运营管理课后习题答案
运营管理第6版习题与参考答案_第02章

习题与参考答案_第02章一、名词解释1、使命答案:组织存在的原因和基础。
答案解析:是原因和基础,而非追求的目标。
难易程度:中。
知识点:使命。
2、价值观答案:组织所坚持和奉行的基本信念和准则。
答案解析:即是非观。
难易程度:中。
知识点:价值观。
3、愿景答案:组织未来的状态。
答案解析:是对未来目标的追求。
难易程度:中。
知识点:愿景。
4、发展战略答案:组织为了实现愿景进而实现使命,根据其内部条件和外部环境,对生产经营所做出的全局性、长远性、纲领性的谋划。
答案解析:三层意思。
难易程度:中。
知识点:发展战略。
5、运营战略答案:对组织相应的职能或业务所做出的中长期谋划。
答案解析:略。
难易程度:中。
知识点:职能战略。
6、策略答案:与某一职能战略相对应的手段、模式或方法,是对职能战略的细化与落实。
答案解析:略。
难易程度:中。
知识点:策略。
7、方案答案:根据某一策略确定的手段、模式或方法而采取的具体行动。
答案解析:略。
难易程度:中。
知识点:方案。
8、战略金字塔答案:从使命和愿景到发展战略和职能战略,再到策略和方案的层级结构。
答案解析:略。
难易程度:难。
知识点:战略金字塔。
9、SWOT分析答案:一种战略分析方法。
这种方法综合考虑企业内部条件与外部环境,通过构建组合矩阵进行战略选择。
答案解析:略。
难易程度:中。
知识点:SWOT分析。
10、波特五力模型答案:一种战略分析方法。
这种方法综合考虑来自行业竞争者、供应商、用户、替代品生产者、潜在进入者等5个方面的竞争压力进行战略选择。
答案解析:略。
难易程度:中。
知识点:波特五力模型。
11、BCG矩阵答案:一种战略分析方法。
这种方法从业务增长率和相对市场占有率两个维度对企业的业务进行分析,从而做出战略选择。
可增加两个维度,即营业收入所占比例和利润所占比例。
答案解析:略。
难易程度:中。
知识点:BCG矩阵。
12、平衡计分卡答案:一种把使命、愿景和战略转换为实际行动的有效方法。
这种方法实现了从一个纯粹的财务角度转变为与其他方面进行整合,把财务、顾客、内部业务流程和学习与成长整合在一起,从过去和未来两大视角,用四个维度来平衡财务绩效与非财务绩效,外部绩效与内部绩效。
第12版运营管理习题答案

第12版运营管理习题答案1. 问题描述此习题集为第12版《运营管理》一书的习题答案总结。
本文档包含了各个章节的习题答案,旨在帮助读者更好地理解和掌握运营管理的相关概念和技术。
2. 章节习题答案总结第1章绪论1.运营管理的定义:运营管理是指组织内部通过有效地整合和协调资源和流程来生产和提供产品和服务,以满足客户需求的管理活动。
2.运营管理的目的:提高生产效率、降低成本、提高产品质量、提高客户满意度。
3.运营管理的关键要素:生产活动、物流活动、营销活动、供应商与客户。
第2章运营战略与竞争优势1.运营战略的定义:运营战略是指组织在特定环境下,为实现其目标和使命而制定的运营活动计划和行动方案。
2.竞争优势的来源:成本领先、差异化、灵活性、服务质量。
3.市场需求的变化对运营战略的影响:创新、快速响应、质量要求提高、个性化需求增加。
第3章产品设计与开发1.产品设计与开发的目的:满足市场需求、提高产品质量、降低成本。
2.产品设计与开发的过程:市场调查、概念设计、详细设计、开发与测试、产品发布。
3.产品生命周期管理的重要性:确保产品在市场上持续竞争,合理安排资源分配,提高产品的市场占有率和利润。
第4章设计与管理物流系统1.物流系统的定义:物流系统是指实现物流流程中物资、信息和金钱的流动,并为组织内外部客户提供有关物流活动的管理系统。
2.物流系统的主要活动:运输、仓储、库存管理、订单处理、信息处理。
3.物流系统的设计原则:流程简化、资源统一、信息共享、风险控制。
第5章质量管理1.质量管理的定义:质量管理是指通过制定和实施一系列的管理活动,以提高产品和服务的质量、满足客户需求的管理过程。
2.质量管理的工具:质量控制图、散点图、直方图、因果图、帕累托图、流程图等。
3.质量成本的分类:预防成本、评估成本、内部失败成本、外部失败成本。
第6章运营系统的布局与设计1.运营系统布局与设计的目的:提高资源利用率、降低库存成本、减少物料搬运。
运营管理概论习题与答案(运营管理)

一、单选题1、下列典型的管理体系或模式中,管理对象主要针对结构化问题设计的是()A.泰勒制(科层制)B.戴明制(改进制)C.合乐制(自组织)D.丰田制正确答案:A2、在ISO 9000族标准中,主要用于指导组织绩效改进的标准是( )A.ISO 9000B.ISO 9001C.ISO 9004D.ISO 19011正确答案:C3、当前企业经营管理面临的环境可以简要地概括为()A.“3C”+知识经济+交互网络+AIB.社会环境+经济环境C.市场经济+法制社会D.人工智能+互联网+大数据正确答案:A4、泰勒制或“科学管理”的关键活动是()A.领导B.监视与控制C.效率D.质量正确答案:B5、基于事实的决策意味着()A.根据数据决策B.根据数量分析决策C.根据事实的分析、经验和直觉决策D.基于真理决策正确答案:C二、多选题1、全面质量管理的原则包括()A.以顾客为关注焦点B.领导作用C.全员参与D.统计过程控制(SPC)正确答案:A、B、C2、运营管理的主要挑战涉及()A.信息技术的冲击B.环保要求、伦理标准C.多元化的新员工D.全球化正确答案:A、B、C、D3、在顾客居于主导地位、激烈竞争与快速变化的环境中,企业生存与发展关键在于()A.快速B.灵活、柔性、敏捷C.持续改进与创新D.对人的严密控制正确答案:A、B、C4、下列属于快餐连锁店中典型的运营活动的有( )A.选择潜在餐厅地点B.维修食品加工设备C.提供制作汉堡的程序D.投放广告和宣传品正确答案:A、B、C5、美国的《卓越绩效准则》所描述的管理模式中,其基本过程包括()A.领导与战略B.人力资源与过程C.顾客和市场D.测量、分析与知识管理正确答案:A、B、C、D三、填空题1、过程的五个基本构成部分是:输入、转化活动、输出、监控、__________。
正确答案:方法2、质量定义为满足要求的__________。
正确答案:程度3、一百年来管理实践证明成功的管理是__________方法。
运营管理的课后习题答案

运营管理的课后习题答案运营管理的课后习题答案运营管理是一门涉及企业内部运作和资源管理的学科,它涵盖了生产、供应链、质量管理、项目管理等多个方面。
在学习运营管理的过程中,习题是一个重要的学习工具,通过解答习题可以加深对知识点的理解和应用。
下面将为大家提供一些运营管理课后习题的答案,希望对大家的学习有所帮助。
1. 生产计划是什么?它的目的是什么?答:生产计划是指根据市场需求和企业资源情况,制定生产计划的过程。
其目的是合理安排生产资源,确保按时交付产品,满足市场需求。
2. 什么是供应链管理?它的主要目标是什么?答:供应链管理是指协调和管理企业内外各个环节的活动,以实现产品或服务的顺畅流动的过程。
其主要目标是最大程度地提高供应链的效率和灵活性,减少库存和成本,提高客户满意度。
3. 什么是质量管理?它的核心原则是什么?答:质量管理是指通过制定和实施一系列质量控制措施,以确保产品或服务符合质量要求的管理过程。
其核心原则是不断追求卓越的质量,通过持续改进和员工参与,提高产品或服务的质量水平。
4. 项目管理中的关键要素有哪些?答:项目管理中的关键要素包括项目目标、项目计划、项目团队、项目资源、项目风险等。
其中,项目目标是项目的核心,项目计划是实现目标的路线图,项目团队是实施计划的关键,项目资源是支撑项目实施的基础,项目风险是需要预防和应对的不确定因素。
5. 什么是供应商评估?为什么要进行供应商评估?答:供应商评估是对供应商进行综合评价和筛选的过程。
其目的是确保选择到合适的供应商,以保证采购的品质和效益。
供应商评估可以帮助企业降低采购风险,提高供应链的稳定性和效率。
6. 什么是成本管理?成本管理的方法有哪些?答:成本管理是指对企业生产和运营过程中产生的各项成本进行有效控制和管理的过程。
成本管理的方法包括成本核算、成本控制和成本分析等。
成本核算是对成本进行分类和计算,成本控制是设定成本目标并采取措施控制成本,成本分析是对成本进行比较和分析,找出成本的优化方向。
潘春跃-运营管理(第二版)第一章习题答案

第1章思考与练习参考答案1.为什么需要学习运营管理?答:略2.“生产与运营”的含义是什么?答:生产与运营就是指将人力、物料、设备、技术、信息、能源等生产要素(投入)转换为有形产品和无形服务(产出)的过程,或指一系列的输入按照特定的要求转化为一定输出的过程,即为“投入→转换→产出”这样一个运作过程,生产就是制造商品或提供服务。
3.生产与运营系统是如何构成的?答:生产与运营系统是由输入、转换、产出、管理、供应商和用户六个部分组成。
4.运营管理的目标是什么?答:运营管理的目标是建立一个科学的生产运营系统,高效、低耗、灵活、准时、清洁地生产合格产品和提供满意服务。
5.如何测量生产率?提高生产率有哪些方式?答:生产率计算公式为:生产率=每单位产出/投入在上式中如果投入的资源有几种则可统一转换为价值量,即货币来计算。
提高生产率有三种方式:一是保持产出不变而减少投入;二是保持投入不变而增加产出;三是减少投入的同时增加产出,使生产率大幅度提高,这种方式是最理性的。
6.运营管理的基本问题是什么?答:运营管理的三大基本问题,即:产出要素管理、资源要素管理和环境要素管理。
7.企业管理的五项基本职能是什么?答:企业管理的五项基本职能为:财务会计、技术、生产运营、市场营销和人力资源管理五项职能。
8.运营管理的内容有哪些?答:生产与运营管理的内容包括:生产与运营战略的制定、生产与运作系统的设计、生产与运作系统的运行与控制和生产与运作系统的维护与改进。
9.制造业与服务业有何不同?答:制造业与服务业的区别如下表所示:制造业与服务业的区别10.简述运营管理的发展历程,并指出四位对运营管理的理论和技术有贡献的人。
答:运营管理的发展历程:工业革命时期;科学管理时期;大规模生产时期;精益生产时期;大规模定制时期。
11. 简述现代运营管理的主要特征及其发展趋势。
答:运营管理全求化;生产经营一体化;多品种小批量混合型生产方式成为主流;追求“绿色生产”。
《运营管理》课后习题答案

Chapter 02 - Competitiveness, Strategy, and Productivity3. (1) (2) (3) (4) (5) (6) (7)Week Output WorkerCost@$12x40Overhead********MaterialCost@$6TotalCostMFP(2) ÷ (6)1 30,000 2,880 4,320 2,700 9,900 3.032 33,600 3,360 5,040 2,820 11,220 2.993 32,200 3,360 5,040 2,760 11,160 2.894 35,400 3,840 5,760 2,880 12,480 2.84*refer to solved problem #2Multifactor productivity dropped steadily from a high of 3.03 to about 2.84.4. a. Before: 80 ÷ 5 = 16 carts per worker per hour.After: 84 ÷ 4 = 21 carts per worker per hour.b. Before: ($10 x 5 = $50) + $40 = $90; hence 80 ÷ $90 = .89 carts/$1.After: ($10 x 4 = $40) + $50 = $90; hence 84 ÷ $90 = .93 carts/$1.c. Labor productivity increased by 31.25% ((21-16)/16).Multifactor productivity increased by 4.5% ((.93-.89)/.89).