机器人腕部结构
机器人腕部结构

1、定义:腕部是臂部和手部的连接件,起支承手部和改变手部姿态的作用。
2、手腕的自由度:⏹为了使手部能处于空间任意方向,要求腕部能实现对空间三个坐标轴X、Y、Z的旋转运动。
这便是腕部运动的三个自由度,分别称为翻转R(Roll)、俯仰P(Pitch)和偏转Y(Yaw)。
⏹并不是所有的手腕都必须具备三个自由度,而是根据实际使用的工作性能要求来确定。
腕部坐标系手腕的偏转手腕的仰俯手腕的回转3、手腕的设计要求⏹结构紧凑、重量轻;⏹动作灵活、平稳,定位精度高;⏹强度、刚度高;⏹与臂部及手部的连接部位的合理连接结构,传感器和驱动装置的合理布局及安装等。
4、手腕的分类(1)二自由度手腕:可以由一个R关节和一个B关节联合构成BR关节实现,或由两个B关节组成BB关节实现,但不能由两个RR关节构成二自由度手腕,因为两个R关节的功能是重复的,实际上只起到单自由度的作用。
BR手腕BB手腕RR手腕(属于单自由度)(2)三自由度手腕:有R关节和B关节的组合构成的三自由度手腕可以有多种型式,实现翻转、俯仰和偏转功能。
BBR手腕BRR手腕5.按手腕的驱动方式分:⏹直接驱动手腕:⏹驱动源直接装在手腕上。
这种直接驱动手腕的关键是能否设计和加工出尺寸小、重量轻而驱动扭矩大、驱动性能好的驱动电机或液压马达。
⏹远距离传动手腕:⏹有时为了保证具有足够大的驱动力,驱动装置又不能做得足够小,同时也为了减轻手腕的重量,采用远距离的驱动方式,可以实现三个自由度的运动。
液压直接驱动BBR手腕图例远距离传动手腕图例6、典型结构(1)摆动液压缸(又称回转液压缸):⏹结构:⏹由缸体、隔板、叶片、花键套等主要部件构成。
其中叶片7固定在转子上,用花键将转子与驱动轴连接,用螺栓2将隔板与缸体连接。
⏹工作原理:⏹在密封的缸体内,隔板与活动叶片之间围成两个油腔,相当油缸中的无杆腔和有杆腔。
液压力作用在活动叶片的端面上,对传动轴中心产生力矩使被驱动轴转动。
摆动缸转角在270°左右。
工业机器人技术 机器人手部结构

知识准备
三、后驱RBR手腕结构
2. 手腕单元传动系统
手腕单元由B/T轴输入组件、B轴 减速摆动组件、T轴中间传动组件、 T轴减速输出组件,4个组件组成。 这四个组件安装在连接体1和摆动体 26中间。
各部分的结构如图所示。
任务实施
学习视频, 完成工作页内容
视频1
工业机器人技术与应用
任务一
项目三 工业机器人的机械系统
机器人手部结构
导入
什么是机器人的手部结构? 机器人的手部在哪里?
