机械手腕部设计

合集下载

械手结构的设计和分析

械手结构的设计和分析

机械手腕部的结构分析
机器手手腕的自由度数,应根据作业需要来设计。机器手手腕自由度数目愈多,各关节的运动角度愈大,则机器手腕部的灵活性愈高,机器手对对作业的适应能力也愈强。
机器手手腕要与末端执行器相联,因此,要有标准的联接法兰,结构上要便于装卸末端执行器。
机器手的手腕机构要有足够的强度和刚度,以保证力与运动的传递。
为了减轻机器手运动部分的惯量,提高机器手的控制精度,一般腰部回转运动部分的壳体是由比重较小的铝合金材料制成,而不运动的基座是用铸铁或铸钢材料制成。
腰部结构要便于安装、调整。
机械手腰座结构的设计要求分析
机械手腰座结构的具体采用方案
腰座回转的驱动形式要么是电机通过减速机构来实现,要么是通过摆动液压缸或液压马达来实现,目前的趋势是用前者。因为电动方式控制的精度能够很高,而且结构紧凑,不用设计另外的液压系统及其辅助元件。考虑到腰座是机器手的第一个回转关节,对机械手的最终精度影响大,故采用电机驱动来实现腰部的回转运动。一般电机都不能直接驱动,考虑到转速以及扭矩的具体要求,采用大传动比的齿轮传动系统进行减速和扭矩的放大。
直角坐标机器手结构
圆柱坐标机器手的空间运动是用一个回转运动及两个直线运动来实现的,这种机器手构造比较简单,精度还可以,常用于搬运作业。其工作空间是一个圆柱状的空间。
圆柱坐标机器手结构
球坐标机器手的空间运动是由两个回转运动和一个直线运动来实现的,这种机器手结构简单、成本较低,但精度不很高。主要应用于搬运作业。其工作空间是一个类球形的空间。
03
机械手腰座结构的分析
腰部的回转运动要有相应的驱动装置,它包括驱动器。驱动装置一般都带有速度与位置传感器,以及制动器。
腰座要有足够大的安装基面,以保证机器手在工作时整体安装的稳定性。

机械手的手腕结构与手臂结构设CAD图

机械手的手腕结构与手臂结构设CAD图
活性
关节连接方式: 采用串联或并 联方式,影响 手臂的刚度和
精度
关节驱动方式: 电机、气动、 液压等,影响 手臂的动力性
能和稳定性
关节控制方式: 采用PID控制、 模糊控制等算 法,实现手臂 的精确运动和
定位
手臂负载能力
单击此处添加标题
手臂负载能力:机械手臂结构CAD图展示了手臂的负载能力,包括最大负载 和最小负载。
确定绘图比例与单位
根据实际需求选择合适的比例 尺
确保单位统一,避免出现误差
根据机械手的大小和细节程度 调整比例尺
注意图纸的可读性和清晰度, 避免过于拥挤或空白
精确绘制几何图形
使用合适的绘图单位和比例,确保图纸的精度和一致性 掌握CAD绘图软件的基本操作和常用命令,如线条、圆弧、修剪等 注意图层管理,合理使用不同的图层来组织不同类型的几何图形 掌握几何约束和尺寸约束的使用,确保绘制的几何图形准确无误
单击此处添加标题
负载能力影响因素:机械手臂结构CAD图还展示了影响手臂负载能力的因素, 如臂长、关节角度和转动半径等。
单击此处添加标题
负载能力计算方法:机械手臂结构CAD图提供了负载能力的计算方法,包括 静态负载和动态负载的计算。
单击此处添加标题
负载能力与工作范围的关系:机械手臂结构CAD图还探讨了负载能力与工作 范围的关系,以及如何根据实际需求选择合适的负载能力。
注意图层管理及标注设置
分层管理:将不同元素放在不 同图层上,方便编辑和修改
标注设置:合理设置标注样式, 确保清晰易读
字体选择:避免使用不规范字 体,确保跨平台兼容性
线条粗细:保持线条粗细一致, 提高图纸美观度
感谢您的观看
汇报人:XX
手臂运动范围