*Machine ProductivityBefore: 80 ÷ 40 = 2 carts/$1.After: 84 ÷ 50 = 1.68 carts/$1.Productivity increased by -16% ((1.68-2)/2)Chapter 03 - Product and Service Design6. Steps for Making Cash Withdrawal from an ATM1. Insert Card: Magnetic Strip Should be Facing Down2. Watch Screen for Instructions3. Select Transaction Options:1) Deposit2) Withdrawal3) Transfer4) Other4. Enter Information:1) PIN Number2) Select a Transaction and Account3) Enter Amount of Transaction5. Deposit/Withdrawal: 1) Deposit —place in an envelop e (which you’ll find near or in the ATM) andinsert it into the deposit slot2) Withdrawal —lift the “Withdrawal Door,” being careful to remove all cash6. Remove card and receipt (which serves as the transaction record)8.Chapter 04 - Strategic Capacity Planning for Products and Services2. %80capacityEffective outputActual Efficiency ==Actual output = .8 (Effective capacity) Effective capacity = .5 (Design capacity) Actual output = (.5)(.8)(Effective capacity) Actual output = (.4)(Design capacity) Actual output = 8 jobs Utilization = .4capacityDesign outputActual =n Utilizatiojobs 204.8capacity Effective output Actual Capacity Design ===10. a. Given: 10 hrs. or 600 min. of operating time per day.250 days x 600 min. = 150,000 min. per year operating time.Total processing time by machineProductABC 1 48,000 64,000 32,000 2 48,000 48,000 36,000 3 30,000 36,000 24,000 460,000 60,000 30,000 Total 186,000208,000122,000machine181.000,150000,122machine 238.1000,150000,208machine224.1000,150000,186≈==≈==≈==C B A N N NYou would have to buy two “A” machines at a total cost of $80,000, or two “B” machines at a total cost of $60,000, or one “C” machine at $80,000.b.Total cost for each type of machine:A (2): 186,000 min ÷ 60 = 3,100 hrs. x $10 = $31,000 + $80,000 = $111,000B (2) : 208,000 ÷ 60 = 3,466.67 hrs. x $11 = $38,133 + $60,000 = $98,133 C(1): 122,000 ÷ 60 = 2,033.33 hrs. x $12 = $24,400 + $80,000 = $104,400Buy 2 Bs —these have the lowest total cost.Chapter 05 - Process Selection and Facility Layout3.Desired output = 4Operating time = 56 minutesunit per minutes 14hourper units 4hourper minutes 65output Desired time Operating CT ===Task # of Following tasksPositional WeightA 4 23B 3 20C 2 18D 3 25E 2 18F 4 29G 3 24H 1 14 I5a. First rule: most followers. Second rule: largest positional weight.Assembly Line Balancing Table (CT = 14)b. First rule: Largest positional weight.Assembly Line Balancing Table (CT = 14)c. %36.805645stations of no. x CT time Total Efficiency ===4. a. l.2. Minimum Ct = 1.3 minutesTask Following tasksa 4b 3c 3d 2e 3f 2g 1h3. percent 54.11)3.1(46.CT x N time)(idle percent Idle ==∑=4. 420 min./day 323.1 ( 323)/1.3 min./OT Output rounds to copiers day CT cycle=== b. 1. inutes m 3.224.6N time Total CT ,6.4 time Total ==== 2. Assign a, b, c, d, and e to station 1: 2.3 minutes [no idle time]Assign f, g, and h to station 2: 2.3 minutes3. 420182.6 copiers /2.3OT Output day CT ===4.420 min./dayMaximum Ct is 4.6. Output 91.30 copiers /4.6 min./day cycle==7.Chapter 06 - Work Design and Measurement3. Element PR OT NT AF job ST1 .90.46.414 1.15 .4762 .85 1.505 1.280 1.15 1.4723 1.10.83.913 1.15 1.05041.00 1.16 1.160 1.15 1.334Total4.3328. A = 24 + 10 + 14 = 48 minutes per 4 hours.min 125.720.11x70.5ST .min 70.5)95(.6NT 20.24048A =-=====9. a. Element PR OT NT A ST1 1.10 1.19 1.309 1.15 1.5052 1.15 .83 .955 1.15 1.09831.05.56.588 1.15 .676b.01.A 00.2z 034.s 83.x ==== 222(.034)67.12~68.01(.83)zs n observations ax ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭c. e = .01 minutes 47 to round ,24.4601.)034(.2e zs n 22=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=Chapter 07- Location Planning and Analysis1. Factor Local bank Steel mill Food warehouse Public school1. Convenience forcustomers H L M–H M–H2. Attractiveness ofbuilding H L M M–H3. Nearness to rawmaterials L H L M4. Large amounts ofpower L H L L5. Pollution controls L H L L6. Labor cost andavailability L M L L7. Transportationcosts L M–H M–H M8. Constructioncosts M H M M–HLocation (a) Location (b)4. Factor A B C Weight A B C1. Business Services 9 5 5 2/9 18/9 10/9 10/92. Community Services 7 6 7 1/9 7/9 6/9 7/93. Real Estate Cost 3 8 7 1/9 3/9 8/9 7/94. Construction Costs 5 6 5 2/9 10/9 12/9 10/95. Cost of Living 4 7 8 1/9 4/9 7/9 8/96. Taxes 5 5 5 1/9 5/9 5/9 4/97. Transportation 6 7 8 1/9 6/9 7/9 8/9Total 39 44 45 1.0 53/9 55/9 54/9 Each factor has a weight of 1/7.a. Composite Scores 39 44 45 7 7 7B orC is the best and A is least desirable.b. Business Services and Construction Costs both have a weight of 2/9; the other factors eachhave a weight of 1/9.5 x + 2 x + 2 x = 1 x = 1/9c. Composite ScoresA B C 53/9 55/9 54/9B is the best followed byC and then A.5.Locationx yA 3 7B 8 2C 4 6D 4 1E 6 4Totals 25 20-x =∑x i= 25 = 5.0 -y =∑y i= 20 = 4.0 n 5 n 5Hence, the center of gravity is at (5,4) and therefore the optimal location.Chapter 08 - Management of Quality1. ChecksheetWork Type FrequencyLube and Oil 12Brakes 7Tires 6Battery 4Transmission 1Total 30ParetoLube & Oil Brakes Tires Battery Trans.2 .The run charts seems to show a pattern of errors possibly linked to break times or the end of the shift. Perhaps workers are becoming fatigued. If so, perhaps two 10 minute breaks in the morning and again in the afternoon instead of one 20 minute break could reduce some errors. Also, errors are occurring during the last few minutes before noon and the end of the shift, and those periods should also be given management’s attention.4break lunch break3 2 1 0• • •• • • ••• • • ••••••• ••• •• • •• • •••Chapter 9 - Quality Control4. Sample Mean Range179.48 2.6 Mean Chart: =X ± A 2-R = 79.96 ± 0.58(1.87) 2 80.14 2.3 = 79.96 ± 1.083 80.14 1.2UCL = 81.04, LCL = 78.884 79.60 1.7 Range Chart: UCL = D 4-R = 2.11(1.87) = 3.95 5 80.02 2.0LCL = D 3-R = 0(1.87) = 0680.381.4[Both charts suggest the process is in control: Neither has any points outside the limits.]6. n = 200 Control Limits = np p p )1(2-±Thus, UCL is .0234 and LCL becomes 0.Since n = 200, the fraction represented by each data point is half the amount shown. E.g., 1 defective = .005, 2 defectives = .01, etc.Sample 10 is too large.7. 857.714110c ==Control limits: 409.8857.7c 3c ±=± UCL is 16.266, LCL becomes 0.All values are within the limits.14. Let USL = Upper Specification Limit, LSL = Lower Specification Limit,X = Process mean, σ = Process standard deviationFor process H:}{capablenot ,0.193.93.04.1 ,938.min 04.1)32)(.3(1516393.)32)(.3(1.14153<===-=σ-=-=σ-pk C X USL LSL X 0096.)200(1325==p 0138.0096.200)9904(.0096.20096.