目录
学习目标
知识准备
任务实施
主题讨论
学习目标
学习目标
知识目标
1 前驱RBR手腕结构 2 后驱RBR手腕结构
学习重点
机器人RBR手腕结构
知识准备
一、机器人的基本结构
六自由度机器人的运动关节包括:J1轴(又称腰回转S 轴),J2轴(下臂摆动L轴),J3轴(上臂摆动U轴),J4 轴(手腕回转R轴),J5轴(腕摆动B轴),J6轴(手回转 T轴)。
“前驱”是指B轴和T轴的驱动电机直 接安装在上臂前段的内腔中。
这种结构对于小型机器人,手部负载 较低,采用的驱动电机体积小,重量轻, 布置在上臂前端,不会使上臂的重量增加 很多,又能够缩短传动链,简化结构。
知识准备
二、前驱RBR手腕结构
前驱RBR手腕传动系统由B轴减速摆 动、T轴中间传动、T轴减速输出三个组件 构成,这三个组件可以整体安装、拆卸。
B、T轴驱动电机2、26安装在上臂前 段内腔中,通过同步皮带和同步带轮向后面 传动系统传输动力。件
B轴减速摆动组件由摆动体、输入轴、 输出轴、谐波减速器的刚轮、柔轮、谐波 发生器组成,可整体安装,然后用键和螺 栓将同步带轮固定在输入轴上,即可完成 该组件的安装。
第3章3.3 机器人腕部结构

2020/2/27
33
3.3 机器人腕部结构 3 三自由度手腕
2) 1齿.轮1 链工轮业传机动器三人自由的度基腕本部概念
俯仰 偏转
回转
2020/2/27
❖ 结构特点: ▪ 该机构为 由齿轮、 链轮传动 实现的偏 转、俯仰 和回转三 个自由度 运动的手 腕结构。
轴主动
行星运动
齿轮固 定不动
2020/2/27
31
3.3 机器人腕部结构
2020/2/27
2 二自由度手腕
俯仰 1.1 工业机器人的基本概念❖思考?
▪ 图中所示的情况,当 S轴不输入,只有B轴 输入时,腕部存在哪
些运动,为什么?
回转
齿轮传动回转和俯仰型腕部原理
32
3.3 机器人腕部结构
3 三自由度手腕
6
3.3 机器人腕部结构
2020/2/27
2 腕部的转动
滚转1:.能1 实工现业36机0°器无人障的碍基旋本转的概关念节运动,通常用R来标记。
弯转:转动角度一般小于360°。弯转通常用B来标记。
滚转可以实现腕部的旋转;弯转可以实现腕部的弯曲
7
3.3 机器人腕部结构
2020/2/27
3.3.2
1 单1.自1由工度业腕机部器人的基本概念
俯仰
偏转
回转
齿轮链轮传动三自由度手腕原理图
1—油缸;2—链轮;3、4—锥齿轮;5、6—花键轴T;7—传动轴S;8—腕架;9—行星架;10、11、22、24—圆
38 柱齿轮;12、13、14、15、16、17、18、20—锥齿轮;19—摆动轴;21、23—双联圆柱齿轮;25—传动轴B
关节型机器人腕部结构结构设计说明

关节型机器人腕部结构结构设计1绪论1.1 选题背景及其意义本题设计的是关节型机器人腕部结构,主要是整体方案设计和手腕的结构设计及控制系统设计,此课题来源于实际生产,对于目前手工电弧焊接效率低,操作环境差,而且对操作员技术熟练成都要求高,因此采用机器人技术,实现焊接生产操作的柔性自动化,提高产品质量与劳动生产力,实现生产过程自动化,改善劳动条件。
题目要求是:动作范围:手腕回转ο150,摆动ο90,旋转ο360。
各轴最大速度要求:s /30ο。
额定载荷kg 5,最大速度s m /3。
2、腕部最大负荷:5kg 。
机器人是近30年发展起来的一种典型的、机电一体化的、独立的自动化生产工具。
在制造工业中,应用工业机器人技术是提高生产过程自动化,改善劳动条件,提高产品质量和生产效率的有效手段之一,也是新技术革命的一个重要内容。
自古以来,人们所设想的机器人一般是一种在外形和功能上均能模拟人类智能的机器。
特别是在20世纪20年代前后,捷克和美国的一些科幻作家创作了一批关于未来机器人与人类共处中可能发生的故事之类的文学作品,更使机器人在人们的思想中成为一种无所不能的“超人”。
在现实生活中,一些民间工匠根据这些文学描绘,也制造出一些仿人或仿生的机器人。
然而在当时的科技条件下,要使机器人具有某种特殊的“智能”而成为“超人”,显然是不可能的。
美国的戴沃尔设想了一种可控制的机械手,他首先突破了对机器人的传统观点,提出机器人并不一定必须像人,但是必须能做一些人的工作。