机器人手部设计

机器人手部设计
有一种弹钢琴的表演机器人的手部已经与人手十分 相近,具有多个多关节手指,一个手的自由度达到20余 个,每个自由度独立驱动。目前工业机器人手部的自 由度还比较少,把具备足够驱动力量的多个驱动源和 关节安装在紧凑的手部里是十分困难的。本节主要介 绍和讨论手爪(Gripper)式手部的原理和设计,因为它 具有一定的通用性。而喷漆枪、焊具之类的专用工具 (Specialtooi)是行业性专业工具,不予介绍。
§4-5手部设计
一、概述 工业机器人的手部(Hand)也叫做末端操作器
(End-effector),它是装在工业机器人手腕上直 接抓握工件或执行作业的部件。人的手有两种 含义:第一种含义是医学上把包括上臂、手腕 在内的整体叫做手;第二种含义是把手掌和手 指部分叫做手。工业机器人的手部接近于第二 种含义。
3.按手指或吸盘数目分 机械手爪可分为:二指手爪、多指手瓜。 机械手爪按手指关节分:单关节手指手爪、多关节手指手爪。 吸盘式手爪按吸盘数目分:单吸盘式手爪、多吸盘式手爪。 图4-49所示为一种三指手爪的外形图,每个手指是独立驱动的。
这种三指手爪与二指手瓜相比可以抓取像立方体、圆柱体、球体 等不同形状的物体。图4-50所示为一种多关节柔性手指手爪,它 的每个手指具有若干个被动式关节(PassivejointS),每个关节不是 独立驱动。在拉紧夹紧钢丝绳后柔性手指环抱住物体,因此这种 柔性手指手爪对物体形状有一种适应性。但是,这种柔性手指并 不同于各个关节独立驱动的多关节手指。
工业机器人手部的特点:
(1)手部与手腕相连处可拆卸。手部与手腕有机械接 口,也可能有电、气、液接头,当工业机器人作业对 象不同时,可以方便地拆卸和更换手部。
(2)手都是工业机器人末端操作器。它可以像人手那 样具有手指,也可以是不具备手指的手;可以是类人 的手爪,也可以是进行专业作业的工具,比如装在机 器人手腕上的喷漆枪、焊接工具等。

机械手手腕部分的三维设计

机械手手腕部分的三维设计

机械手手腕部分的三维设计1腕部设计的基本要求(1)力求结构紧凑、重量轻腕部处于手臂的最前端,它连同手部的静、动载荷均由臂部承担。

显然,腕部的结构、重量和动力载荷,直接影响着臂部的结构、重量和运转性能。

因此,在腕部设计时,必须力求结构紧凑,重量轻。

(2)结构考虑,合理布局腕部作为机械手的执行机构,又承担连接和支撑作用,除保证力和运动的要求外,要有足够的强度、刚度外,还应综合考虑,合理布局,解决好腕部与臂部和手部的连接。

(3)必须考虑工作条件对于本设计,机械手的工作条件是在工作场合中搬运加工的棒料,因此不太受环境影响,没有处在高温和腐蚀性的工作介质中,所以对机械手的腕部没有太多不利因素。

