变压器差动保护带负荷测试的内容及数据分析

变压器差动保护带负荷测试的内容及数据

分析

(北方联合电力金桥热电厂,内蒙古呼和浩特 010070)

摘要:文章介绍了变压器差动保护工作原理,结合现场实践工作经验,分析了变压器差动保护带负荷测试的内容及方法。

关键词:变压器差动保护;带负荷测试;测试数据分

中图分类号:TM41 文献标识码:A 文章编号:1007—6921(XX)15—0078—02

差动保护具有保护范围明确,保护原理简单,保护动作快速可靠,属于纯电气量保护,整定定值原理合理,不受自启动电流、负荷电流、非金属故障电流的影响定值精确等特点。差动保护作为变压器的主保护,其能否正确动作关系着变压器的安危,而变压器差动保护定值的整定与接线

1

740)this.width=740" border=undefined>

差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压

器的电流和流出电流相等,差动继电器不动作。当变压器内部故障时,两侧向故障点提供短路电流,差动保护感受到的二次电流和的

变压器差动保护原理简单,但实现方式复杂,加上各种差动保护在实现方式细节上的各不相同,更增加了其在具体使用中的复杂性,使人为出错机率增大,正确动作率降低。为了防范于未然,就必须在变压器差动保护投运时进行带

2

要排除设计、安装、整定过程中的疏漏,就要收集充

2.1

变压器差动保护是各侧CT二次电流的差流,所以,差流是差动保护带负荷测试的重要内容。电流平衡补偿的差动继电器,用钳形相位表或通过微机保护液晶显示屏依次测出A相、B相、C相差流,并记录;磁平衡补偿的差动继电器,用0.5级交流电压表依次测出A相、B相、C相差压,

2.2

只凭借差流判断差动保护正确性是不充分的,因为一些接线或变比的小错误,往往不会产生明显的差流,且差流随负荷电流变化,负荷小,差流跟着变小,所以,除测试

差流外,还要用钳形相位表在保护屏端子排依次测出变压器各侧A相、B相、C相电流的幅值和相位,并记录。此处不推荐通过微

2.3

通过控制屏上的电流、有功、无功功率表,或者监控显示器上的电流、有功、无功功率数据,或者调度端的电流、有功、无功功率遥测数据,记录变压器各侧电流大小,有功、无功功率大小和流向,为CT变比、极性分析奠定基础。

3

数据收集完后,便是对数据的分析、判断。数据分析是带负荷测试最关键的一步,如果马虎或对变压器差动保护原理和实现方式把握不够,得出错误的结论。那么对于测得的数据我

3.1

比如端子箱内定义为A相电流回路的电流相序。

正确接线下,各侧电流都是正序,A、B互差120°。若与此不符,则有可能产生如下情况。

3.1.1 在端子箱缆芯接在了C相CT上,这种情况在一

3.1.2 从端子箱到保护屏的电缆芯接反,比如一根电缆芯在端子箱接A相电流回路,在保护屏上却接B相电流输

入端子,这种情况一般由安装人员的马虎造成。

3.2

每侧A相、B相、C相电流幅值基本相等,相位互差120°,即A相电流超前B相120°,B 相电流超前C相120°,C相电流超前A相120°。若一相幅值偏差>10%,则有可能发生以下情