1954年,他依据这一想法设计制作了世界上第一台机器人实验装置,发表了《适用于重复作业的通用性工业机器人》一文,并获得了美国专利。
戴沃尔将遥控操纵器的关节型连杆机构与数控机床的伺服轴联结在一起,预定的机械手动作一经编程输入后,机械等就可以离开人的辅助而独立运行。
这种机器人也可以接受示教而完成各种简单任务。
示教过程中操作者用手带动机械手依次通过工作任务的各个位置,这些位置序列记录在数字存储器中,任务的执行过程中,机器人的各个关节在伺服驱动下再现出那些位置序列。
焊接机器人腕小臂结构设计说明书

摘要介绍了焊接机器人技术发展的历程及我国焊接机器人技术研究的现状和发展前景。
针对焊接机器人产业化中涉及到的新型结构本体设计、高性能机器人控制器技术及免维护系统设计等关键技术进行了研究,结合Motomanup-6焊接机器人,介绍了采用谐波齿轮减速器及交流伺服电机等精密传动部件进行机器人小臂和腕部结构设计,使得机器人结构变得越来越简单,传动环节减少,提高了系统的精度,减少维护,同时也简化了生产工艺,降低了生产成本。
我国焊接机器人的应用主要集中在汽车、摩托车、工程机械、铁路机车等几个主要行业。
汽车是焊接机器人的最大用户,也是最早用户。
早在70年代末,上海电焊机厂与上海电动工具研究所,合作研制的直角坐标机械手,成功地应用于上海牌轿车底盘的焊接。
我国到1997年底仅有焊接机器人500台,多为弧焊和点焊机器人,而且集中于汽车、摩托车和工程机械三个制造行业,因此我国焊接机器人的发展应首先扩大应用数量和应用领域。
同时也要尽快建立有我国自主知识产权的机器人生产产业。
关键词:弧焊焊接机器人、小臂腕部结构、交流伺服系统AbstractIntroduced a welding robot technology development and the history of China's welding robot technology on the status and development prospects. For welding robot involved in the industrialization of the new body structure design, high-performance robot controller technology and maintenance-free system design and other key technologies have been studied, with Motomanup-6 welding robot, introduced the use of harmonic gear reducer AC servo motor and transmission components such as precision robot arm and wrist structural design, makes robots become more and more simple structure, reduce the transmission links, increase the accuracy of the system, reduce maintenance, but also simplified the production process, reducing The cost of production.China's welding robot application mainly concentrated in the automobile, motorcycle, engineering machinery, railway locomotive, and several other major industries. Motor vehicles are the largest users of robots welding, but also the first users. Back in the late 1970s, Shanghai electric welding machine