±=±=For process K:.1}17.1,0.1min{17.1)1)(3(335.3630.1)1)(3(30333===-=σ-=-=σ- C X USL LSL X pk Assuming the minimum acceptable pk C is 1.33, since 1.0 < 1.33, the process is not capable.For process T:33.1}33.1,67.1min{33.1)4.0)(3(5.181.20367.1)4.0)(3(5.165.183===-=σ-=-=σ- C X USL LSL X pk Since 1.33 = 1.33, the process is capable.Chapter 10 - Aggregate Planning and Master Scheduling7. a.No backlogs are allowedPeriodForecast Output Regular Overtime Subcontract Output - Forecast Inventory Beginning Ending Average Backlog Costs: Regular Overtime Subcontract Inventory Totalb. Level strategyPeriodForecastOutputRegularOvertimeSubcontractOutput - ForecastInventoryBeginningEndingAverageBacklogCosts:RegularOvertimeSubcontractInventoryBacklogTotal8.PeriodForecastOutputRegularOvertimeSubcontractOutput- ForecastInventoryBeginningEndingAverageBacklogCosts:RegularOvertimeSubcontractInventoryBacklogTotalChapter 11 - MRP and ERP1. a. F: 2 G: 1 H: 1J: 2 x 2 = 4 L: 1 x 2 = 2 A: 1 x 4 = 4D: 2 x 4 = 8 J: 1 x 2 = 2 D: 1 x 2 = 2Totals: F = 2; G = 1; H = 1; J = 6; D = 10; L = 2; A = 44. Master Schedule10. Week 1 2 3 4Material 40 80 60 70Week 1 2 3 4Labor hr. 160 320 240 280Mach. hr. 120 240 180 210a. Capacity utilizationWeek 1 2 3 4Labor 53.3% 106.7% 80% 93.3%Machine 60% 120% 90% 105%b. C apacity utilization exceeds 100% for both labor and machine in week 2, and formachine alone in week 4.Production could be shifted to earlier or later weeks in which capacity isunderutilized. Shifting to an earlier week would result in added carrying costs;shifting to later weeks would mean backorder costs.Another option would be to work overtime. Labor cost would increase due toovertime premium, a probable decrease in productivity, and possible increase inaccidents.Chapter 12 - Inventory Management2. The following table contains figures on the monthly volume and unit costs for a random sample of 16 items for a list of 2,000 inventory items.a. See table.b. To allocate control efforts.c. It might be important for some reason other than dollar usage, such as cost of astockout, usage highly correlated to an A item, etc.3. D = 1,215 bags/yr. S = $10 H = $75a. bags HDS Q 187510)215,1(22===b. Q/2 = 18/2 = 9 bagsc.orders ordersbags bags Q D 5.67/ 18 215,1== d . S QD H 2/Q TC +=350,1$675675)10(18215,1)75(218=+=+=e. Assuming that holding cost per bag increases by $9/bag/yearQ ==84)10)(215,1(217 bags71.428,1$71.714714)10(17215,1)84(217=+=+=TCIncrease by [$1,428.71 – $1,350] = $78.714.D = 40/day x 260 days/yr. = 10,400 packagesS = $60 H = $30a. oxes b 20496.2033060)400,10(2H DS 2Q 0====b. S QD H 2Q TC +=82.118,6$82.058,3060,3)60(204400,10)30(2204=+=+=c. Yesd. )60(200400,10)30(2200TC 200+=TC 200 = 3,000 + 3,120 = $6,1206,120 – 6,118.82 (only $1.18 higher than with EOQ, so 200 is acceptable.)7.H = $2/month S = $55D 1 = 100/month (months 1–6)D 2 = 150/month (months 7–12)a. 16.74255)100(2Q :D H DS2Q 010===83.90255)150(2Q :D 02==b. The EOQ model requires this.c. Discount of $10/order is equivalent to S – 10 = $45 (revised ordering cost)1–6 TC74 = $148.32180$)45(150100)2(2150TC 145$)45(100100)2(2100TC *140$)45(50100)2(250TC 15010050=+==+==+=7–12 TC 91 =$181.66195$)45(150150)2(2150TC *5.167$)45(100150)2(2100TC 185$)45(50150)2(250TC 15010050=+==+==+=10. p = 50/ton/day u = 20 tons/day200 days/yr.S = $100 H = $5/ton per yr.a. bags] [10,328 tons 40.5162050505100)000,4(2u p p H DS 2Q 0=-=-=b. ]bags 8.196,6 .approx [ tons 84.309)30(504.516)u p (P Q I max ==-=Average is92.154248.309:2I max =tons [approx. 3,098 bags] c. Run length =days 33.10504.516P Q == d. Runs per year = 8] approx .[ 7.754.516000,4QD == e. Q ' = 258.2TC =S QD H 2I max + TC orig. = $1,549.00 TC rev. = $ 774.50Savings would be $774.50D= 20 tons/day x 200 days/yr. = 4,000 tons/yr.15. RangeP H Q D = 4,900 seats/yr. 0–999 $5.00 $2.00 495 H = .4P 1,000–3,999 4.95 1.98 497 NF S = $50 4,000–5,999 4.90 1.96 500 NF 6,000+ 4.85 1.94503 NFCompare TC 495 with TC for all lower price breaks:TC 495 =495 ($2) + 4,900($50) + $5.00(4,900) = $25,490 2 495 TC 1,000 = 1,000 ($1.98) + 4,900($50) + $4.95(4,900) = $25,4902 1,000 TC 4,000 = 4,000 ($1.96) + 4,900($50) + $4.90(4,900) = $27,9912 4,000 TC 6,000 = 6,000 ($1.94) + 4,900($50) + $4.85(4,900) = $29,6262 6,000Hence, one would be indifferent between 495 or 1,000 units 22. d = 30 gal./day ROP = 170 gal. LT = 4 days,ss = Z σd LT = 50 galRisk = 9% Z = 1.34 Solving, σd LT = 37.31 3% Z = 1.88, ss=1.88 x 37.31 = 70.14 gal.Chapter 13 - JIT and Lean Operations1. N = ?N = DT(1 + X)D = 80 pieces per hourC T = 75 min. = 1.25 hr. = 80(1.25) (1.35)= 3C = 45 45X = .35QuantityTC4. The smallest daily quantity evenly divisible into all four quantities is 3. Therefore, usethree cycles.Product Daily quantity Units per cycleA 21 21/3 = 7B 12 12/3 = 4C 3 3/3 = 1D 15 15/3 = 55.a. Cycle 1 2 3 4A 6 6 5 5B 3 3 3 3C 1 1 1 1D 4 4 5 5E 2 2 2 2 b. Cycle 1 2A 11 11B 6 6C 2 2D 8 8E 4 4c. 4 cycles = lower inventory, more flexibility2 cycles = fewer changeovers7. Net available time = 480 – 75 = 405. Takt time = 405/300 units per day = 1.35 minutes. Chapter 15 - Scheduling6. a. FCFS: A–B–C–DSPT: D–C–B–AEDD: C–B–D–ACR: A–C–D–BFCFS: Job time Flow time Due date DaysJob (days) (days) (days) tardyA 14 14 20 0B 10 24 16 8C 7 31 15 16D 6 37 17 2037 106 44SPT: Job time Flow time Due date Days Job (days) (days) (days) tardyD 6 6 17 0C 7 13 15 0B 10 23 16 7A 14 37 20 1737 79 24EDD:Job D has the lowest critical ratio therefore it is scheduled next and completed on day 27.b.ardi Flow time Average flow time Number of jobsDays tardy Average job t ness Number of jobs Flow timeAverage number of jobs at the center Makespan==∑=FCFS SPT EDD CR26.50 19.75 21.00 24.75 11.0 6.00 6.00 9.25 2.86 2.142.272.67c. SPT is superior.9.Thus, the sequence is b-a-g-e-f-d-c.。
《运营管理》课后习题标准答案