2 腕部的结构以及选择2.1 典型的腕部结构(1) 具有一个自由度的回转驱动的腕部结构。

它具有结构紧凑、灵活等优点而被广腕部回转,总力矩M,需要克服以下几种阻力:克服启动惯性所用。

回转角由动片和静片之间允许回转的角度来决定(一般小于270°)。

(2) 齿条活塞驱动的腕部结构。

在要求回转角大于270°的情况下,可采用齿条活塞驱动的腕部结构。

这种结构外形尺寸较大,一般适用于悬挂式臂部。

(3) 具有两个自由度的回转驱动的腕部结构。

它使腕部具有水平和垂直转动的两个自由度。

(4) 机-液结合的腕部结构。

2.2 腕部结构和驱动机构的选择本设计要求手腕回转90°或180°,则腕部结构选择具有一个自由度的回转驱动腕部结构。

步进电机是一种步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

机械手腕部设计-毕业设计

机械手腕部设计-毕业设计

1绪论机器人是近代自动控制领域中出现的一项新技术,并已成为现代机械制造中的一个重要组成部分。

机器人显著地提高了劳动生产率,加快实现工业生产机械化和自动化的步伐。

尤其在高温、高压、粉尘、噪音以及带有放射性和污染的场合,应用得更为广泛。

因而受到各先进工业国家的重视,投入大量人力物力加以研究和应用。

机器人一般分为三类。

第一类是不需要人工操作的通用机器人。

它是一种独立的不附属于某一主机的装置。

它可以根据任务的需要编制程序,以完成各项规定操作。

它的特点是除了具备普通机械的物理性能之外,还具备通用机械、记忆智能的三元机械。

它可以灵活运用在工业上的各个方面,如喷漆、焊接、搬运等。

第二类是需要人工操作的,称为机械机。

它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机器人来进行探测月球等。

工业中采用的锻造操作机也属于这一范畴。

第三类是专用机器人,主要附属于自动机床或自动线上,用以解决机床上下料和工件传送。

这种机器人在国外称为“Mechanical Hand ",它是为主机服务的,由主机驱动;除少数外,工作程序一般是固定的,采用机械编程。

因此是专用的。

本课题通过对通用机器人smart6.50R 的结构进行分析和研究,完成对其腕部的设计,并借助CAD/CAE软件完成从建模到运动学分析、应力分析的全过程。

最终期望腕部与小臂、手部、大臂能够协调工作,能够完成各种现代工业加工过程中所要求的动作。

本课题的设计思路是:借助已有的通用机器人的腕部设计思想和方法,综合考虑腕部机构在机器人运动中所起的作用和机器人的整体技术参数以及结构特点,然后选择合理的机构,确定传动线路,然后对机构进行分析,计算主要参数,并对部分零件进行设计、组装,综合评价腕部系统。

1.1机器人组成机器人主要由驱动装置、控制系统和执行机构三大部分组成。

1.1.1驱动装置工业机器人的驱动装置包括驱动器和传动机构两部分,它们通常与执行机构连成一体。

工业机器人4[1].3_臂部手腕设计

工业机器人4[1].3_臂部手腕设计
臂部作水平伸缩运动时,首先要克服摩擦阻力, 包括油(气)缸与活塞之间的摩擦阻力及导向杆与 支承滑套之间的摩擦阻力等,还要克服启动过程中 的惯性力。驱动力Pq(N)可按下式计算:
Pq Fm Fg
2、臂部回转运动驱动力矩的计算
臂部回转运动驱动力矩应根据启动时产生的惯性力矩 与回转部件支承处的摩擦力矩来计算。由于升速过程一 般不是等加速运动,故最大驱动力矩要比理论平均值大 一些,一般取平均的1.3倍。驱动力矩 M q (可N 按• m下) 式计 算:
此种传动机构的结构紧凑、轻巧、传动扭矩大, 能提高机械手的工作性能。在示教型的机械手中, 采用这类传动机构作手腕结构的比较多,但缺点 是手腕有一个“诱导运动”,因而要补偿。
下图为给图4-44所示手腕增加一个 3回60转 运动 后成为RBR三自由度手腕的传动示意图。当油缸1 中的活塞作左右移动时,通过链条、链轮2、锥齿 轮3和4带动花键轴5和6转动,而花键轴6与行星 架9连成一体,因而也就带动行星架作回转运动, 即为手腕所增加的作 的回36转0运动。
以由B关节和R关节组成许多种形式。此外,B关节 和R关节排列的次序不同,也会产生不同的效果, 也产生了其它形式的三自由度手腕。为了使手腕结 构紧凑,通常把两个B关节安装在一个十字接头上, 这对于BBR手腕来说大大减小了手腕纵向尺寸。
2.按驱动方式分类
(1)直接驱动手腕。
手腕因为装在手臂末端,所以必须设计得十分紧凑, 可以把驱动源装在手腕上。下图所示是Moog公司的 一种液压直接驱动的BBR手腕,设计紧凑巧妙。Ml、 M2 、M3是液压马达,直接驱动手腕的偏转、俯仰和翻转 三个自由度轴。这种直接驱动手腕的关键是能否选到 尺寸小、重量轻而驱动力矩大、驱动特性好的驱动电 机或液压驱动马达。