3.2.1 变压器负荷三相不对称,一相电流偏大或一相电

3.2.2 变压器负荷三相对称,但波动较大,造成测量一相电流幅值时负荷大,而测另

3.2.3 某一相CT变比接错,比如该相CT二次绕组抽头

3.2.4 某一相电流存在寄生回路,比如某一根电缆芯在剥电缆皮时绝缘损伤,对电缆屏蔽层形成漏电流,造成流

若某两相相位偏差>10%,则有可能:①变压器负荷功率因数波动较大,造成测量一相电流相位时功率因数大,而测另一相时功率因数小。②某一相电流存在寄生回路,造

3.3 看各侧电流幅值,核实CT

用变压器各侧一次电流除以二次电流,得到实际CT变比,该变比应和整定变比基本一致。如果偏差>10%,则有

3.3.1 CT

3.3.2 CT

3.4 看两侧同名相电流相位,检查差动保护电流回路极

这里要将两种接线分别对待,一种是将变压器Y型侧CT 二次绕组接成△,另一种是变压器各侧CT二次绕组都接成Y型。对于前一种接线,其两侧二次电流相位应相差180°,而对于后一种接线,其两侧二次电流相位相差角度与变压器接线方式有关。比如一台变压器为Y-Y-△-11接线,当其高、低压侧运行时,其高压侧二次电流应超前低压侧×30°,而当其高、中压侧运行时,其高压侧二次电流和中压侧电流仍相差180°。若两侧同名相电流相位差不满足上述要求,则有可能:①将CT二次绕组组合成△时,极性弄错或相别弄错,比如Y-Y-△-11变压器在组合Y型侧CT 二次绕组时,组合后的A相电流应在A相CT极性端和B 相CT非极性端的连接点上引出,而不能在A相CT极性端和C相CT非极性端的连接点上引出。②一侧CT二次绕组极性接反。在安装CT时,由于某种原因其一次极性未能按图纸摆放时,二次极性要做相应颠倒,如果二次极性未颠倒,

3.5

对励磁电流和改变分接头引起的差流,变压器差动保护一般不进行补偿,而采用带动作门槛和制动特性来克服,所以,测得的差流不会等于零。那用什么标准来衡量差流合格呢?对于差流,我们不妨用变压器励磁电流产生的差流值为标准。比如一台变压器的励磁电流为1.2%, 基本侧额定二次电流为5A,则由励磁电流产生的差流等于 1.2%×5=0.06A,0.06A便是我们衡量差流合格的标准。对于差压,我们引用《新编保护继电器校验》中的规定:差压不能>150mV。如果变压器差流不大于励磁电流产生的差流值,则该台变压器整定值正确;否则,有可能是:①变压器实际分接头位置和计算分接头位置不一致。对此,我们有以下证实方法:根据实际分接头位置对应的额定电压或运行变压器各侧母线电压,重新计算变压器各侧额定二次电流,再由额定二次电流计算各侧平衡系数或平衡线圈匝数,再将计算出的各侧平衡系数或平衡线圈匝数摆放在差动保护上,再次测量差流,如果差流满足要求,则说明差流偏大是由变压器实际分接头位置和计算分接头位置不一致引起,变压器整定值仍正确,如果差流不满足要求,则整定值还存在其他问题。②变压器Y型侧额定二次电流算错。由于微机变压器差动保护在“计算Y型侧额定二次电流乘不乘”问题上没有统一,所以,整定人员容易将Y型侧额定二次电流算错,从而,造成平衡系数整定错。③平衡系数算错。计算平衡

系数时,通常是先将基本侧平衡系数整定为1,再用基本侧额定二次电流除以另侧电流得到另侧平衡系数,如果误用另侧额定二次电流除以基本侧电流,平衡系数就会算错。

740)this.width=740" border=undefined>

式中:Sn为变压器最大额定容量,U1n为变压器各侧额

740)this.width=740" border=undefined>

式中:I1n为变压器各侧一次额定电流,nTA为变压器各侧TA

740)this.width=740" border=undefined>

将低压侧各相电流与相应的平衡系数相乘,即得补偿后

4

带负荷测试对变压器差动保护的安全运行起着至关重要的作用,对其我们要有足够的重视。带负荷测试前,要深入了解变压器差动保护原理、实现方式和定值意义,熟悉现场接线;带负荷测试中,要按照带负荷测试内容,认真、

[1]

用技术问答(第2版)[M京:中国电力出版社,XX.

