不同坐标系之间的变换

合集下载

坐标系转换方法和技巧

坐标系转换方法和技巧

坐标系转换方法和技巧1.二维坐标系转换:二维坐标系转换是将平面上的点从一个坐标系转换到另一个坐标系中。

常用的方法有旋转、平移和缩放。

-旋转:通过改变坐标系的旋转角度,可以将点从一个坐标系转换到另一个坐标系。

-平移:通过改变坐标系的平移量,可以将点从一个坐标系平移到另一个坐标系。

-缩放:通过改变坐标系的比例尺,可以将点从一个坐标系缩放到另一个坐标系。

2.三维坐标系转换:三维坐标系转换是将空间中的点从一个坐标系转换到另一个坐标系中。

常用的方法有旋转、平移和缩放。

-旋转:通过改变坐标系的旋转角度,可以将点从一个坐标系转换到另一个坐标系。

-平移:通过改变坐标系的平移量,可以将点从一个坐标系平移到另一个坐标系。

-缩放:通过改变坐标系的比例尺,可以将点从一个坐标系缩放到另一个坐标系。

3.地理坐标系转换:地理坐标系转换是将地球表面点的经纬度坐标转换为平面坐标系(如UTM坐标系)或其他地理坐标系中的点。

常用的方法有投影转换和大地坐标转换。

-投影转换:根据不同的地理投影模型,将地理坐标系中的点投影到平面上。

常用的地理投影包括墨卡托投影、兰伯特投影等。

-大地坐标转换:根据椭球模型和大地测量的理论,将地理坐标系中的点转换为具有X、Y、Z三维坐标的点。

常见的大地坐标系包括WGS84和GCJ-02等。

4.坐标系转换的技巧:-精度控制:在坐标系转换过程中,需要注意精度的控制,以确保转换后的坐标满足要求。

-参考点选择:在坐标系转换过程中,选取合适的参考点可以提高转换的准确性和稳定性。

-坐标系转换参数的确定:在进行坐标系转换时,需要确定旋转角度、平移量和比例尺等参数,可以通过多点共面条件、最小二乘法等方法进行确定。

-转换效率优化:针对大规模的坐标系转换,可以采用分块处理、并行计算等技术来提高转换效率。

在进行坐标系转换时,需要根据具体的需求选择适当的方法和技巧,并结合具体的软件工具进行实现。

同时,还需要注意坐标系转换的精度和准确性,确保转换结果符合要求。

坐标系之间的换算

坐标系之间的换算

地心空间 直角坐标系 参心空间 直角坐标系 割平面空间 直角坐标系 法线测量 坐标系 垂线测量 坐标系
高斯平面 直角坐标系
导弹发射 坐标系
一、不同空间直角坐标系的换算
参心←→参心空间直角坐标系间(如:克氏椭球←→IAG75椭球) 参心←→地心空间直角坐标系间(如:克氏或IAG75椭球←→WGS-84椭球) 三个变换公式(布尔莎、范士、莫洛金斯基)对于坐标换算而言等价,推导布 尔莎公式如下:
[ M (1 )] sin2 B cos B cos L X a X ( N a ) cos B cos L 2 C Y a Y ( N a ) cos B sin L [ M (1 )] sin B cos B sin L Z a Z ( N a )(1 e 2 ) sin B [ M (1 )] sin B(1 cos 2 B e 2 sin2 B
顾及
0 QX i Z Y
Z
0 X
Y X i 0 X Yi Z i 0 Z i Yi
Zi 0 Xi
Yi X X i Y 0 Z
(此即用于两空间直角坐标系相互变换的布尔莎七参数公式) 若上式中X=Y=0,Z≠0,则上式为五参数转换模型。若再有Z=0,则上式为 四参数转换模型。若尺度比参数亦为零,则得三参数转换模型 Xi X 0 X i Yi Y0 Yi Z i T Z 0 Z i 三参数转换公式是在假设两坐标系间各坐标轴相互平行,即轴系间不存在欧勒 角的条件下导出的,这在实际情况中往往是不可能的。在欧勒角不大,求得欧勒角

