学上册(人教版)

归纳和判断的能力.
复习引入
人教版数学九年级上册
1.一元二次方程的一般形式是什么?
ax +bx +c 0 a 0
2
2.一元二次方程的求根公式是什么?
b b 2 4ac 2
x
b 4ac 0

2a
3.一元二次方程的根的情况怎样确定?
Δ 0 方程有两个不等的实数根;
a
互动新授
人教版数学九年级上册
因此,方程的两个根x1,x2和系数a,b,c有如下关系:
c
b
x1 x2 ,x1 x2 .
a
a
这表明任何一个一元二次方程的根与系数的关系为:两个
根的和等于一次项系数与二次项系数的比的相反数,两个根的
积等于常数项与二次项系数的比.
如果把上述方程ax2+bx+c=0(a≠0)


(3)方程化为x2-x-1=0. x1+x2=-(-1)=1,x1x2=-1.
(4)方程化为2x2-4x+1=0.


x1+x2=- =2,x1x2= .


拓展训练
人教版数学九年级上册
1.已知方程 + + + = 的两个实数根x1,x2,且
+ = ,求k的值.
思考 从因式分解法可知,方程(x-x1)(x-x2)=0(x1,x2为
已知数)的两根为x1和x2,将方程化为x2+px+q=0的形式,你能
看出x1,x2与p,q之间的关系吗?
把方程(x-x1)(x-x2)=0的左边展开,化成一般形式,
得方程

24.3 一元二次方程根与系数的关系 课件-2021-2022学年冀教版九年级数学上册

24.3 一元二次方程根与系数的关系 课件-2021-2022学年冀教版九年级数学上册
24.3 一元二次方程根与系数的关系
-----冀教版九年级上册第二十四章第3节
选自冀教版高中
深化理解
知识基础
一、教材解读
第二十四章 一元二次方程
24.1 一元二次方程 24.2 解一元二次方程 24.3 一元二次方程根与系数的关系 24.4 一元二次方程的应用
自然延伸


转化

一次式
利用根

乘积
的概念







(三) 交流展示,探究问题
韦达
欧拉
渗透文化 增强兴趣
(四) 解决问题,反思提升
注意的问题
化为一般式
(四) 解决问题,反思提升
基本知识
强化方法
探究过程 解决问题
六、教学反思 感悟符号表达
05
发现问题
提出问题
01
03
根与
系数
探究问题 02 关系 04
分式方程
一元一次方程
01
抽象概括
三、学情分析 教学难点
一元二次方程根与系数 关系的发现及探究.
四、教学策略
发现问题 提出问题 解决问题
层层递进 设置问题
小组合作 探究学习
五、教学过程
回顾 旧知
师生 对话
交流 展示
解决 问题
(一) 回顾旧知,发现问题
根——系数
特殊
一般
(二) 师生对话,提出问题
06
积累推理经验
一般过程 一般方法
系数表述根 根系数表示
一、教材解读 教学重点
一元二次方程根与系数 关系及探究过程.
二、教学目标
经历观察、归纳、猜想、 推理的过程,了解一元二 次方程根与系数的关系.

人教版数学九年级上册一元二次方程的根与系数的关系课件

人教版数学九年级上册一元二次方程的根与系数的关系课件

课堂小结
若方程x2+px+q=0有两个实根x1,x2,则
x1+x2=-p, x1x2=q.
若方程ax2+bx+c=0(a≠0)的两个根分别为x1,x2,则
x1
x2
b a
,
x1 x2
c a
.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
(2)当 Rt△ABC 为等腰直角三角形时,关于 x 的一元二次 方程 x2+kx+12=0 的两根相等,则Δ=k2-4×12=0,解得 k =±4 3 ,∵两直角边长的和为-k>0,∴k=-4 3 ,∴两 直角边长为 2 3 ,2 3 ,∴斜边长为 2 3 × 2 =2 6 , ∴Rt△ABC 的周长为 2 3 +2 3 +2 6 =4 3 +2 6
2.已知a,b是方程x2+3x-1=0的两根,则a2b+ab2的值是__3__.
3.已知关于x的一元二次方程x2-3x+k+1=0,它的两根之积 为-4,则k的值为( D ) A.-1 B.4 C.-4 D.-5
4.已知关于x的一元二次方程x2-6x+c=0有一个根为2,则另 一根为( C ) A.2 B.3 C.4 D.8
已知方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,两根分
b b2 4ac
别为x1= 2a
b b2 4ac
,x2=
2a
ห้องสมุดไป่ตู้
b b2 4ac b b2 4ac 2b b
x1+x2=
2a
2a
2a a
。 ,
b b2 4ac b b2 4ac

2a
2a
(b)2 (b2 4ac) c

九年级数学一元二次方程根与系数的关系

九年级数学一元二次方程根与系数的关系

根与系数关系1、一元二次方程根与系数关系的推导及应用;2、熟练应用根与系数的关系.结论:【知识梳理】1、 一元二次方程)0(02≠=++a c bx ax 的求根公式为)04(2422≥--±-=ac b aac b b x 。