《运营管理》课后习题答案————————————————————————————————作者:————————————————————————————————日期:2Chapter 02 - Competitiveness, Strategy, and Productivity3. (1) (2) (3) (4) (5) (6) (7)Week Output WorkerCost@$12x40Overhead********MaterialCost@$6TotalCostMFP(2) ÷ (6)1 30,000 2,880 4,320 2,700 9,900 3.032 33,600 3,360 5,040 2,820 11,220 2.993 32,200 3,360 5,040 2,760 11,160 2.894 35,400 3,840 5,760 2,880 12,480 2.84*refer to solved problem #2Multifactor productivity dropped steadily from a high of 3.03 to about 2.84.4. a. Before: 80 ÷ 5 = 16 carts per worker per hour.After: 84 ÷ 4 = 21 carts per worker per hour.b. Before: ($10 x 5 = $50) + $40 = $90; hence 80 ÷ $90 = .89 carts/$1.After: ($10 x 4 = $40) + $50 = $90; hence 84 ÷ $90 = .93 carts/$1.c. Labor productivity increased by 31.25% ((21-16)/16).Multifactor productivity increased by 4.5% ((.93-.89)/.89).*Machine ProductivityBefore: 80 ÷ 40 = 2 carts/$1.After: 84 ÷ 50 = 1.68 carts/$1.Productivity increased by -16% ((1.68-2)/2)Chapter 03 - Product and Service Design6. Steps for Making Cash Withdrawal from an ATM1. Insert Card: Magnetic Strip Should be Facing Down2. Watch Screen for Instructions3. Select Transaction Options:1) Deposit2) Withdrawal3) Transfer4) Other4. Enter Information:1) PIN Number2) Select a Transaction and Account3) Enter Amount of Transaction5. Deposit/Withdrawal: 1) Deposit —place in an envelope (which you’ll find near or in the ATM) andinsert it into the deposit slot2) Withdrawal —lift the “Withdrawal Door,” being careful to remove all cash6. Remove card and receipt (which serves as the transaction record)8.TechnicalRequirements IngredientsHandlingPreparationCustomer RequirementsTaste √√ Appearance√ √√Texture/consistency√√Chapter 04 - Strategic Capacity Planning for Products and Services2. %80capacityEffective outputActual Efficiency ==Actual output = .8 (Effective capacity) Effective capacity = .5 (Design capacity) Actual output = (.5)(.8)(Effective capacity) Actual output = (.4)(Design capacity) Actual output = 8 jobs Utilization = .4capacityDesign outputActual =n Utilizatiojobs 204.8capacity Effective output Actual Capacity Design ===10. a. Given: 10 hrs. or 600 min. of operating time per day.250 days x 600 min. = 150,000 min. per year operating time.Total processing time by machineProductABC 1 48,000 64,000 32,000 2 48,000 48,000 36,000 3 30,000 36,000 24,000 460,000 60,000 30,000 Total 186,000208,000122,000machine181.000,150000,122machine 238.1000,150000,208machine224.1000,150000,186≈==≈==≈==C B A N N NYou would have to buy two “A” machines at a total cost of $80,000, or two “B” machines at a total cost of $60,000, or one “C” machine at $80,000.b.Total cost for each type of machine:A (2): 186,000 min ÷ 60 = 3,100 hrs. x $10 = $31,000 + $80,000 = $111,000B (2) : 208,000 ÷ 60 = 3,466.67 hrs. x $11 = $38,133 + $60,000 = $98,133 C(1): 122,000 ÷ 60 = 2,033.33 hrs. x $12 = $24,400 + $80,000 = $104,400Buy 2 Bs —these have the lowest total cost.Chapter 05 - Process Selection and Facility Layout3.3 adf752 b4 c4 e9 h5 i6 gDesired output = 4Operating time = 56 minutesunit per minutes 14hourper units 4hourper minutes 65output Desired time Operating CT ===Task # of Following tasksPositional WeightA 4 23B 3 20C 2 18D 3 25E 2 18F 4 29G 3 24H 1 14 I5a. First rule: most followers. Second rule: largest positional weight.Assembly Line Balancing Table (CT = 14)Work StationTask Task TimeTime RemainingFeasible tasksRemainingIF 5 9 A,D,G A 3 6 B,G G6 – – II D7 7 B, E B 2 5 C C4 1 – III E 4 10 H H9 1 – IV I59–b. First rule: Largest positional weight.Assembly Line Balancing Table (CT = 14)Work StationTask Task TimeTime RemainingFeasible tasks RemainingIF 5 9 A,D,G D7 2 – II G 6 8 A, E A 3 5 B,E B2 3 – III C 4 10 E E4 6 – IV H 95 I I5–c. %36.805645stations of no. x CT time Total Efficiency ===4. a. l.2. Minimum Ct = 1.3 minutesTask Following tasksa 4b 3c 3d 2e 3f 2g 1habd cfeghWork StationEligible Assign Time RemainingIdle TimeIa A 1.1 b,c,e, (tie)B 0.7C 0.4E 0.3 0.3 II d D 0.0 0.0 IIIf,g F 0.5G 0.2 0.2 IVh H 0.1 0.10.63. percent 54.11)3.1(46.CT x N time)(idle percent Idle ==∑=4. 420 min./day 323.1 ( 323)/1.3 min./OT Output rounds to copiers day CT cycle=== b. 1. inutes m 3.224.6N time Total CT ,6.4 time Total ==== 2. Assign a, b, c, d, and e to station 1: 2.3 minutes [no idle time]Assign f, g, and h to station 2: 2.3 minutes3. 420182.6 copiers /2.3OT Output day CT ===4.420 min./dayMaximum Ct is 4.6. Output 91.30 copiers /4.6 min./day cycle==7. 1 5 4 3 8 762Chapter 06 - Work Design and Measurement3. Element PR OT NT AF job ST1 .90.46.414 1.15 .4762 .85 1.505 1.280 1.15 1.4723 1.10.83.913 1.15 1.05041.00 1.16 1.160 1.15 1.334Total4.3328. A = 24 + 10 + 14 = 48 minutes per 4 hours.min 125.720.11x70.5ST .min 70.5)95(.6NT 20.24048A =-=====9. a. Element PR OT NT A ST1 1.10 1.19 1.309 1.15 1.5052 1.15 .83 .955 1.15 1.09831.05.56.588 1.15 .676b.01.A 00.2z 034.s 83.x ==== 222(.034)67.12~68.01(.83)zs n observations ax ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭c. e = .01 minutes 47 to round ,24.4601.)034(.2e zs n 22=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=Chapter 07- Location Planning and Analysis1. Factor Local bank Steel mill Food warehouse Public school1. Convenience forcustomers H L M–H M–H2. Attractiveness ofbuilding H L M M–H3. Nearness to rawmaterials L H L M4. Large amounts ofpower L H L L5. Pollution controls L H L L6. Labor cost andavailability L M L L7. Transportationcosts L M–H M–H M8. Constructioncosts M H M M–HLocation (a) Location (b)4. Factor A B C Weight A B C1. Business Services 9 5 5 2/9 18/9 10/9 10/92. Community Services 7 6 7 1/9 7/9 6/9 7/93. Real Estate Cost 3 8 7 1/9 3/9 8/9 7/94. Construction Costs 5 6 5 2/9 10/9 12/9 10/95. Cost of Living 4 7 8 1/9 4/9 7/9 8/96. Taxes 5 5 5 1/9 5/9 5/9 4/97. Transportation 6 7 8 1/9 6/9 7/9 8/9Total 39 44 45 1.0 53/9 55/9 54/9 Each factor has a weight of 1/7.a. Composite Scores 39 44 45 7 7 7B orC is the best and A is least desirable.b. Business Services and Construction Costs both have a weight of 2/9; the other factors eachhave a weight of 1/9.5 x + 2 x + 2 x = 1 x = 1/9c. Composite