不同平面坐标系的定义及转换参数设置

不同平面坐标系的定义及转换参数设置

不同平面坐标系的定义及转换参数设置下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

不同平面坐标系的定义及转换参数设置该文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document 不同平面坐标系的定义及转换参数设置 can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!平面坐标系是用来描述平面上点的位置的一种数学工具。

斜坐标系与直角坐标系的坐标变换

斜坐标系与直角坐标系的坐标变换

斜坐标系与直角坐标系的坐标变换1. 斜坐标系与直角坐标系的定义斜坐标系和直角坐标系是数学中常见的两种坐标系。

直角坐标系是我们通常熟悉的坐标系,用两个垂直轴(通常是x轴和y轴)来确定一个点的位置。

而斜坐标系则是通过一个斜轴和另一个垂直轴来确定点的位置。

在斜坐标系中,有一个轴倾斜于另一个,两个轴的交点不一定是原点。

2. 斜坐标系到直角坐标系的转换要将一个点从斜坐标系转换到直角坐标系,首先要找到斜坐标系的斜轴和垂直轴之间的夹角。

然后根据这个夹角,可以使用三角函数的关系将点的坐标从斜坐标系转换到直角坐标系。

具体的转换公式为:$$x' = x * cos(\\theta) - y * sin(\\theta)$$$$y' = x * sin(\\theta) + y * cos(\\theta)$$其中(x,y)是斜坐标系中点的坐标,(x’,y’)是直角坐标系中的坐标,θ是斜轴和垂直轴的夹角。

这样就可以将一个点在斜坐标系中的坐标转换到直角坐标系中。

3. 直角坐标系到斜坐标系的转换同样,如果要将一个点从直角坐标系转换到斜坐标系,也需要知道斜坐标系的斜轴和垂直轴的夹角。

转换公式为:$$x = x' * cos(\\theta) + y' * sin(\\theta)$$$$y = -x' * sin(\\theta) + y' * cos(\\theta)$$这样就可以将一个点在直角坐标系中的坐标转换到斜坐标系中。