tool factory and the Shanghai Institute of cooperation in the development of the Cartesian coordinate manipulator, successfully applied to the Shanghai sedan chassis welding. China to the end of 1997 only 500 robot welding, spot welding and more robots for welding, and focus on vehicles, motorcycles and three construction machinery manufacturing industry, the development of China's welding robot should first expand the number of applications and application field. At the same time, as soon as possible the establishment of China's independent intellectual property rights of the robot manufacturing industry.Keywords:arc welding robot, small arm and wrist structural design, AC servo system目 录第一章 前言 (1)1.1 选题背景 (1)1.2焊接机器人毕业设计问题的提出 (4)1.2.1研究的基本内容,拟解决的主要问题 (4)1.2.2研究步骤、方法 (4)第二章 焊接机器人结构设计 (6)2.1小臂腕及结构设计 (6)2.1.1焊接机器人小臂及腕部结构设计方案 (6)2.1.2小臂及腕部整体机构的工作原理 (7)2.2电机的选择 (8)2.3直齿圆锥齿轮设计: (9)2.3.1传动比的选择 (9)2.3.2渐开线直齿圆锥齿轮几何计算 (9)2.4链的选择及链轮设计 (11)2.4.1链传动的特点 (11)2.4.2传动链的分类 (12)2.4.3链的选择 (13)2.5轴承的分类介绍 (14)2.6小臂腕部结构设计中必要的强度校核 (16)2.6.1圆锥齿轮强度校核 (16)2.6.2轴的强度校核 (17)第三章 谐波减速器 (28)3.1谐波减速器的发展 (28)3.2谐波减速器的应用 (28)3.3 谐波减速器的组成及工作原理 (29)3.3.1柔轮常见的结构形式 (29)3.3.2波发生器常见的结构型 (30)3.3.3谐波减速器的工作原理 (30)3.3.4双刚轮谐波减速器 (32)3.4谐波齿轮传动特点 (33)3.5谐波减速器产品系列及结构的特点 (34)3.6谐波减速器的选择 (35)3.7谐波减速器的安装使用与维护(本此设计所需系列) (37)第四章 经济性分析 (38)致谢 (39)参 考 文 献 (40)声明 (42)第一章 前 言机器人是一种在生产中能灵活完成特定操作,并有多种功能的机器。
机器人结构和分类

t
2)定位方式 ) 定位方式决定了机构的精度 接近开关:0.1 – 1 mm 接近开关: 机械挡板: 机械挡板:0.01 – 0.1 mm 编码器: 减速比(1:120) ≈ 1” 编码器:0.036°/减速比 ° 减速比
2. 防振: 防振:
振动问题影响运动精度(轨迹精度、定位精度) 振动问题影响运动精度(轨迹精度、定位精度) 机器人的振动: 机器人的振动:机械结构共振和速度冲击振动
4-6 个自由度 自由度 6 个以上 ② 动作形态
直角坐标 坐标形式 多关节型 圆柱坐标 极坐标
电动 驱动方式 ③ 驱动方式 气动 液压 弧焊: 弧焊:CO2/MAG/MIG/ TIG/Plasma/Laser 点焊:交流/直流 直流/凸焊 点焊:交流 直流 凸焊 ④ 用途 切割: 切割:Plasma/Laser/ 水/火焰 火焰 涂胶 装配 搬运 ……
一般电弧焊工件的外形轮廓尺寸分布