ScoresA B C 53/9 55/9 54/9B is the best followed byC and then A.5.Locationx yA 3 7B 8 2C 4 6D 4 1E 6 4Totals 25 20-x =∑x i= 25 = 5.0 -y =∑y i= 20 = 4.0 n 5 n 5Hence, the center of gravity is at (5,4) and therefore the optimal location.Chapter 08 - Management of Quality1. ChecksheetWork Type FrequencyLube and Oil 12Brakes 7Tires 6Battery 4Transmission 1Total 30Pareto127641 Lube & Oil Brakes Tires Battery Trans.2 .The run charts seems to show a pattern of errors possibly linked to break times or the end of the shift. Perhaps workers are becoming fatigued. If so, perhaps two 10 minute breaks in the morning and again in the afternoon instead of one 20 minute break could reduce some errors. Also, errors are occurring during the last few minutes before noon and the end of the shift, and those periods should also be given management’s attention.4Power Per LamMissDidn’Not OutletDefectBurn LoosLampOtheCordbreak lunch3 2•• •• •• • ••• • ••• •••• ••• •• • •• • •••Chapter 9 - Quality Control4. Sample Mean Range179.48 2.6 Mean Chart: =X ± A 2-R = 79.96 ± 0.58(1.87) 2 80.14 2.3 = 79.96 ± 1.083 80.14 1.2UCL = 81.04, LCL = 78.884 79.60 1.7 Range Chart: UCL = D 4-R = 2.11(1.87) = 3.95 5 80.02 2.0LCL = D 3-R = 0(1.87) = 0680.381.4[Both charts suggest the process is in control: Neither has any points outside the limits.]6. n = 200 Control Limits = np p p )1(2-±Thus, UCL is .0234 and LCL becomes 0.Since n = 200, the fraction represented by each data point is half the amount shown. E.g., 1 defective = .005, 2 defectives = .01, etc.Sample 10 is too large.7. 857.714110c ==Control limits: 409.8857.7c 3c ±=± UCL is 16.266, LCL becomes 0.All values are within the limits.14. Let USL = Upper Specification Limit, LSL = Lower Specification Limit,X = Process mean, σ = Process standard deviationFor process H:}{capablenot ,0.193.93.04.1 ,938.min 04.1)32)(.3(1516393.)32)(.3(1.14153<===-=σ-=-=σ-pk C X USL LSL X 0096.)200(1325==p 0138.0096.200)9904(.0096.20096.±=±=For process K:.1}17.1,0.1min{17.1)1)(3(335.3630.1)1)(3(30333===-=σ-=-=σ- C X USL LSL X pk Assuming the minimum acceptable pk C is 1.33, since 1.0 < 1.33, the process is not capable.For process T:33.1}33.1,67.1min{33.1)4.0)(3(5.181.20367.1)4.0)(3(5.165.183===-=σ-=-=σ- C X USL LSL X pk Since 1.33 = 1.33, the process is capable.Chapter 10 - Aggregate Planning and Master Scheduling7. a.No backlogs are allowedPeriod Mar. Apr. May Jun. July Aug. Sep. TotalForecast 50 44 55 60 50 40 51 350 Output Regular 40 40 40 40 40 40 40 280 Overtime 8 8 8 8 8 3 8 51 Subcontract 2 0 3 12 2 0 0 19 Output - Forecast 0 4 –4 0 0 3 –3 Inventory Beginning 0 0 4 0 0 0 3 Ending 0 4 0 0 0 3 0 Average 0 2 2 0 0 1.5 1.5 7 Backlog 0 0 0 0 0 0 0 0 Costs: Regular 3,200 3,200 3,200 3,200 3,200 3,200 3,200 22,400 Overtime 960 960 960 960 960 360 960 6,120 Subcontract 280 0 420 1,680280 0 0 2,660 Inventory 0 20 20 0 0 15 15 70 Total4,4404,1804,6005,8404,4403,575 4,17531,250b. Level strategyPeriod Mar. Apr. May Jun. July Aug. Sep. Total Forecast 50 44 55 60 50 40 51 350 OutputRegular 40 40 40 40 40 40 40 280 Overtime 8 8 8 8 8 8 8 56 Subcontract 2 2 2 2 2 2 2 14 Output - Forecast 0 6 –5 –10 0 10 –1InventoryBeginning 0 0 6 1 0 0 1Ending 0 6 1 0 0 1 0Average 0 3 3.5 .5 0 .5 .5 8 Backlog 0 0 0 9 9 0 0 18 Costs:Regular 3,200 3,200 3,200 3,200 3,200 3,200 3,200 22,400 Overtime 960 960 960 960 960 960 960 6,720 Subcontract 280 280 280 280 280 280 280 1,960 Inventory 30 35 5 0 5 5 80 Backlog 180 180 360 Total 4,440 4,470 4,475 4,625 4,620 4,445 4,445 31,520 8.Period 1 2 3 4 5 6 TotalForecast 160 150 160 180 170 140 960OutputRegular 150 150 150 150 160 160 920Overtime 10 10 0 10 10 10 50Subcontract 0 0 10 10 0 0 20Output- Forecast 0 10 0 –10 0 0InventoryBeginning 0 0 10 10 0 0Ending 0 10 10 0 0 0Average 0 5 10 5 0 0 20Backlog 0 0 0 0 0 0 0Costs:Regular 7,500 7,500 7,500 7,500 8,000 8,000 46,000Overtime 750 750 0 750 750 750 3,750Subcontract 0 0 800 800 0 0 1,600Inventory 20 40 20 80Backlog 0 0 0 0 0 0Total 8,250 8,270 8,340 9,070 9,050 8,750 51,430Chapter 11 - MRP and ERP1. a. F: 2 G: 1 H: 1J: 2 x 2 = 4 L: 1 x 2 = 2 A: 1 x 4 = 4D: 2 x 4 = 8 J: 1 x 2 = 2 D: 1 x 2 = 2Totals: F = 2; G = 1; H = 1; J = 6; D = 10; L = 2; A = 4b.4. Master Schedule Day Beg. Inv. 1 2 3 4 5 6 7 Quantity100 150 200 TableBeg. Inv. 1 2 3 4 5 6 7 Gross requirements 100 150 200 Scheduled receipts Projected on hand Net requirements 100 150 200 Planned-order receipts 100 150 200 Planned-order releases 100 150 200Wood Sections Beg. Inv. 1 2 3 4 5 6 7 Gross requirements 200300 400 Scheduled receipts 100 Projected on hand 100100 Net requirements 100 300 400 Planned-order receipts 100 300 400 Planned-order releases400 400Braces Beg. Inv. 1 2 3 4 5 6 7 Gross requirements 300 450 600 Scheduled receipts Projected on hand 60 60 60 60 Net requirements 240 450 600 Planned-order receipts 240 450 600Planned-order releases 240 450 600StaplerTopBaseCoveSpri SlideBase Strik RubberSlidSpriLegs Beg.Inv.1 2 3 4 5 6 7Gross requirements 400 600 800Scheduled receiptsProjected on hand 120 120 120 120 88 88 71 Net requirements 280 600 800Planned-order receipts 308 660 880Planned-order releases 968 88010. Week 1 2 3 4Material 40 80 60 70Week 1 2 3 4Labor hr. 160 320 240 280Mach. hr. 120 240 180 210a. Capacity utilizationWeek 1 2 3 4Labor 53.3% 106.7% 80% 93.3%Machine 60% 120% 90% 105%b. C apacity utilization exceeds 100% for both labor and machine in week 2, and formachine alone in week 4.Production could be shifted to earlier or later weeks in which capacity isunderutilized. Shifting to an earlier week would result in added carrying costs;shifting to later weeks would mean backorder costs.Another option would be to work overtime. Labor cost would increase due toovertime premium, a probable decrease in productivity, and possible increase inaccidents.Chapter 12 - Inventory Management2. The following table contains figures on the monthly volume and unit costs for a random