4. 斜坐标系的应用斜坐标系在一些工程和物理领域中有一些特殊的应用。

比如在壳体结构设计中,斜坐标系能够更好地描述材料的受力情况,便于分析结构的稳定性。

在电力系统中,斜坐标系也可以用来分析电路中的相位关系,更好地控制电力系统的运行。

5. 结语斜坐标系和直角坐标系在数学和工程领域中都有着重要的作用。

了解坐标系之间的转换关系不仅可以帮助我们更好地理解问题,还可以应用到实际工程中去。

工程测量中不同坐标系变换与精度

工程测量中不同坐标系变换与精度

工程测量中不同坐标系变换与精度
工程测量中,不同坐标系之间的变换和精度非常重要。

其中,常用的坐标系包括平面
直角坐标系、大地坐标系、投影坐标系等,不同坐标系之间的变换需要考虑到坐标系的基
准面、坐标轴方向、单位等因素。

一、坐标系的基准面
1. 平面直角坐标系的基准面为水平面,通常采用大地水准面作为参考面。

3. 投影坐标系的基准面通常为椭球面或平面,不同的投影方式会导致不同的基准面。

二、坐标轴方向的变换
不同坐标系的坐标轴方向也可能不同,因此需要进行某些坐标轴的转换。

1. 平面直角坐标系通常采用右手坐标系,其中x轴与东向、y轴与北向成正交关系。

2. 大地坐标系中,通常采用地心坐标系或以某个恒星为基准的坐标系,其中z轴与
地轴或某个恒星的指向相同。

3. 投影坐标系的坐标轴方向也有所不同,例如通常采用高斯投影系统的平面坐标系中,x轴指向中央经线的正方向,y轴指向赤道正方向。

三、单位的变换
2. 大地坐标系中,通常采用度或弧度作为单位。

四、变换精度的影响
不同坐标系之间的变换会影响精度,因此需要进行适当的考虑和处理。

1. 坐标系的变换会引入误差,误差的大小与变换参数的精度有关。

2. 不同坐标系之间的误差也有所不同,例如平面直角坐标系与大地坐标系之间的误
差通常比两个大地坐标系之间的误差更小。

综上所述,工程测量中的不同坐标系之间的变换和精度是非常重要的,需要进行适当
的考虑和处理。

为了保证测量的精度和稳定性,应选择合适的坐标系和变换方法,并进行
精确的计算和校正。

坐标系转换方法

坐标系转换方法

坐标系转换方法
坐标系转换的方法有多种,以下是三种主要的方法:
1. 线性变换法:这种方法将原始坐标系中的点映射到新的坐标系中。

通过选择合适的矩阵,可以将坐标变换为新的形式。

线性变换法在处理平面坐标系时特别有效。

2. 多项式拟合法:这种方法利用多项式来拟合两个坐标系之间的关系。

通过找到一组对应点,并拟合出多项式方程,可以将一个坐标系中的点转换为另一个坐标系中的点。

这种方法适用于任何维度的坐标系转换。

3. 最小二乘法:这种方法利用最小二乘原理,通过优化误差平方和,找到最佳的坐标转换方法。

它可以用于各种类型的坐标系转换,包括线性变换、多项式拟合等。

最小二乘法对于处理具有大量数据点的复杂转换非常有效。

这些方法都有其适用范围和优缺点,在实际应用中需要根据具体情况选择最合适的方法。

坐标系的转换

坐标系的转换

对于坐标系之间的转换,目前我们国家有以下几种:1、大地坐标(BLH)对平面直角坐标(XYZ);2、北京54全国80及WGS84坐标系的相互转换;3、任意两空间坐标系的转换。

坐标转换就是转换参数。

常用的方法有三参数法、四参数法和七参数法。

以下对上述三种情况作转换基本原理描述如下:1、大地坐标(BLH)对平面直角坐标(XYZ)常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。

椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。

一般的工程中3度带应用较为广泛。

对于中央子午线的确定的一般方法是:平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。

如x=3888888m,y=388888666m,则中央子午线的经度=38*3=114度。

另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。

确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。

2、北京54全国80及WGS84坐标系的相互转换这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。

其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。

由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。

对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。

当然若条件不许可,且有足够的重合点,也可以进行人工解算。

详细方法见第三类。

3、任意两空间坐标系的转换由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。

坐标系微分变换

坐标系微分变换

坐标系微分变换微分变换是数学中的一种重要工具,广泛应用于物理学、工程学、经济学等领域。

其中,坐标系微分变换是一种常用的方法,用于描述和分析坐标系的变换规律。

本文将对坐标系微分变换进行详细的介绍和讨论,包括定义、常见的坐标系变换、坐标系变换的微分表示以及应用举例等。

1. 定义坐标系微分变换是指通过一个映射将不同坐标系之间的点进行相互转换的过程。

在二维平面内,我们通常采用笛卡尔坐标系(直角坐标系)表示点的位置,其中点的坐标由横纵坐标表示。

但在实际问题中,常常需要使用其他坐标系,如极坐标系、柱坐标系等,此时就需要进行坐标系的变换。

2. 常见的坐标系变换(1)笛卡尔坐标系与极坐标系的变换:在二维平面内,笛卡尔坐标系(x,y)与极坐标系(r,θ)之间的变换关系可以表示为:x = r*cosθy = r*sinθ(2)笛卡尔坐标系与柱坐标系的变换:在三维空间内,笛卡尔坐标系(x,y,z)与柱坐标系(ρ,θ,z)之间的变换关系可以表示为:x = ρ*cosθy = ρ*sinθz = z(3)笛卡尔坐标系与球坐标系的变换:在三维空间内,笛卡尔坐标系(x,y,z)与球坐标系(r,θ,φ)之间的变换关系可以表示为:x = r*sinφ*cosθy = r*sinφ*sinθz = r*cosφ3. 坐标系变换的微分表示在进行坐标系变换时,我们需要考虑坐标系之间的微小变化。