单位: 单位:mm 长度 ≤ 250 方向 长 (L) 宽 (W) 高 (H) 15% 40% 70% 250 – 500 – 1000 – 500 1000 1500 ≥ 1500 40% 30% 10% 5% 20% 10% 5% 3% 5% 2%
30% 15%
R
φ2
T θ
3)直角坐标型机器人: )直角坐标型机器人: 运动范围: 运动范围:立方体 特点: 特点:结构简单 活动范围大 运动直观性强 缺点: 缺点:占地面积大 定位精度较低 动作灵活性较差 用途: 用途:大型机器人 φ
X
Z
Y T
4)多关节型机器人: )多关节型机器人: 机器人 运动范围: 运动范围:近似于球体 特点: 特点:通用性强 动作灵活 活动范围大 缺点:运动直观性差 缺点: 运动控制较复杂 用途: 用途:通用型 S L T U R B
第5章 机器人本体结构

5.3.2 机器人手部结构的基本形式和特点 一、机器人手部的特点 (1) 手部与手腕相连处可拆卸。 (2) 手部是机器人末端执行器。 (3) 手部的通用性比较差。 (4) 手部是一个独立的部件。
二、手部的分类 1.按用途分 1) 手爪 2) 工具
2.按夹持原理分
3.按手指或吸盘数目分 (1) 按手指数目可分为二指手爪及多指手爪。 (2) 按手指关节可分为单关节手指手爪及多关节手 指手爪。 (3) 吸盘式手爪按吸盘数目可分为单吸盘式手爪及 多吸盘式手爪。
5.3.1 机器人腕部结构的基本形式和特点
驱动方式:远程驱动和直接驱动。 直接驱动:驱动器安装在手腕运动关节的附近 传动路线短,传动刚度好,尺寸和质量大,惯量大。 远程驱动:驱动器安装在机器人的大臂、基座或小 臂远端上,通过连杆、链条或其他传动机构间接驱动腕 部关节结构紧凑,尺寸和质量小,但传动设计复杂,传 动刚度也降低了。
油缸和齿轮齿条手臂机构
气缸和齿轮齿条增倍手臂机构
1—运动齿条;2—齿轮;3—活塞杆
三、传动件的定位和消隙
1.传动件的定位 1) 电气开关定位 2) 机械挡块定位 3) 伺服定位
利用机械插销定位的结构 1—节流阀;2—圆盘;3—插销;4—定位油缸;
2.传动件的消隙
消隙齿轮
1、2—薄齿轮;3—螺钉
k (l l0 )r1r2 M0 cos l
三、气动和液压平衡方法 气动和液压平衡的原理和弹簧平衡的原理很相似 优点: 1)平衡缸中的压力是恒定的; 2)同时平衡缸的压力很容易得到调节和控制. 缺点: 1)需要动力源和储能器,系统比较复杂 2)需考虑动力源一旦中断时的防范措施。
5.3 腕部及手部结构
(3) 链轮传动机构。回转角度可大于360°。
工业机器人课件2.2手部设计-2.3腕部设计

类人机器人的手部
具有多关节的三指手
No.40
类人机器人的手部
1
4
2
3
5
6
11 10
7
9
8
1,9-适应弹簧 2,3,8-连杆 4-食指 5-中指 6-无名指 7-小指 10-蜗轮 11-驱动杆
贝尔格莱德手
No.41
BH-4型灵巧手有四个 手指,每个手指有4个关节, 4个手指共16个自由度,其 关节由齿轮传动,包括直流 伺服电机、行星减速器和光 码盘在内的电机单元驱动。 光码盘用于测量电机轴相对 转角,关节轴绝对转角由电 位计测量。
在张启先院士的主持下, 北京航空航天大学机器人 研究所于80年代末开始 灵巧手的研究与开发。
灵巧手有三个手指,每 个手指有3个关节,3个 手指共9个自由度,微电 机放在灵巧手的内部,各 关节装有关节角度传感器, 指端配有三维力传感器, 采用两级分布式计算机实 时控制系统。
北航研制的BH-3灵巧手 北航研制的BH-4灵巧手 No.42
No.16
二、传动机构——其它结构型式
重力式手爪
No.17
二、传动机构——其它结构型式
拨杆杠杆式钳爪
No.18
二、传动机构——其它结构型式
内撑式三指钳爪
No.19
2.2.1 钳爪式手部的设计
三、钳爪式手部的设计要点
应具有足够的夹紧力 应具有足够的张开角 应能保证工件的可靠定位 应具有足够的强度和刚度 应适应被抓取对象的要求 应尽量做到结构紧凑、重量轻、效率高 应具有一定的通用性和可互换性
2.2 手部设计
SIWR-Ⅰ型和Ⅱ型水下作业机械手模拟试验装置
No.1
2.2 手部设计
新松的装配机器人