机器人手腕的设计与研究

机器人手腕的设计与研究

机器人手腕的设计与研究摘要:对于机器人腕部结构进行了设计和优化,取消了传统的带轮结构和单动力输入结构,采用了齿轮传动,回转和俯仰使用不同的电机驱动,从而提高了刚度、效率、灵活性和载重量,减小了空间。

关键词:齿轮,回转,俯仰,紧凑1. 机器人的定义从1920年《罗萨姆的万能机器人》的剧作中出现机器人这个词以后机器人随着时代的发展其定义也是越来越完善。

国际标准化组织(ISO)给出的机器人定义较为全面和准确,其定义如下:1.机器人的动作机构具有类似人或其他生物体某些器官(肢体、感官等)的功能。

2.机器人具有通用性,工作种类多样,动作程序灵活易变。

3.机器人具有不同程度的智能性,如记忆、感知、推理、决策、学习等。

4.机器人具有独立性,完整的机器人系统在工作中可以不依赖人的的干预。

这些全面的定义也就决定了机器人领域必定是一个多学科、多领域交叉的领域。

其中主要的研究领域有:①机器手设计;②机器人运动学和动力学;③机器人轨迹规划;④机器人驱动技术;⑤机器人传感器;⑥机器人视觉;⑦机器人控制语言与离线编程;⑧机器人本体结构;⑨机器人控制系统;⑩智能机器人等。

涉及的学科范围主要有:①力学,主要包括工程力学、弹塑性力学、结构力学等;②机器人拓扑学,主要包括结构拓扑学即拓扑结构类型综合与优选;③机器人轨迹规划;④电子学与微电子学;⑤控制论;⑥机计算机;⑦生物学;⑧人工智能;⑨系统工程学。

2. 腕部的基本形式与特点人类的手是最灵活的肢体部分,能完成各种各样的动作和任务。

同样机器人的手部作为末端执行器是完成抓握工件或执行特定作业的重要部件,也需要有多种结构。

腕部是臂部与手部的连接部件,起支撑手部和改变手部姿势的作用。

从驱动方式上看手腕有两种形式,远程驱动和直接驱动。

直接驱动是指驱动器安装在手腕运动关节的附近直接驱动关节运动,因而传动路线短,传动刚度好,但腕部的尺寸和质量大,惯性大,由于现在技术的改进机电和传动原件都趋于小型化,这样的情况都有较大改观。

三自由度机械手腕的设计

三自由度机械手腕的设计

目录摘要 ..................................................................................................................... 1Abstract ........................................................................................... 错误!未定义书签。

1绪论 .. (2)1.1工业机器人简介 (2)1.2 工业机器手简介 (2)2工业机器人手腕的总体设计 (3)2.1机器人手腕总体设计概述 (3)2.2腕部的结构特点 (5)2.2.1 概述 (5)2.2.2单自由度手腕 (5)2.2.3二自由度手腕 (6)2.2.4三自由度手腕 (6)2.2.5柔顺手腕结构 (7)2.3 腕部的驱动机构 (8)2.4设计要求 (9)3 机器人手腕的机械系统设计 (10)3.1三个自由度的实现 (10)3.2传动机构的设计 (12)3.3手腕内部其他结构的设计 (13)4三维造型的绘制 (15)4.1 造型软件简介 (15)4.2典型零件的绘制 (18)结论 (44)摘要在工业上,机器人有着广泛的应用,尤其是在高温,高压,粉尘,噪音,以及带有放射性和污染的场合。