这种微小变化可以通过微分来描述。

以二维平面为例,设(x,y)为笛卡尔坐标系下的点,(r,θ)为极坐标系下的点,则在微小的变换过程中,两者的微分关系可以表示为:dx = dr*cosθ-r*sinθ*dθdy = dr*sinθ+r*cosθ*dθ类似地,对于三维空间内的其他坐标系变换,也可以得到相应的微分关系表达式。

4. 应用举例坐标系微分变换在物理学、工程学等领域有着广泛的应用。

下面以工程学中的机器人运动学为例,展示坐标系微分变换在实际问题中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§10.6不同坐标系之间的变换
10.6.1欧勒角与旋转矩阵
对于二维直角坐标,如图所示,有:
⎥⎦

⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡1122cos sin sin cos y x y x θθθθ(10-8)
在三维空间直角坐标系中,具有相同原点的两坐标系间的变换一般需要在三个坐标平面上,通过三次旋转才能完成。

如图所示,设旋转次序为: ①绕1OZ 旋转Z ε角,11,OY OX 旋
转至0
0,OY OX ;
②绕0
OY 旋转Y ε角
10
,OZ OX 旋转至0
2
,OZ OX ; ③绕2OX 旋转X ε角,
0,OZ OY 旋转至22,OZ OY 。

Z Y X εεε,,为三维空间直角坐标变换的三个旋转角,也称欧勒角,与
它相对应的旋转矩阵分别为:
⎥⎥⎥⎦

⎢⎢⎢⎣⎡-=X X
X X X R εεεεεcos sin 0sin cos 00
01
)(1 (10-10)
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-=Y Y
Y Y
Y R εεεεεcos 0sin 010sin 0cos )(2 (10-11)
⎥⎥⎥⎦

⎢⎢⎢⎣⎡-=10
0cos sin 0sin cos )(3Z
Z Z Z
Z R εεεεε (10-12)
令 )()()(3210Z Y X R R R R εεε= (10-13)
则有:
⎥⎥⎥⎦

⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1110111321222)()()(Z Y X R Z Y X R R R Z Y X Z Y X εεε (10-14) 代入:
⎥⎥⎥⎦
⎤⎢⎢
⎢⎣⎡
+-+++--=Y X Z Y X Z X Z Y X Z X Y X Z Y X Z X Z Y X Z X Y Z Y Z Y R εεεεεεεεεεεεεεεεεεεεεεεεεεεεεcos cos sin sin cos cos sin cos sin cos sin sin cos sin sin sin sin cos cos cos sin sin sin cos sin sin cos cos cos 0一般Z Y X εεε,,为微小转角,可取:
sin sin sin sin sin sin sin ,sin ,sin 1cos cos cos =========Z Y Z X Y X Z
Z Y Y X X Z Y X εεεεεεεεεεεεεεε
于是可化简
⎥⎥⎥⎦

⎢⎢⎢⎣⎡---=111
0X
Y
X Z Y Z
R εεεεεε (10-16) 上式称微分旋转矩阵。

10.6.2不同空间直角坐标之间的变换
当两个空间直角坐标系的坐标换算既有旋转又有平移时,则存在三个平移参数和三个旋转参数,再顾及两个坐标系尺度不尽一致,从而还有一
个尺度变化参数,共计有七个参数。