变压器保护校验方法

RCS-978系列变压器保护测试 一、RCS-978型超高压线路成套保护 RCS-978配置: 主保护:稳态比率差动,工频变化量比率差动,零序比率差动, 谐波制动, 后备保护:复合电压闭锁(启动)方向过流 零序方向过流保护 间隙零序过流过压保护 零序过压 稳态比率差动 一、保护原理 基尔霍夫电流定律,流入=流出 (1)差动元件的动作特性 在国内生产的微机型变压器差动保护中,差动元件的动作特性较多采用具有二段折线的动作特性曲线,如下图: 在上图中,I op.min 为差动元件起始动作电流幅值,也称为最小动作电流; I res.min 为最小制动电流,又称为拐点电流; K=tan α为制动特性斜率,也称为比率制动系数。 微机变压器差动保护的差动元件采用分相差动,其动作具有比率制动特性。 动作特性为: 拐点前(含拐点): .min .min ()op op res res I I I I ≥≤

拐点后: .min .min .min () ()op op res res res res I I K I I I I ≥+-> 式中 I op ——差动电流的幅值 I res ——制动电流的幅值 也有某些变压器差动保护采用三折线的制动曲线。 (2)动作方程和制动方程:差动电流Iop 和制动电流Ires 的获取 差动电流(即动作电流):取各侧差动电流互感器(TA )二次电流相量和的绝对值。 以双绕组变压器为例, op h l I I I =+ 在微机保护中,变压器制动电流的取得方法比较灵活。国内微机保护有以下几种取得方式: ① /2res h l I I I =- ② ()/2res h l I I I =+ ③ max{,}res h l I I I = ④ ()/2res op h l I I I I =-- ⑤ res l I I = 二、测试要点:标么值的概念 另:注意,978可以自动辅助计算当前的差流, 但其同时显示的“制流X 相”并不是当前X 相的制动电流,而是当前 X 相制动电流下的动作电流边界!!! 三、试验举例: 保护定值:动作门槛:0.3 差动速断电流:4 I 侧(Y 接线)二次侧额定电流:3.935; II 侧(Y 接线)二次侧额定电流:3.765; III 侧(D 接线)二次侧额定电流:3.955 由于该保护的补偿系数由标么值的方式计算,则每一侧的补偿系数是该侧二次侧额定电流的倒数。 1.选择“差动菜单”——“扩展差动” 2.在“Id,r 定义”页面,选择“测试项目”为“比例制动”;“动作电流Id ”为“K1×I1+

变压器差动保护误动分析及对策(一)

变压器差动保护误动分析及对策(一) 要:文章对微机型变压器差动保护动作的原因,从事件的形成以及保护的原理给予了详细地分析。对新建的、运行的或设备更新改造的发电厂和变电站的变压器差动保护误动提出了对策。 关键词:差动保护误动动作特性电流互感器 0引言 电力变压器是电力系统中最关键的主设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。因此,变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证。作为主设备主保护的微机型纵联差动(简称纵差或差动)保护,虽然经过不断的改进,但是还存在一些误动作的情况,这将造成变压器的非正常停运,影响电力系统的发供电,甚至是造成系统振荡,对电力系统发供电的稳定运行是很不利的。因此对新建或设备更新改造的发电厂和变电站的变压器差动保护误动原因进行分析,并提出了防止变压器差动误动的对策。 1变压器差动保护 变压器差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动的比率差动保护,不管哪种保护功能的差动保护,其差动电流都是通过变压器各侧电流的向量和得到,在变压器正常运行或者保护区外部故障时,该差动电流近似为零,当出现保护区内故障时,该差动电流增大。现以双绕组变压器为例进行说明。

1.1比率差动保护的动作特性比率差动保护的动作特性见图1。当变压器轻微故障时,例如匝间短路的圈数很少时,不带制动量,使保护在变压器轻微故障时具有较高的灵敏度。而在较严重的区外故障时,有较大的制动量,提高保护的可靠性。 二次谐波制动主要区别是故障电流还是励磁涌流,因为变压器空载投运时会产生比较大的励磁涌流,并伴随有二次谐波分量,为了使变压器不误动,采用谐波制动原理。通过判断二次谐波分量,是否达到设定值来确定是变压器故障还是变压器空载投运,从而决定比率差动保护是否动作。二次谐波制动比一般取0.12~0.18。对于有些大型的变压器,为了增加保护的可靠性,也有采用五次谐波的制动原理。 1.2差动速断保护的作用差动速断保护是在较严重的区内故障情况下,快速跳开变压器各侧断路器,切除故障点。差动速断的定值是按躲过变压器的励磁涌流,和最大运行方式下穿越性故障引起的不平衡电流,两者中的较大者。定值一般取(4~14)Ie。 2变压器差动保护误动作原因分析 根据变压器差动保护误动作可能性的大小,大致分为新建发电厂和变电站、运行中发电厂和变电站、设备更新改造的发电厂和变电站三个方面进行说明,这种分类方法并不是绝对相互区别,只是为了便于在分析问题时优先考虑现实问题。 2.1新建发电厂和变电站变压器差动保护误动作原因分析新建变电站的变压器差动保护误动作,在变压器差动保护误动作中占了较大的比