sample of 16 items for a list of 2,000 inventory items. DollarItemUnit Cost UsageUsageCategoryK34 10 200 2,000 C K35 25 600 15,000 A K36 36 150 5,400 B M10 16 25 400 C M20 20 80 1,600 C Z45 80 250 16,000 A F14 20 300 6,000 B F95 30 800 24,000 A F99 20 60 1,200 C D45 10 550 5,500 B D48 12 90 1,080 C D52 15 110 1,650 C D57 40 120 4,800 B N08 30 40 1,200 C P05 16 500 8,000 BP091030300Ca. See table.b. To allocate control efforts.c. It might be important for some reason other than dollar usage, such as cost of astockout, usage highly correlated to an A item, etc.3. D = 1,215 bags/yr. S = $10 H = $75a. bags HDS Q 187510)215,1(22===b. Q/2 = 18/2 = 9 bagsc.orders ordersbags bags Q D 5.67/ 18 215,1== d . S QD H 2/Q TC +=350,1$675675)10(18215,1)75(218=+=+=e. Assuming that holding cost per bag increases by $9/bag/yearQ ==84)10)(215,1(217 bags71.428,1$71.714714)10(17215,1)84(217=+=+=TCIncrease by [$1,428.71 – $1,350] = $78.714.D = 40/day x 260 days/yr. = 10,400 packagesS = $60 H = $30a. oxes b 20496.2033060)400,10(2H DS 2Q 0====b. S QD H 2Q TC +=82.118,6$82.058,3060,3)60(204400,10)30(2204=+=+=c. Yesd. )60(200400,10)30(2200TC 200+=TC 200 = 3,000 + 3,120 = $6,1206,120 – 6,118.82 (only $1.18 higher than with EOQ, so 200 is acceptable.)7.H = $2/month S = $55D 1 = 100/month (months 1–6)D 2 = 150/month (months 7–12)a. 16.74255)100(2Q :D H DS2Q 010===83.90255)150(2Q :D 02==b. The EOQ model requires this.c. Discount of $10/order is equivalent to S – 10 = $45 (revised ordering cost)1–6 TC74 = $148.32180$)45(150100)2(2150TC 145$)45(100100)2(2100TC *140$)45(50100)2(250TC 15010050=+==+==+=7–12 TC 91 =$181.66195$)45(150150)2(2150TC *5.167$)45(100150)2(2100TC 185$)45(50150)2(250TC 15010050=+==+==+=10. p = 50/ton/day u = 20 tons/day200 days/yr. S = $100 H = $5/ton per yr.a. bags] [10,328 tons 40.5162050505100)000,4(2u p p H DS 2Q 0=-=-=b. ]bags 8.196,6 .approx [ tons 84.309)30(504.516)u p (P Q I max ==-=Average is92.154248.309:2I max =tons [approx. 3,098 bags] c. Run length =days 33.10504.516P Q == d. Runs per year = 8] approx .[ 7.754.516000,4QD == e. Q ' = 258.2TC =S QD H 2I max + TC orig. = $1,549.00 TC rev. = $ 774.50Savings would be $774.50D= 20 tons/day x 20015. RangeP H Q D = 4,900 seats/yr. 0–999 $5.00 $2.00 495 H = .4P 1,000–3,999 4.95 1.98 497 NF S = $50 4,000–5,999 4.90 1.96 500 NF 6,000+4.851.94503 NFCompare TC 495 with TC for all lower price breaks:TC 495 =495 ($2) + 4,900($50) + $5.00(4,900) = $25,490 2 495 TC 1,000 = 1,000 ($1.98) + 4,900($50) + $4.95(4,900) = $25,4902 1,000 TC 4,000 = 4,000 ($1.96) + 4,900($50) + $4.90(4,900) = $27,9912 4,000 TC 6,000 = 6,000 ($1.94) + 4,900($50) + $4.85(4,900) = $29,6262 6,000Hence, one would be indifferent between 495 or 1,000 units 22. d = 30 gal./day ROP = 170 gal. LT = 4 days,ss = Z σd LT = 50 galRisk = 9% Z = 1.34 Solving, σd LT = 37.31 3% Z = 1.88, ss=1.88 x 37.31 = 70.14 gal.Chapter 13 - JIT and Lean Operations1. N = ?N = DT(1 + X)D = 80 pieces per hourC T = 75 min. = 1.25 hr. = 80(1.25) (1.35)= 3C = 45 45X = .35• •• •495 497 500 5031,0004,000 6,000QuantityTC4. The smallest daily quantity evenly divisible into all four quantities is 3. Therefore, usethree cycles.Product Daily quantity Units per cycleA 21 21/3 = 7B 12 12/3 = 4C 3 3/3 = 1D 15 15/3 = 55.a. Cycle 1 2 3 4A 6 6 5 5B 3 3 3 3C 1 1 1 1D 4 4 5 5E 2 2 2 2 b. Cycle 1 2A 11 11B 6 6C 2 2D 8 8E 4 4c. 4 cycles = lower inventory, more flexibility2 cycles = fewer changeovers7. Net available time = 480 – 75 = 405. Takt time = 405/300 units per day = 1.35 minutes. Chapter 15 - Scheduling6. a. FCFS: A–B–C–DSPT: D–C–B–AEDD: C–B–D–ACR: A–C–D–BFCFS: Job time Flow time Due date DaysJob (days) (days) (days) tardyA 14 14 20 0B 10 24 16 8C 7 31 15 16D 6 37 17 2037 106 44SPT: Job time Flow time Due date Days Job (days) (days) (days) tardyD 6 6 17 0C 7 13 15 0B 10 23 16 7A 14 37 20 1737 79 24EDD: Job time Flow time Due date DaysJob (days) (days) (days) tardyC 7 7 15 0B 10 17 16 1D 6 23 17 6A 14 37 20 1784 24Critical RatioJob Processing Time(Days) Due Date Critical Ratio CalculationA 14 20 (20 – 0) / 14 = 1.43B 10 16 (16 – 0) /10 = 1.60C 7 15 (15 – 0) / 7 = 2.14D 6 17 (17 – 0) / 6 = 2.83Job A has the lowest critical ratio, therefore it is scheduled first and completed on day 14. After the completion of Job A, the revised critical ratios are:Job Processing Time(Days) Due Date Critical Ratio CalculationA –––B 10 16 (16 – 14) /10 = 0.20C 7 15 (15 – 14) / 7 = 0.14D 6 17 (17 – 14) / 6 = 0.50Job C has the lowest critical ratio, therefore it is scheduled next and completed on day 21. After the completion of Job C, the revised critical ratios are:Job Processing Time(Days) Due Date Critical Ratio CalculationA –––B 10 16 (16 – 21) /10 = –0.50C –––D 6 17 (17 – 21) / 6 = –0.67Job D has the lowest critical ratio therefore it is scheduled next and completed on day 27. The critical ratio sequence is A –C –D –B and the makespan is 37 days. Critical Ratio sequenceProcessing Time(Days)Flow time Due Date TardinessA 14 14 20 0 C 7 21 15 6 D 6 27 17 10 B1037 16 21 ∑9937b.ardi Flow time Average flow time Number of jobsDays tardy Average job t ness Number of jobs Flow timeAverage number of jobs at the center Makespan==∑=FCFS SPT EDD CR26.50 19.75 21.00 24.75 11.0 6.00 6.00 9.25 2.86 2.142.272.67c. SPT is superior.9.Time (hr.) Sequence of assignment:Order Step 1 Step 2A 1.20 1.40 .80 [C] last (or 7th)B 0.90 1.30 .90 [B] firstC 2.00 0.80 1.20 [A] 2ndD 1.70 1.50 1.30 [G] 3rdE 1.60 1.80 1.60 [E] 4thF 2.20 1.75 1.50 [D] 6th G1.301.401.75[F]5thThus, the sequence is b-a-g-e-f-d-c.。
《运营管理》威廉.史蒂文森著,张群、张杰、马风才译,机械工业出版社(第11版课后习题答案)

23 0.96 0.01749
材料/磅 多要素生产率
1
30000 6
450
9900 3.03
2
33600 7
470
11220 2.99
3
32200 7
460
11160 2.89
4
35400 8
480
12480 2.84
第4题 工人
买设备前 买设备后
美元/小时 生产率
每小时产量 劳动成本 机器成本 劳动 多要素
5
80
10
40
16
0.89
第1题
庆典 婚宴
工人
套餐 8 6
生产率
300
37.5 低
240
40 高
为什
第2题 周
小组人数 铺放码数 生产率
1
4
96
24
2
3
72
24
3
4
92
23
4
2
50
25
5
3
69
23
6
2
52
26
人数与生产率?