而工业机器人是相对较新的电子设备,它正开始改变现代化工业面貌。

手腕是连接末端执行器和手臂的关键,是联接手部与臂部的部件,它的作用是调整或改变工件的方位。

本设计为三自由度工业机器人手腕,可以在两个方向上旋转在一个方向上弯转。

三维造型采用的造型软件为Pro/ENGINEER, Pro/ENGINEER Wildfire野火版2.0以其易学易用、功能强大和互连互通的特点,推动了整个产品开发机构中个人效率和过程效率的提高。

它既能节省时间和成本,又能提高产品质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
1.1 机器人组成
机器人主要由驱动装置、控制系统和执行机构三大部分组成。
1.1.1 驱动装置
工业机器人的驱动装置包括驱动器和传动机构两部分,它们通常与执行机构 连成一体。传动机构常用的有谐波减速器、滚珠丝杠、链、带以及各种齿轮轮系。 驱动器通常有电机(直流伺服电机,步进电机,交流伺服电机),液动和气动装置, 目前使用最多的是交流伺服电机。
本课题通过对通用机器人 smart6.50R 的结构进行分析和研究,完成对其腕 部的设计,并借助 CAD/CAE 软件完成从建模到运动学分析、应力分析的全过程。 最终期望腕部与小臂、手部、大臂能够协调工作,能够完成各种现代工业加工过 程中所要求的动作。
本课题的设计思路是:借助已有的通用机器人的腕部设计思想和方法,综合 考虑腕部机构在机器人运动中所起的作用和机器人的整体技术参数以及结构特 点,然后选择合理的机构,确定传动线路,然后对机构进行分析,计算主要参数, 并对部分零件进行设计、组装,综合评价腕部系统。
机器人一般分为三类。第一类是不需要人工操作的通用机器人。它是一种独 立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规 定操作。它的特点是除了具备普通机械的物理性能之外,还具备通用机械、记忆 智能的三元机械。它可以灵活运用在工业上的各个方面,如喷漆、焊接、搬运等。 第二类是需要人工操作的,称为机械机。它起源于原子、军事工业,先是通过操 作机来完成特定的作业,后来发展到用无线电讯号操作机器人来进行探测月球 等。工业中采用的锻造操作机也属于这一范畴。第三类是专用机器人,主要附属 于自动机床或自动线上,用以解决机床上下料和工件传送。这种机器人在国外称 为“Mechanical Hand ",它是为主机服务的,由主机驱动;除少数外,工作程序 一般是固定的,采用机械编程。因此是专用的。
1.1.3 执行机构
执行机构由腰部、基座、手部、腕部和臂部等运动部件组成。 1) 腰部 腰部是连接臂和基座的部件,通常是回转部件,腰部的回转运动 再加上臂部的平面运动,就能使腕部作空间运动。腰部是执行机构的关键部件, 它的制造误差,运动精度和平稳性,对机器人的定位精度有决定性影响。 2) 基座 基座是整个机器人的支持部分,有固定式和移动式两种。该部件 必须具有足够的刚度和稳定性。 3)手部 手部它具有人手某种单一动作的功能。由于抓取物件的形状不同, 手部有夹持式和吸附式等形式。 夹持式手部是由手指和传力机构所组成。 手指是直接与物件接触的机构。常用的手指运动形式有回转型和平移型。 吸附式手部有负压吸盘和电磁吸盘两类。 对于轻小片状零件、光滑薄板材料等,通常用负压吸盘吸料。造成负压的方 式有气流负压式和真空泵式。对于导磁性的环类和带孔的盘类零件,以及有网孔 状的板料等,通常用电磁吸盘吸料。电磁吸盘的吸力由直流电磁铁和交流电磁铁 产生。
1.2.3 按驱动方式分类