变压器差的动保护原理(详细)

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高 =220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KV A, I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2” I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障;

四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为 例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升 I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 判此电流为非故障电流,进行谐波闭锁。500kv一下等级的变压器之

变压器带负荷测试向量图

带负荷测试题目 一、 变压器带负荷测试 1. 相量图:差动电流:Ida=0 Idb=0.92 Idc= 0 低压侧:平衡系数:10.5*1200/(220*120=0.477 0.96*0.477=0.45792 1.TA 变比计算:理论计算值应为0.46,实际值0.46,二次值吻合,变比正确。 左边为各侧相量图,未归算;右边为差动电流相量图,已归算及相位校正。 Ida= I HA ’+I LA ’=0.46-0.96*0.477=0 Idb= I HA ’+I LA ’=0.46+0.96*0.477=0.92 Idc= I HA ’+I LA ’=0.46-0.96*0.477=0 判断结果:低压侧B 相极性接反。纠正后则有Idb=0.46-0.96*0.477=0A 2.P 低压侧:平衡系数:10.5*1200/(220*120=0.477 0.78*0.477=0.37 1. TA 变比计算:理论计算值应为0.37,B ,C 实际值0.37,A 相实际值0.74的变比不相符合。

左边为各侧相量图,未归算;右边为差动电流相量图,已归算及相位校正。 Ida= I HA ’+I LA ’=(022COS 120*0.37*0.74*20.370.74-+)/1.732-0.78*0.477=0.204 Idb= I HB ’+I LB ’=0.37-0.78*0.477=0 Idc= I HC ’+I LC ’=(022COS 120*0.37*0.74*20.370.74-+)/1.732-0.78*0.477=0.204 判断结果: 高压侧A 相变比为300/5,需改成600/5。纠正后则有Ida=0.37-0.78*0.477=0A ,Idc=0.37-0.78*0.477=0A 3.P 相量图:差动电流:Ida=0 Idb=1 Idc= 1 低压侧:平衡系数:10.5*1200/(220*120=0.477 1.27*0.477=0.6 1.TA 变比计算:理论计算值应为0.6,实际值0.6,二次值吻合,变比正确。 左边为各侧相量图,未归算;右边为差动电流相量图,已归算及相位校正。 1.27*0.477=0.6 Ida=I HA ’+I LA ’ =(0.6-1.27*0.477=0 Idb=I HB ’+I LB ’ =0.6COS 120*0.6*2-0.60.622+0=1 Idc=I HC ’+I LC ’ =0.6COS 120*0.6*2-0.60.622+0=1 判断结果: 低压侧B 、C 相相序接反。纠正后则有Idb=0.6-1.27*0.477=0A ,Idc=0.37-1.27*0.477=0A 4.P 相量图:差动电流:Ida=0 Idb=0.74 Idc=0.74 1.54*0.477=0. 73 低压侧:平衡系数:10.5*1200/(220*120=0.477 低压侧I =S*1000/(1.732*10.5*1200)=1.54A 1.TA 变比计算:理论计算值应为0.73,实际值0.73,高压侧二次值吻合变比正确。低压侧B 、C 相变比不正确

差动保护试验方法总结

数字式发电机、变压器差动保护试 验方法 关键词: 电机变压器差动保护 摘要:变压器、发电机等大型主设备价值昂贵,当他们发生故障时,变压器、发电机的主保护纵向电流差动保护应准确及时地将他们从电力系统中切除,确保设备不受损坏。模拟发电机、变压器实际故障时的电流情况来进行差动试验,验证保护动作的正确性至关重要。 关键词:数字式差动保护试验方法 我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,