第3题 周工作
40H
工资 12﹩/H
材料成本 6﹩/磅
单价 140
管理费 周劳动成 本1.5倍
周
产量 工人
2
3.5
400 6.30
28
2
3.6
400 6.71
第9题 雇员
周工作/ 人
工时费/H
合约数
材料费 管理费
3
40
25
360 1000 9000
3
生产率 1.938462
2小题 生产率
日接待顾 客
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter 02 - Competitiveness, Strategy, and Productivity3. (1) (2) (3) (4) (5) (6) (7)Week Output WorkerCost@$12x40OverheadCost @MaterialCost@$6TotalCostMFP(2) ÷ (6)1 30,000 2,880 4,320 2,700 9,9002 33,600 3,360 5,040 2,820 11,2203 32,200 3,360 5,040 2,760 11,1604 35,400 3,840 5,760 2,880 12,480*refer to solved problem #2Multifactor productivity dropped steadily from a high of to about .4. a. Before: 80 ÷ 5 = 16 carts per worker per hour.After: 84 ÷ 4 = 21 carts per worker per hour.b. Before: ($10 x 5 = $50) + $40 = $90; hence 80 ÷ $90 = .89 carts/$1.After: ($10 x 4 = $40) + $50 = $90; hence 84 ÷ $90 = .93 carts/$1.c. Labor productivity increased by % ((21-16)/16).Multifactor productivity increased by % ((./.89).*Machine ProductivityBefore: 80 ÷ 40 = 2 carts/$1.After: 84 ÷ 50 = carts/$1.Productivity increased by -16% (/2)Chapter 03 - Product and Service Design6. Steps for Making Cash Withdrawal from an ATM1. Insert Card: Magnetic Strip Should be Facing Down2. Watch Screen for Instructions3. Select Transaction Options:1) Deposit2) Withdrawal3) Transfer4) Other4. Enter Information:1) PIN Number2) Select a Transaction and Account3) Enter Amount of Transaction5. Deposit/Withdrawal: 1) Deposit —place in an envelope (which you’ll find near or in the ATM) andinsert it into the deposit slot2) Withdrawal —lift the “Withdrawal Door,” being careful to remove all cash6. Remove card and receipt (which serves as the transaction record)8.Chapter 04 - Strategic Capacity Planning for Products and Services2. %80capacityEffective outputActual Efficiency ==Actual output = .8 (Effective capacity) Effective capacity = .5 (Design capacity) Actual output = (.5)(.8)(Effective capacity) Actual output = (.4)(Design capacity) Actual output = 8 jobs Utilization = .4capacityDesign outputActual =n Utilizatiojobs 204.8capacity Effective output Actual Capacity Design ===10. a. Given: 10 hrs. or 600 min. of operating time per day.250 days x 600 min. = 150,000 min. per year operating time.Total processing time by machineProductABC 1 48,000 64,000 32,000 2 48,000 48,000 36,000 3 30,000 36,000 24,000 460,000 60,000 30,000 Total 186,000208,000122,000machine181.000,150000,122machine 238.1000,150000,208machine224.1000,150000,186≈==≈==≈==C B A N N NYou would have to buy two “A” machines at a total cost of $80,000, or two “B” machines at a total cost of $60,000, or one “C” machine at $80,000.b.Total cost for each type of machine:A (2): 186,000 min ÷ 60 = 3,100 hrs. x $10 = $31,000 + $80,000 = $111,000B (2) : 208,000 ÷ 60 = 3, hrs. x $11 = $38,133 + $60,000 = $98,133 C(1): 122,000 ÷ 60 = 2, hrs. x $12 = $24,400 + $80,000 = $104,400Buy 2 Bs —these have the lowest total cost.Chapter 05 - Process Selection and Facility Layout3.Desired output = 4Operating time = 56 minutesunit per minutes 14hourper units 4hourper minutes 65output Desired time Operating CT ===Task # of Following tasksPositional WeightA 4 23B 3 20C 2 18D 3 25E 2 18F 4 29G 3 24H 1 14 I5a. First rule: most followers. Second rule: largest positional weight.Assembly Line Balancing Table (CT = 14)b. First rule: Largest positional weight.Assembly Line Balancing Table (CT = 14)c. %36.805645stations of no. x CT time Total Efficiency ===4. a. l.2. Minimum Ct = minutesTask Following tasksa 4b 3c 3d 2e 3f 2g 1h3. percent 54.11)3.1(46.CT x N time)(idle percent Idle ==∑=4. 420 min./day 323.1 ( 323)/1.3 min./OT Output rounds to copiers day CT cycle=== b. 1. inutes m 3.224.6N time Total CT ,6.4 time Total ==== 2. Assign a, b, c, d, and e to station 1: minutes [no idle time]Assign f, g, and h to station 2: minutes3. 420182.6 copiers /2.3OT Output day CT ===4.420 min./dayMaximum Ct is 4.6. Output 91.30 copiers /4.6 min./day cycle==7.Chapter 06 - Work Design and Measurement3. Element PR OT NT AF jobST1 .90 .46 .414 .4762 .853 .83 .913 4Total8. A = 24 + 10 + 14 = 48 minutes per 4 hours.min 125.720.11x70.5ST .min 70.5)95(.6NT 20.24048A =-=====9. a. Element PR OT NT A ST12 .83 .9553.56.588.676b.01.A 00.2z 034.s 83.x ==== 222(.034)67.12~68.01(.83)zs n observations ax ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭c. e = .01 minutes 47 to round ,24.4601.)034(.2e zs n 22=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=Chapter 07- Location Planning and Analysis1. Factor Local bank Steel mill Food warehouse Public school1. Convenience forcustomers H L M–H M–H2. Attractiveness ofbuilding H L M M–H3. Nearness to rawmaterials L H L M4. Large amounts ofpower L H L L5. Pollution controls L H L L6. Labor cost andavailability L M L L7. Transportationcosts L M–H M–H M8. Constructioncosts M H M M–HLocation (a) Location (b)4. Factor A B C Weight A B C1. Business Services 9 5 5 2/9 18/9 10/9 10/92. Community Services 7 6 7 1/9 7/9 6/9 7/93. Real Estate Cost 3 8 7 1/9 3/9 8/9 7/94. Construction Costs 5 6 5 2/9 10/9 12/9 10/95. Cost of Living 4 7 8 1/9 4/9 7/9 8/96. Taxes 5 5 5 1/9 5/9 5/9 4/97. Transportation 6 7 8 1/9 6/9 7/9 8/9Total 39 44 45 53/9 55/9 54/9 Each factor has a weight of 1/7.a. Composite Scores 39 44 45 7 7 7B orC is the best and A is least desirable.b. Business Services and Construction Costs both have a weight of 2/9; the other factors eachhave a weight of 1/9.5 x + 2 x + 2 x = 1 x = 1/9c. Composite ScoresA B C 53/9 55/9 54/9B is the best followed byC and then A.5.Locationx yA 3 7B 8 2C 4 6D 4 1E 6 4Totals 25 20-x =∑x i= 25 = -y =∑y i= 20 = n 5 n 5Hence, the center of gravity is at (5,4) and therefore the optimal location.Chapter 08 - Management of Quality1. ChecksheetWork Type FrequencyLube and Oil 12Brakes 7Tires 6Battery 4Transmission 1Total 30ParetoLube & Oil Brakes Tires Battery Trans.2 .The run charts seems to show a pattern of errors possibly linked to break times or the end of the shift. Perhaps workers are becoming fatigued. If so, perhaps two 10 minute breaks in the morning and again in the afternoon instead of one 20 minute break could reduce some errors. Also, errors are occurring during the last few minutes before noon and the end of the shift, and those periods should also be given management’s attention.4break lunch break3 2 1 0• • •• • • ••• • • ••••••• ••• •• • •• • •••Chapter 9 - Quality Control4. Sample Mean Range1Mean Chart: =X ± A 2-R = ± 2 = ±3UCL = , LCL =4 Range Chart: UCL = D 4-R = = 5LCL = D 3-R = 0 = 06[Both charts suggest the process is in control: Neither has any points outside the limits.]6. n = 200 Control Limits = np p p )1(2-±Thus, UCL is .0234 and LCL becomes 0.Since n = 200, the fraction represented by each data point is half the amount shown. ., 1 defective = .005, 2 defectives = .01, etc.Sample 10 is too large.7. 