1.液压机器人:输出力大,传动平稳。 2.气压机器人:气源方便,输出力小,气压传动速度快,结构简单,成本低。 但工作不太平稳,冲击大。 3.电动式机器人:电力驱动是目前机器人使用的最多的一种驱动方式,其特 点是电源方便,响应快,驱动力较大,信号检测,传递,处理方便,可以采用多 种灵活的控制方案。 4.机械式机器人:工作可靠,动作频率高,结构简单,成本低。但动作固定 不可变。
9
1.4 机器人设计
机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成, 是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一 体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高 产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的 作用。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器 特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能 力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上 说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设 备,也是先进制造技术领域不可缺少的自动化设备。:
1.3.1 单自由度手腕
SCARA 水平关节装配机器人多采用单自由度手腕,该类机器人操作机的手腕 只有绕垂直轴的一个旋转自由度。为了减轻操作机的悬臂的重量,手腕的驱动电 机固结在机架上。手腕转动的目的在于调整装配件的方位。由于转动为两级等径 轮齿形带,所以大、小臂的转动不影响末端执行器的水平方位,而该方位的调整 完全取决于腕传动的驱动电机。这时确定末端执行器方位的角度(以机座坐标系 为基准)将是大小臂转角以及腕转角之和。
图 1.1 末杆姿态示意图 1.大臂 2.小臂 3.末杆(L) 在图 1.1 中,末杆 L 的图示姿态可以看作是由处于 x1 方向的原始位置先绕 z1 在 x1 o1 y1 平面内转α、β角,然后在 a o1 与 z1 组成的垂直平面内再向上 转β角得到的。可见是由α、β两角决定了末杆(L)的方向(姿态)。从理论上 讲,如果 0°≤α≤360°,0°≤β≤360°,则 L 在空间可取任意方向。如果 L 的自转角γ也满足 0°≤γ≤360°,我们就说该操作机具有最大的灵活度,即 可自任意方向抓取物体并可把抓取的物体在空间摆成任意姿态。为了定量的说明 操作机抓取和摆放物体的灵活度,我们定义组合灵活度(dex)为:
5
dex=α/360°+β/360°+γ/360°=xx%+xx%+xx% 上式取“加”的形式,但一般不进行加法运算,因为分开更能表现结构的特 点。 腕结构最重要的评价指标就是 dex 值。若为 3 个百分之百,该手腕就是最灵 活的手腕。一般说来,α、β的最大值取 360°,而γ值可取的更大一些,如果 拧螺钉,最好γ无上限。 腕结构是操作机中最复杂的结构,而且因转动系统互相干扰,更增加了腕结 构的设计难度。腕部的设计要求是:重量轻,dex 的组合值必须满足工作要求并 留有一定的裕量(约 5%—10%,转动系统结构简单并有利于小臂对整机的静力平 衡。
1.2.2 按控制形式分类
1.点位控制型机器人 点位控制型机器人的运动轨迹是空间二个点之间的联接。控制点数愈多,性 能愈好。它基本能满足于各种要求,结构简单。绝大部分机器人是点位控制型。 2.连续轨迹控制型机器人 这种机器人的运动轨迹是空间的任意连续曲线,它能在三维空间中作极其复 杂的动作,工作性能完善,但控制部分比较复杂.