然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

变压器差动保护试验方法

我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电XX自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该XX小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

下面我们先来分析一下微机差动保护的算法原理(三相变压器)。这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。具体接线见图1: 图1

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: ①采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流 ①变压器两侧电流相位不同 电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。 ②电流互感器计算变比与实际变比不同 由于变比的标准化使得其实际变比与计算变比不一致,从而产生不平衡电流。

变压器纵差动保护动作电流的整定原则是什么

变压器纵差动保护动作电流的整定原则是什么? .(1)大于变压器的最大负荷电流; (2)躲过区外短路时的最大不平衡电流; (3)躲过变压器的励磁涌流。 39.什么是自动重合闸?电力系统为什么要采用自动重合 闸? 答:自动重合闸装置是将因故障跳开后的断路器按需要自动投入的一种自动装置。电力系统运行经验表明,架空线路绝大多数的故障都是瞬时性的,永久性故障一般不到10%。因此,在由继电保护动作切除短路故障之 后,电弧将瞬间熄灭,绝大多数情况下短路处的绝缘可以自动恢复。因此,自动将断路器重合,不仅提高了供电的安全性,减少了停电损失,而且还提高了电力系统的暂态稳定水平,增大了高压线路的送电容量。所以,架空线路要采用自动重合闸装置。 什么是主保护、后备保护、辅助保护? 答:主保护是指能满足系统稳定和安全要求,以最快速度有选择地切除被保护设备和线路故障的保护。 后备保护是指当主保护或断路器拒动时,起后备作用的保护。后备保 护又分为近后备和远后备两种:(1)近后备保护是当主保护拒动时, 由本线路或设备的另一套保护来切除故障以实现的后备保护(2)远后 备保护是当主保护或断路器拒动时,由前一级线路或设备的保护来切 除故障以实现的后备保护. 辅助保护是为弥补主保护和后备保护性能的不足,或当主保护及后备 保护退出运行时而增设的简单保护。 、何谓主保护、后备保护?何谓近后备保护、远后备保护?(8分) 答:所谓主保护是指能以较短时限切除被保护线路(或元件)全长上的故障的保护装置。(2分) 考虑到主保护或断路器可能拒动而配置的保护,称为后备保护。(2分) 当电气元件的主保护拒动时,由本元件的另一套保护起后备作用,称为近后备。(2分)

变压器正常巡视检查项目有哪些

001):变压器正常巡视检查项目有哪些? 答:(1)变压器运行的音响是否正常; (2)油枕及充油套管中的油色、油位是否正常,有无渗漏油现象; (3)各侧套管有无破损,有无放电痕迹及其它异常现象; (4)冷却装置运行是否正常; (5)上层油温表指示是否正确,有无异常情况; (6)防爆管的隔膜是否完好,有无积液情况; (7)呼吸器变色硒胶的变色程度; (8)瓦斯继电器是否满油; (9)本体及各附件有无渗、漏油; (10)各侧套管桩头及连接线有无发热、变色现象; (11)变压器附近周围环境及堆放物是否有可能造成威胁变压器的安全运行。002):变压器特殊巡视检查项目有哪些? 答:(1)大风时检查变压器附近有无容易被吹动飞起的杂物,防止吹落到带电部分,并注意引线的摆动情况; (2)大雾天检查套管有无闪络、放电现象; (3)大雪天检查变压器顶盖至套管连线间有无积雪、挂冰情况,油位计,温度计、瓦斯继电器有无积雪复盖情况; (4)雷雨后检查变压器各侧避雷器记数器动作情况,检查套管有无破损、裂缝及放电痕迹。 (5)气温突变时,检查油位变化情况及油温变化情况。 003):根据变压器油温度,怎样判别变压器是否正常?