857.714110c ==Control limits: 409.8857.7c 3c ±=± UCL is , LCL becomes 0.All values are within the limits.14. Let USL = Upper Specification Limit, LSL = Lower Specification Limit,X = Process mean, σ = Process standard deviationFor process H:}{capablenot ,0.193.93.04.1 ,938.min 04.1)32)(.3(1516393.)32)(.3(1.14153<===-=σ-=-=σ-pk C X USL LSL X 0096.)200(1325==p 0138.0096.200)9904(.0096.20096.±=±=For process K:.1}17.1,0.1min{17.1)1)(3(335.3630.1)1)(3(30333===-=σ-=-=σ- C X USL LSL X pk Assuming the minimum acceptable pk C is , since < , the process is not capable.For process T:33.1}33.1,67.1min{33.1)4.0)(3(5.181.20367.1)4.0)(3(5.165.183===-=σ-=-=σ- C X USL LSL X pk Since = , the process is capable.Chapter 10 - Aggregate Planning and Master Scheduling7. a.No backlogs are allowedPeriodForecast Output Regular Overtime Subcontract Output - Forecast Inventory Beginning Ending Average Backlog Costs: Regular Overtime Subcontract Inventory Totalb.Level strategyPeriodForecastOutputRegularOvertimeSubcontractOutput - ForecastInventoryBeginningEndingAverageBacklogCosts:RegularOvertimeSubcontractInventoryBacklogTotal8.PeriodForecastOutputRegularOvertimeSubcontractOutput- ForecastInventoryBeginningEndingAverageBacklogCosts:RegularOvertimeSubcontractInventoryBacklogTotalChapter 11 - MRP and ERP1. a. F: 2 G: 1 H: 1J: 2 x 2 = 4 L: 1 x 2 = 2 A: 1 x 4 = 4D: 2 x 4 = 8 J: 1 x 2 = 2 D: 1 x 2 = 2Totals: F = 2; G = 1; H = 1; J = 6; D = 10; L = 2; A = 4b.4.MasterSchedule10. Week 1 2 3 4Material 40 80 60 70Week 1 2 3 4Labor hr. 160 320 240 280Mach. hr. 120 240 180 210a. Capacity utilizationWeek 1 2 3 4Labor % % 80% %Machine 60% 120% 90% 105%b. C apacity utilization exceeds 100% for both labor and machine in week 2, and formachine alone in week 4.Production could be shifted to earlier or later weeks in which capacity isunderutilized. Shifting to an earlier week would result in added carrying costs;shifting to later weeks would mean backorder costs.Another option would be to work overtime. Labor cost would increase due toovertime premium, a probable decrease in productivity, and possible increase inaccidents.Chapter 12 - Inventory Management2. The following table contains figures on the monthly volume and unit costs for a random sample of 16 items for a list of 2,000 inventory items.a. See table.b. To allocate control efforts.c. It might be important for some reason other than dollar usage, such as cost of astockout, usage highly correlated to an A item, etc.3. D = 1,215 bags/yr. S = $10 H = $75a. bags HDS Q 187510)215,1(22===b. Q/2 = 18/2 = 9 bagsc.orders ordersbags bags Q D 5.67/ 18 215,1== d . S QD H 2/Q TC +=350,1$675675)10(18215,1)75(218=+=+=e. Assuming that holding cost per bag increases by $9/bag/yearQ ==84)10)(215,1(217 bags71.428,1$71.714714)10(17215,1)84(217=+=+=TCIncrease by [$1, – $1,350] = $4.D = 40/day x 260 days/yr. = 10,400 packagesS = $60 H = $30a. oxes b 20496.2033060)400,10(2H DS 2Q 0====b. S QD H 2Q TC +=82.118,6$82.058,3060,3)60(204400,10)30(2204=+=+=c. Yesd. )60(200400,10)30(2200TC 200+=TC 200 = 3,000 + 3,120 = $6,1206,120 – 6, (only $ higher than with EOQ, so 200 is acceptable.)7.H = $2/month S = $55D 1 = 100/month (months 1–6)D 2 = 150/month (months 7–12)a. 16.74255)100(2Q :D H DS2Q 010===83.90255)150(2Q :D 02==b. The EOQ model requires this.c. Discount of $10/order is equivalent to S – 10 = $45 (revised ordering cost)1–6 TC74 = $180$)45(150100)2(2150TC 145$)45(100100)2(2100TC *140$)45(50100)2(250TC 15010050=+==+==+=7–12 TC 91 =$195$)45(150150)2(2150TC *5.167$)45(100150)2(2100TC 185$)45(50150)2(250TC 15010050=+==+==+=10. p = 50/ton/day u = 20 tons/day200 days/yr.S = $100 H = $5/ton per yr.a. bags] [10,328 tons 40.5162050505100)000,4(2u p p H DS 2Q 0=-=-=b. ]bags 8.196,6 .approx [ tons 84.309)30(504.516)u p (P Q I max ==-=Average is92.154248.309:2I max =tons [approx. 3,098 bags] c. Run length =days 33.10504.516P Q == d. Runs per year = 8] approx .[ 7.754.516000,4QD == e. Q ' =TC =S QD H 2I max + TC orig. = $1, TC rev. = $Savings would be $D= 20 tons/day x 200 days/yr. = 4,000 tons/yr.15. Range PHQ D = 4,900 seats/yr. 0–999 $ $ 495 H = .4P 1,000–3,999 497 NF S = $50 4,000–5,999 500 NF 6,000+503 NFCompare TC 495 with TC for all lower price breaks:TC 495 =495 ($2) + 4,900($50) + $(4,900) = $25,490 2 495 TC 1,000 = 1,000 ($ + 4,900($50) + $(4,900) = $25,4902 1,000 TC 4,000 = 4,000 ($ + 4,900($50) + $(4,900) = $27,9912 4,000 TC 6,000 = 6,000 ($ + 4,900($50) + $(4,900) = $29,6262 6,000Hence, one would be indifferent between 495 or 1,000 units 22. d = 30 gal./day ROP = 170 gal. LT = 4 days,ss = Z σd LT = 50 gal Risk = 9% Z = Solving, σd LT = 3% Z = , ss= x = gal.Chapter 13 - JIT and Lean Operations1. N = ?N = DT(1 + X)D = 80 pieces per hourC T = 75 min. = hr. = 80 = 3C = 45 45X = .35QuantityTC4. The smallest daily quantity evenly divisible into all four quantities is 3. Therefore, usethree cycles.Product Daily quantity Units per cycleA 21 21/3 = 7B 12 12/3 = 4C 3 3/3 = 1D 15 15/3 = 55.a. Cycle 1 2 3 4A 6 6 5 5B 3 3 3 3C 1 1 1 1D 4 4 5 5E 2 2 2 2 b. Cycle 1 2A 11 11B 6 6C 2 2D 8 8E 4 4c. 4 cycles = lower inventory, more flexibility2 cycles = fewer changeovers7. Net available time = 480 – 75 = 405. Takt time = 405/300 units per day = minutes. Chapter 15 - Scheduling6. a. FCFS: A–B–C–DSPT: D–C–B–AEDD: C–B–D–ACR: A–C–D–BFCFS: Job time Flow time Due date DaysJob (days) (days) (days) tardyA 14 14 20 0B 10 24 16 8C 7 31 15 16D 6 37 17 2037 106 44SPT: Job time Flow time Due date Days Job (days) (days) (days) tardyD 6 6 17 0C 7 13 15 0B 10 23 16 7A 14 37 20 1737 79 24EDD:Job D has the lowest critical ratio therefore it is scheduled next and completed on day 27.b.ardi Flow time Average flow time Number of jobs Days tardy Average job t ness Number of jobs Flow timeAverage number of jobs at the center Makespan==∑=FCFS SPT EDD CRc. SPT is superior.9.Thus, the sequence is b-a-g-e-f-d-c.。