相应的坐标变换公式为:
⎥⎥⎥⎦

⎢⎢⎢⎣⎡∆∆∆+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000111111222000)1(Z Y X Z Y X Z Y X m Z Y X X
Y
X Z Y Z
εεεεεε(10-17) 上式为两个不同空间直角坐标之间的转换模型,其中含有7个转换参数,为了求得7个转换参数,至少需要3个公共点,当多于3个公共点时,可按最小二乘法求得个参数的最或是值。

10.6.3不同坐标系的变换
对于不同坐标系的换算,除包含三个平移参数、三个旋转参数和一个尺度变化参数外,还包括两个地球椭球元素变化参数,以下推导不同坐标系的换算公式。

由(7-30)式
⎥⎥⎥


⎢⎢⎢⎣⎡+-++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡B H e N L B H N L B H N Z Y X sin ])1([sin cos )(cos cos )(2
取全微分得
⎥⎦⎤
⎢⎣⎡+⎥⎥⎥⎦

⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡αd da A dH dB dL J dZ dY dX (10-19) 式中
⎥⎥⎥

⎤⎢⎢

⎣⎡++-++-+-=⎥⎥⎥⎥⎥⎥⎦

⎢⎢⎢⎢
⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=B B H M L B L B H M L B H N L B L B H M L B H N H Z B
Z L
Z H Y B Y L Y H X B X
L X
J sin cos )(0cos cos sin sin )(cos sin )(cos cos cos sin )(sin cos )((10-20)
⎥⎥⎥⎥⎥⎥⎦

⎢⎢⎢⎢⎢⎢⎣⎡-+-----=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢
⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂=)sin cos 1(sin 1sin )1(sin sin cos 1sin cos sin cos cos 1cos cos 222222
B e B B M B e a
N B
L B M L B a
N B L B M L B a N Z a
Z Y a Y X
a X
A ααα
α
αα (10-21)
上式两端乘以1-J 并加以整理得:
⎥⎦⎤
⎢⎣⎡-⎥⎥⎥⎦

⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--αd da A J dZ dY dX J dH dB dL 11 (10-22)
式中
⎥⎥⎥


⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111222Z Y X Z Y X dZ dY dX
⎥⎥⎥

⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111222H B L H B L dH dB dL 顾及(10-21)式及
⎥⎥
⎥⎥
⎥⎥⎦⎤⎢⎢⎢⎢⎢
⎢⎣

++-
+-++-=-B L
B L B H M B H M L B H M L B B H N L B H N L J sin sin cos cos cos cos sin sin cos sin 0
cos )(cos cos )(sin 1
(10-23) (10-22)式可写为:
=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡dH dB dL ⎥⎥⎥⎦

⎢⎢⎢⎣⎡∆∆∆⎥⎥⎥⎥⎥⎥

⎤⎢⎢
⎢⎢⎢⎢⎣
⎡''+'
'+-''+-'
'+''+-000sin sin cos cos cos cos sin sin cos sin 0
cos )(cos cos )(sin Z Y
X B L
B L B H
M B H M L B H
M L B B H N L
B H N L ρρρρρ ⎥⎥⎥⎦⎤
⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢


'
'''---+Z Y X L
B B Ne L B B Ne L
L
L tgB L tgB εεερρ0cos cos sin sin cos sin 0cos sin 1sin cos 2
2
m
H B e N B B e H M N ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡+-''+-+)sin 1(cos sin 0
2
22ρ

⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦


⎢⎢⎢⎢⎢⎣⎡----''-+-''++ααραρd da B B e M B e a N B B H M B e M B B e a H M N 2
222
2222sin )sin 1(1)sin 1(cos sin )1)(()
sin 2(cos sin )(0
(10-24)
上式通常称为广义坐标微分公式或广义变换椭球微分公式。

如略去旋转参数和尺度变化参数的影响,即简化为一般的坐标微分公式。

根据3个以上公共点的两套坐标值,可列出9个以上(10-24)式的方程,可按最小二乘法求得8个转换参数。

相关文档
最新文档