答:变压器在额定条件下运行,铁芯和绕组的损耗发热引起各部位温度升高,当发热与散热达平衡时,各部位温度趋于稳定。在巡视检查时,应注意环境温度、上层油温、负载大小及油位高度,并与以往数值对照比较分析,如果在同样条件下,上层油温比平时高出10℃,或负载不变,但油温还不断上升,而冷却装置运行正常,温度表无失灵,则可认为变压器部发生异常和故障。 004):影响变压器油位及油温的因素有哪些? 答:影响变压器油位和油温上升的因素主要是:①随负载电流增加而上升;②随环境温度增加,散热条件差,油位、油温上升;③当电源电压升高,铁芯磁通饱和,铁芯过热,也会使油温偏高些;④当冷却装置运行状况不良或异常,也会使油位、油温上升;⑤变压器部故障(如线圈部分短路,铁芯局部松动,过热,短路等故障)会使油温上升。 005):变压器出现假油位的原因有哪些? 答:变压器出现假油位的可能原因有:①油标管堵塞;②呼吸器堵塞;③防爆管通气孔堵塞;④用薄膜保护式油枕在加油时未将空气排尽。 006):变压器油位标上+40℃,+20℃,-30℃三条刻度线的含意是什么? 答:油位标上+40℃表示安装地点变压器在环境最高温度为+40℃时满载运行中油位的最高限额线,油位不得超过此线,+20℃表示年平均温度为+20℃时满载运行时的油位高度;-30℃表示环境为-30℃时空载变压器的最低油位线,不得低于此线,若油位过低,应加油。 007):变压器油在变压器中的主要作用是什么? 答:变压器中的油在运行时主要起散热冷却作用;对绕组等起绝缘和绝缘保养

差动保护带负荷测试

差动保护带负荷测试 1引言 差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护,其运行情况直接关系到变压器的安危。怎样才知道差动保护的运行情况呢?怎样才知道差动保护的整定、接线正确呢?唯有用负荷电流检验。但检验时要测哪些量?测得的数据又怎样分析、判断呢?下面就针对这些问题做些讨论。 2变压器差动保护的简要原理 差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。 3变压器差动保护带负荷测试的重要性 变压器差动保护原理简单,但实现方式复杂,加上各种差动保护在实现方式细节上的各不相同,更增加了其在具体使用中的复杂性,使人为出错机率增大,正确动作率降低。比如许继公司的微机变压器差动保护计算Y-△接线变压器Y

型侧额定二次电流时不乘以,而南瑞公司的保护要乘以。这些细小的差别,设计、安装、整定人员很容易疏忽、混淆,从而造成保护误动、拒动。为了防范于未然,就必需在变压器差动保护投运时进行带负荷测试。 4变压器差动保护带负荷测试内容 要排除设计、安装、整定过程中的疏漏(如线接错、极性弄反、平衡系数算错等等),就要收集充足、完备的测试数据。 1.差流(或差压)。变压器差动保护是靠各侧CT二次电流和——差流——工作的,所以,差流(或差压)是差动保护带负荷测试的重要内容。电流平衡补偿的差动继电器(如LCD-4、LFP-972、CST-31A型差动继电器),用钳形相位表或通过微机保护液晶显示屏依次测出A相、B相、C相差流,并记录;磁平衡补偿的差动继电器(如BCH-1、BCH-2、DCD-5型差动继电器),用0.5级交流电压表依次测出A相、B相、C相差压,并记录。 2.各侧电流的幅值和相位。只凭借差流判断差动保护正确性是不充分的,因为一些接线或变比的小错误,往往不会产生明显的差流,且差流随负荷电流变化,负荷小,差流跟着变小,所以,除测试差流外,还要用钳形相位表在保护屏端子排依次测出变压器各侧A相、B相、C相电流的幅值和相位(相位以一相PT二次电压做参考),并记录。此处不