7
方向接进物体,也可将物体转到任意姿势。所以三自由度是“万向”型手腕,可 以完成两自由度手腕很多无法完成的作业。近年来,大多数关节型机器人都采用 了三自由度手腕。主要有两类:
1)汇交手腕(或称正交手腕)它是α、β、γ的旋转轴线汇交于一点。 2)偏置式手腕它是α、β、γ的旋转轴线互相垂直,但不汇交于一点。 这两类手腕都是把β、γ运动的减速器安装在手腕பைடு நூலகம்,可简化小臂结构,但 却增加了手腕本身的重量和复杂程度。
1.3.4 通用机器人腕部结构选型
如图 1.4 所示,是汇交式手腕(或正交手腕),即α、β、γ的旋转轴线汇 交于一点。可以看出,电机(1)经锥齿轮副((3, 4)和齿型带传动(9, 10, 13), 再经锥齿轮副(5, 6)和谐波减速器(16)带动法兰(17、机械接口)转动,完成末杆 (法兰)γ的运动。电机 2 经锥齿轮副(7, 8)和齿型带传动(11, 12, 14), 通过谐 波减速器带动腕壳摆动,完成末杆 p 的运动。整个手腕又由置于小臂后部的电机 (上图未画),经过谐波传动,带动小臂作绕自身轴线的转动,即α运 动。
1 绪论
机器人是近代自动控制领域中出现的一项新技术,并已成为现代机械制造中 的一个重要组成部分。机器人显著地提高了劳动生产率,加快实现工业生产机械 化和自动化的步伐。尤其在高温、高压、粉尘、噪音以及带有放射性和污染的场 合,应用得更为广泛。因而受到各先进工业国家的重视,投入大量人力物力加以 研究和应用。
1.3.2 两自由度手腕
两自由度手腕有两种结构: 1)汇交式两自由度 手腕两自由度手腕的末杆与小臂中线重合,两个链轮 对称分配在两边。β≤200° ,γ≥360°, dex= 0+80%+100%,如图 1.3, 2)偏置式两自由度手腕 手腕的末杆偏置在在小臂中线的一边。 β≥360°,γ≥360,dex=0+100%+100%优点是腕部结构紧凑,小臂横向尺 寸较小(薄)。 两自由度的另两种结构。一种是将谐波减速器这置于碗部,驱动器通过齿 形带带动谐波,或经锥齿轮再带动谐波使末杆 L 获得α. γ两自由度运动。另 一种则是将驱动电机 1 和谐波减速器连成一体,放于偏置的壳中直接带动 L 完 成角转动,β角则是由链传动完成。
6
如图 1.3 汇交式两自由度 1- 法兰 2-锥齿轮组 3-锥齿轮 4-弹簧
5、8-链轮 6-轴承 7-壳体
1.3.3 三自由度手腕
三自由度的手腕形式繁多。三自由度手腕是在两自由度的基础上加一个整个 手腕相对于小臂的转动自由度(用角度参数α表示)而形成的。当不考虑结构限 制,即α、β、γ都能在 0°~360°范围取值,末端执行器的灵活度 dex=100%+100%+100%,也就是说具有百分之百的灵活度。这就是说手爪可自任意
1.1.2 控制系统
控制系统一般由控制计算机和驱动装置伺服控制器组成。后者控制各关节的驱动 器,使各杆按一定的速度,加速度和位置要求进行运动。前者则是要根据作业要 求完成偏差,并发出指令控制各伺服驱动装置使各杆件协调工作,同时还要完成 环境状况,周边设备(如电焊机,工卡具等)之间的信息传递和协调工作。
4
1.3 腕部结构选型
手腕是操作机的小臂(上臂)和末端执行器(手爪)之间的连接部件。其功用 是利用自身的活动度确定被末端执行器夹持物体的空间姿态,也可以说是确定末 端行器的姿态。故手腕也称作机器人的姿态机构。对一般商用机器人,末杆(即 与末端执行器相联结的杆)都有独立的自转功能,若该杆再能在空间取任意方位, 那么与之相联的末端执行器就可在空间去任意姿态,即达到完全灵活的境地。对 于任一杆件的姿态(即方向),可用两个方位确定。如图 1.1 所示
相关文档
最新文档