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、定义:腕部就是臂部与手部的连接件,起支承手部与改变手部姿态的作用。
2、手腕的自由度:
⏹为了使手部能处于空间任意方向,要求腕部能实现对空间三个坐标轴X、Y、Z的旋
转运动。
这便就是腕部运动的三个自由度,分别称为翻转R(Roll)、俯仰P(Pitch)与偏转Y(Yaw)。
⏹并不就是所有的手腕都必须具备三个自由度,而就是根据实际使用的工作性能要求
来确定。
腕部坐标系手腕的偏转
手腕的仰俯手腕的回转
3、手腕的设计要求
⏹结构紧凑、重量轻;
⏹动作灵活、平稳,定位精度高;
⏹强度、刚度高;
⏹与臂部及手部的连接部位的合理连接结构,传感器与驱动装置的合理布局及安装等。
4、手腕的分类
(1)二自由度手腕:
可以由一个R关节与一个B关节联合构成BR关节实现,或由两个B关节组成BB关节实现,但不能由两个RR关节构成二自由度手腕,因为两个R关节的功能就是重复的,实际上只起到单自由度的作用。
BR手腕BB手腕
RR手腕(属于单自由度)
(2)三自由度手腕:
有R关节与B关节的组合构成的三自由度手腕可以有多种型式,实现翻转、俯仰与偏转功能。
BBR手腕BRR手腕
5、按手腕的驱动方式分:
⏹直接驱动手腕:
⏹驱动源直接装在手腕上。
这种直接驱动手腕的关键就是能否设计与加工出尺
寸小、重量轻而驱动扭矩大、驱动性能好的驱动电机或液压马达。
⏹远距离传动手腕:
⏹有时为了保证具有足够大的驱动力,驱动装置又不能做得足够小,同时也为了
减轻手腕的重量,采用远距离的驱动方式,可以实现三个自由度的运动。
液压直接驱动BBR手腕图例
远距离传动手腕图例
6、典型结构
(1)摆动液压缸(又称回转液压缸):
⏹结构:
⏹由缸体、隔板、叶片、花键套等主要部件构成。
其中叶片7固定在转子上,
用花键将转子与驱动轴连接,用螺栓2将隔板与缸体连接。
⏹工作原理:
⏹在密封的缸体内,隔板与活动叶片之间围成两个油腔,相当油缸中的无杆腔与
有杆腔。
液压力作用在活动叶片的端面上,对传动轴中心产生力矩使被驱动
轴转动。
摆动缸转角在270°左右。
(2)单自由度回转运动手腕:
⏹结构特点:
⏹机器人手部的张合就是由汽缸驱动的,而手腕的回转运动则由回转液压缸实
现。
⏹工作原理:
⏹将夹紧汽缸的外壳与摆动油缸的动片连接在一起,当摆动液压缸中不同的油
腔中进油时,即可实现手腕不同方向的摆动。
(3)双回转油缸驱动手腕:
⏹结构特点:
⏹采用双回转油缸驱动,一个带动手腕作俯仰运动,另一个油缸带动手腕作回转
运动。
⏹V-V视图表示的回转缸中动片带动回转油缸的刚体,定片与固定中心轴联结
实现俯仰运动;L-L视图表示回转缸中动片与回转中心轴联结,定片与油缸缸
体联结实现回转运动。
(4)轮系驱动的二自由度BR手腕:
⏹结构特点:
⏹由轮系驱动可实现手腕回转与俯仰运动,其中手腕的回转运动由传动轴S传
递,手腕的俯仰运动由传动轴B传递。
⏹回转运动:
轴S旋转→锥齿轮副Z1、Z2→锥齿轮副Z3、Z4→手腕与锥齿轮Z4为一体→手腕实现绕C轴的旋转运动
⏹俯仰运动:
轴B旋转→锥齿轮副Z5、Z6→轴A旋转→手腕壳体7与轴A固联→手腕实现绕A轴的俯仰运动
⏹附加回转运动:
轴S不转而B轴回转→锥齿轮Z3不转→锥齿轮Z3、Z4相啮合→迫使Z4绕C轴线有一个附加的自转,即为附加回转运动。
⏹附加回转运动在实际使用时应予以考虑。
必要时应加以利用或补偿。
(5)轮系驱动的三自由度手腕:
⏹结构特点:
⏹该机构为由齿轮、链轮传动实现的偏转、俯仰与回转三个自由度运动的手腕
结构。
⏹回转运动:
⏹轴S旋转→齿轮副Z10/Z23、Z23/Z11→锥齿轮副Z12、Z13→锥齿轮副Z14、
Z15→手腕与锥齿轮Z15为一体→手腕实现旋转运动
⏹俯仰运动:
⏹轴B旋转→齿轮副Z24/Z21,Z21/Z22→齿轮副Z20、Z16→齿轮副Z16、Z17
→齿轮副Z17、Z18→轴19旋转→手腕壳体与轴19固联→实现手腕的俯仰
运动
⏹偏转运动:
⏹油缸1中的活塞左右移动→带动链轮2旋转→锥齿轮副Z3/Z4→带动花键轴
5、6旋转→花键轴6与行星架9连在一起→带动行星架及手腕作偏转运动。