变压器差动保护原理

主变差动保护 一、主变差动保护简介 主变差动保护作为变压器的主保护,能反映变压器内部相间短路故障、高压侧单相接地短路及匝间层间短路故障 ,差动保护是输入的两端CT 电流矢量差,当两端CT 电流矢量差达到设定的动作值时启动动作元件。 差动保护是保护两端电流互感器之间的故障(即保护范围在输入的两端CT 之间的设备上),正常情况流进的电流和流出的电流在保护内大小相等,方向相反,相位相同,两者刚好抵消,差动电流等于零;故障时两端电流向故障点流,在保护内电流叠加,差动电流大于零。驱动保护出口继电器动作,跳开两侧的断路器,使故障设备断开电源。 二、纵联差动保护原理 (一)、纵联差动保护的构成 纵联差动保护是按比较被保护元件(1号主变)始端和末端电流的大小和相位的原理而工作的。为了实现这种比较,在被保护元件的两侧各设置一组电流互感器TA1、TA2,其二次侧按环流法接线,即若两端的电流互感器的正极性端子均置于靠近母线一侧,则将他们二次的同极性端子相连,再将差动继电器的线圈并入,构成差动保护。其中差动继电器线圈回路称为差动回路,而两侧的回路称为差动保护的两个臂。 (二)、纵联差动保护的工作原理 根据基尔霍夫第一定律,0 =∑ ? I ;式中∑? I 表示变压器各侧电流的向量和,其物理意义是:变 压器正常运行或外部故障时,若忽略励磁电流损耗及其他损耗,则流入变压器的电流等于流出变压器的电流。因此,纵差保护不应动作。 当变压器内部故障时,若忽略负荷电流不计,则只有流进变压器的电流而没有流出变压器的电流,其纵差保护动作,切除变压器。见变压器纵差保护原理接线。

(1)正常运行和区外故障时,被保护元件两端的电流和的方向如图1.5.5(a)所示,则流入继电器的电流为 继电器不动作。 (2)区内故障时,被保护元件两端的电流和的方向如图1.5.5(b)所示,则流入继电器的电流为 此时为两侧电源提供的短路电流之和,电流很大,故继电器动作,跳开两侧的断路器。 由上分析可知,纵联差动保护的范围就是两侧电流互感器所包围的全部区域,即被保护元件的全部,而在保护范围外故障时,保护不动作。因此,纵联差动保护不需要与相邻元件的保护在动作时间和动作值上进行配合,是全线快速保护,且具有不反应过负荷与系统震荡及灵敏度高等优点。 三、微机变压器纵差保护的主要元件介绍 主要元件有:1)比率差动保护元件,2)励磁涌流闭锁元件,3)TA饱和闭锁元件,4)TA断线闭锁(告警)元件,5)差动速断元件,6)过励磁闭锁元件 下面对各个元件的功能和原理作个简要的介绍:

变压器差动保护

第二节变压器差动保护 1.概述 电气主设备内部故障的主保护方案之一是差动保护,差动保护在发电机上的应用是比较简单的,但是作为变压器内部故障的主保护,差动保护将有许多特点和困难。 变压器有两个和更多个电压等级,构成差动保护所用电流互感器的额定参数各不相同,由此产生的差动保护不平衡电流将比发电机大得多。 变压器每相原副边电流之差(正常运行时的励磁涌流)将作为变压器差动保护不平衡电流的一种来源,特别是当变压器过励磁运行时,励磁电流可达变压器额定电流的水平,势必引起差动保护误动作。更有甚者,在空载变压器突然合闸时,或者变压器外部短路被切除而变压器端电压突然恢复时,暂态励磁电流(即励磁涌流)的大小可与短路电流相比拟,在这样大的不平衡电流下,要求差动保护不误动,是一个相当复杂困难的技术问题。 正常运行中的变压器,根据电力系统的要求,需要调节分接头,这又将增大变压器差动保护的不平衡电流。 变压器差动保护能反应高、低压绕组的匝间短路,而匝间短路时虽然短路环中的电流很大,但流入差动保护的电流可能不大。 变压器差动保护还应能反应高压侧(中性点直接接地系统)经高阻接地的单相短路,此时故障电流也较小。 综上所述,差动保护用于变压器,一方面由于各种因素产生较大和很大的不平衡电流,另一方面又要求能反应具有流出电流的轻微匝间短路,可见变压器差动保护要比发电机差动保护复杂得多。 2.配置原则 对变压器引出线、套管及内部的短路故障,应装设相应的保护装置,并应符合下列规定: (1) 10MVA及以上的单独运行变压器和6.3MVA及以上的并列运行变压器,应装设纵联差动 保护。6.3MVA及以下单独运行的重要变压器,亦可装设纵联差动保护。 (2) 10MVA以下的变压器可装设电流速断保护和过电流保护。2MVA及以上的变压器,当电 流速断灵敏系数不符合要求时,宜装设纵联差动保护。 (3) 0.4MVA及以上,一次电压为10kV及以下,线圈为三角-星形连接的变压器,可采用两 相三继电器式的过流保护。 (4) 以上所述各相保护装置,应动作于断开变压器的各侧断路器。 3.要求达到的性能指标 (1) 具有防止区外故障误动的制动特性; (2) 具有防止励磁涌流引起误动的功能; (3) 宜具有TA断线判别功能,并能选择闭锁差动或报警,当电流超过额定电流的 1.5~2倍 时可自动解除闭锁; (4) 动作时间(2倍整定值时)不大于50ms; (5) 整定值允差±5%。 4.原理及其微机实现 4.1四方 4.1.1 保护原理 变压器差动包括主变差动、发变组差动、厂用变差动、起/备变差动、励磁变差动等,对于高压侧为500kV的一个半开关接线方式,发变组差动及主变差动保护应反应四侧的电流量。