2、 一元二次方程)0(02≠=++a c bx ax 根的判别式为:ac b 42-=∆(1)有两个实数根。

(2)有两个正实数根。

(3)有一个正数根和一个负数根。

(4)两个根都小于2。

答案:(1) 253k ≤;(2) 2503k ≤<; (3) 0k <;(4) 无解。

变式训练1、已知关于x 的方程022=+-a ax x 。

(1)求证:方程必有两个不相等的实数根; (2)a 取何值时,方程有两个正根;(3)a 取何值时,方程有两异号根,且负根绝对值较大; (4)a 取何值时,方程到少有一根为零? 答案:(1) 证240b ac ->;(2) 0a >; (3) 0a <;(4) 0a = 知识点四:已知方程两个根满足某种关系,确定方程中字母系数的值.例4、已知关于x 的方程05)2(222=-+++m x m x 有两个实数根,并且这两个根的平方和比两个根的积大16,求m 的值。

变式训练1、已知关于x 的方程03)1(222=-++-m x m x (1)当m 取何值时,方程有两个不相等的实数根?(2)设1x 、2x 是方程的两根,且012)()(21221=-+-+x x x x ,求m 的值。

知识点五:综合运用例5、方程x 2-6x-k=1与x 2-kx-7=0有相同的根,求k 值及相同的根.例6、已知α、β是方程0522=-+x x 的两个实数根,则ααβα22++的值为_0__例7、求作一个一元二次方程使它的两根分别是1- 5 和1+ 5 。

答案:2240x x --=例8、已知两个数的和等于8,积等于7,求这两个数. 答案:1、7变式训练1.求一个一元二次方程使它的两个根是1、5. 答案:2650x x -+=2.已知αβ≠,则2370αα+-=,2370ββ+-=,试求11αβ+的值.答案:37。

九年级上册 数学2.4根与系数关系(4)

九年级上册 数学2.4根与系数关系(4)

()()()()()()()()208652243112123121212112212221++---+++x x x x x x x x x xx x x x 第七课时:一元二次方程的根与系数的关系【学习目标】1.了解一元二次方程的根与系数的关系,能运用它由已知一元二次方程的一个根求出另一个根及未知系数.2.在不解一元二次方程的情况下,会求直接(或变形后)含有两根与两根积的代数式的值,并从中体会整体代换的思想.【学习重点】一元二次方程的根与系数的关系.【学习难点】让学生从具体方面的根发现一元二次方程根与系数之间的关系.过程:(一)复习(1).一元二次方程20(0)ax bx c a ++=≠: 判别式ac b 42-=∆的符号判别根的情况(1)有: (2)没有 (3)等 (4)不等(2)一元二次方程的求根公式:(二)探究新知1.一元二次方程20(0)ax bx c a ++=≠的两根是12x 、x ,的根与系数的关系(韦达定理) 那么1212,b cx x x x a a +=-=推论:(1)21212120,,,x px q x x p x x q ++=+=-=如果方程的两个根是x 那么x ;(2)2121212,1()0x x x x x x x x -++=以两个数为根的一元二次方程(二次项系数为)是(二)练习巩固知识点1:由已知一根求另一根及待定系数例1.已知x =1是方程x 2+mx -3=0的一个根,则另一个根为 ,m = .知识点2:求两根代数式的值例2. 已知212,310x x x ++=是方程x 的两实数根,求下列各式的值。

识点3:由含两根的等式求参量的值例3. 当k 为何值时,方程2232(31)310x k x k -++-=(1)有一根为0? (2)有两个互为相反数的实数根?(3)两根互为倒数?(四)比一比,看谁更能干1.设m 是实数,求证方程2)2)(1(m x x =--有两个不相等的实数根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x1
x2
b a
x1 gx2
c a
证一证:
x1 x2 b
b2 4ac b 2a
b2 4ac 2a
b b2 4ac b b2 4ac 2a
2b 2a
b . a
x1 x2 b
b2 4ac b 2a
b2 4ac 2a
b2 b2 4ac
4a2
4ac 4a2
倒数和.
解:根据根与系数的关系可知:
x1
x2
3 2
, x1
x2
1 2
.
1∵ x1
x2 2
x12
2 x1 x2
x
2 2
,
x12 x22 x1 x2 2 2 x1x2
3 2
2
2
1 2
13 4
;
2
1 x1
1 x2
x1 x2 x1 x2
3 2
1 2
3.
练一练
设x1, x2为方程x2-4x+1=0的两个根,则: (1)x1+x2= 4 , (2)x1·x2= 1 ,
3
x1 + x2 = 2 , x1 x2 = -1 .
例2 已知方程5x2+kx-6=0的一个根是2,求它的另一个 根及k的值.
解:设方程的两个根分别是x1、x2,其中x1=2 .
所以:x1
·
x2=2x2=
6 5
,
即:x2=
3 5
.
由于x1+x2=2+
(
3) 5
= k ,
5
得:k=-7.
答:方程的另一个根是
3 5
,k=-7.
变式:已知方程3x2-18x+m=0的一个根是1,求它 的另一个根及m的值.
解:设方程的两个根分别是x1、x2,其中x1=1.
所以:x1 + x2=1+x2=6,
即:x2=5 .
由于x1·x2=1×5=
m, 3
得:m=15.
答:方程的另一个根是5,m=15.
例3 不解方程,求方程2x2+3x-1=0的两根的平方和、
看出x1,x2与p,q之间的关系吗? (x-x1)(x-x2)=0.
x2-(x1+x2)x+x1·x2=0, x2+px+q=0,
x1+x2= -p , x1 ·x2=q.
u重要发现
如果方程x2+px+q=0的两根是x1,x2,那么x1+x2= -p , x1 ·x2=q.
猜一猜
(2)通过上表猜想,如果一元二次方程 ax2+bx+c=0(a≠0)的两个根分别是x1、 x2,那么,你 可以发现什么结论?
2
由根与系数的关系得
x1 + x2 = 2(k -1) ,
x1
x2
=k
2 .
∴ x12 + x22 = (x1 + x2)2 - 2x1x2
= 4(k -1)2 -2k2 = 2k2 -8k + 4.
由 x12 + x22 = 4,得 2k2 - 8k + 4 = 4, 解得 k1= 0 , k2 = 4 . 经检验, k2 = 4 不合题意,舍去.
九年级数学上(BS) 教学课件
九年级数学上册知识点
一元二次方程的根与系数的关系复习引入1.一元二次方程的求根公式是什么?x b
b2 4ac (b2 4ac 0) 2a
2.如何用判别式 b2 - 4ac 来判断一元二次方程根的情况?
对一元二次方程: ax2 + bx +c = 0(a≠0) b2 - 4ac > 0 时,方程有两个不相等的实数根. b2 - 4ac = 0 时,方程有两个相等的实数根. b2 - 4ac < 0 时,方程无实数根.
两根
x1
x2
-4 1 23
1
-1
2
关系
x1+x2=-3 x1 · x2=-4 x1+x2=5 x1 · x2=6
x1
x2
3 2
x1 gx2
1 2
猜一猜
(1)若一元二次方程的两根为x1,x2,则有x-x1=0, 且x-x2=0,那么方程(x-x1)(x-x2)=0(x1,x2为已知数) 的两根是什么?将方程化为x2+px+q=0的形式,你能
(3) x12 x22 14 ,
(4) (x1 x2 )2 12 .
例4:设x1,x2是方程 x2 -2(k - 1)x + k2 =0 的两个实数根, 且x12 +x22 =4,求k的值.
解:由方程有两个实数根,得Δ= 4(k - 1)2 - 4k2 ≥ 0
即 -8k + 4 ≥ 0. k 1
u 总结常见的求值:
1. 1 1 x1 x2
x1 x2 x1x2
;
2.
x12
x22
( x1
x2 )2
2x1x2;
3. x1 x2 x2 x1
x12 x22 x1x2
(x1 x2 )2 2x1x2 ; x1x2
4 .( x1 1) ( x 2 1) x1 x2 ( x1 x2 ) 1;
解:这里 a = 1 , b = 7 , c = 6. Δ = b2 - 4ac = 72 – 4 × 1 × 6 = 25 > 0. ∴方程有两个实数根. 设方程的两个实数根是 x1, x2, 那么 x1 + x2 = -7 , x1 x2 = 6.
(2)2x2 - 3x - 2 = 0.
解:这里 a = 2 , b = -3 , c = -2. Δ= b2 - 4ac = (- 3)2 – 4 × 2 × (-2) = 25 > 0, ∴方程有两个实数根. 设方程的两个实数根是 x1, x2, 那么
想一想:方程的两根x1和x2与系数a,b,c还有其它关系吗?
探索一元二次方程的根与系数的关系 算一算 解下列方程并完成填空:
(1)x2+3x-4=0; (2)x2-5x+6=0; (3)2x2+3x+1=0.
一元二次方程
x2+3x-4=0 x2-5x+6=0 x22 x2+3 3xx+11=00
22
5 . x1 x2 ( x1 x 2 ) 2 ( x1 x 2 ) 2 4 x1 x 2 .
归纳 求与方程的根有关的代数式的值时,一般先将所求的 代数式化成含两根之和,两根之积的形式,再整体代入.
练习
1.如果-1是方程2x2-x+m=0的一个根,则另一个 根是___,m =____.
2.已知一元二次方程x2+px+q=0的两根分别为-2
c. a
归纳总结
一元二次方程的根与系数的关系 (韦达定理)
如果 ax2+bx+c=0(a≠0)的两个根为x1、 x2,那么
x1
+
x2
=
b a
x1 gx2
c a
注意 满足上述关系的前提条件 b2-4ac≥0.
一元二次方程的根与系数的关系的应用
例1:利用根与系数的关系,求下列方程的两根之和、 两根之积. (1)x2 + 7x + 6 = 0;
相关文档
最新文档