变压器差动保护基本原理与逻辑图

变压器差动保护的基本原理及逻辑图 发布日期:2009-5-19 11:07:16 (阅2761次) 关键词: 变压器差动保护励磁涌流 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电 等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。 ②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。

变压器差动保护的基本原理

变压器差动保护的基本原理 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。 变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 1)励磁涌流 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。

2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

- 3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。 ②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。

4)克服励磁涌流对变压器纵差保护影响的措施: ①采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流 ①变压器两侧电流相位不同 电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。

变压器差动保护整定计算

变压器差动保护整定计 算 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

变压器差动保护整定计算 1. 比率差动 装置中的平衡系数的计算 1).计算变压器各侧一次额定电流: 式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。 2).计算变压器各侧二次额定电流: 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。 3).计算变压器各侧平衡系数: b n n PH K I I K ?=-2min 2,其中)4,min(min 2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定 电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。 平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。装置为了保证精度,所能接受的最小系数ph K 为,因此差动保护各侧电流平衡系数调整范围最大可达16倍。 差动各侧电流相位差的补偿 变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。电流互感器各侧的极性都以母线侧为极性端。

变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。对于Yo/Δ-11的接线,其校正方法如下: Yo 侧: Δ侧: 式中:a I ?、b I ?、c I ?为Δ侧TA 二次电流,a I '?、b I '?、c I '? 为Δ侧校正后的各相电流;A I ?、B I ? 、C I ? 为Yo 侧TA 二次电流,a I '?、b I '?、c I '? 为Yo 侧校正后的各相电流。其它接线方式可以类推。装置中可通过变压器接线方式整定控制字(参见装置系统参数定值)选择接线方式。 差动电流起动定值 cdqd I 为差动保护最小动作电流值,应按躲过正常变压器额定负载时的最大不平衡电流整定,即: 式中:e I 为变压器二次额定电流;rel K 为可靠系数(一般取~);er K 为电流互感器的比误差(10P 型取×2,5P 型和TP 型取×2);△U 为变压器调压引起的误差,取调压范围中偏离额定值的最大值(百分值);△m 为由于电流互感器变比未完全匹配产生的误差,可取为。在工程实用整定计算中可选取e cdqd I I )5.0~2.0(=,并应实测最大负载时差回路中的不平衡电流。 拐点电流的选取 对于稳态比率差动的两个拐点电流,装置分别取为和6Ie 。 斜率的整定

变压器差动保护带负荷测试分析

变压器差动保护带负荷测试分析 发表时间:2017-04-25T15:30:32.227Z 来源:《电力设备》2017年第3期作者:欧东辉 [导读] 摘要:变压器是变电站内重要设备,而变压器差动保护是保证变压器安全运行重要保证。 (广东电网有限责任公司河源供电局 517000) 摘要:变压器是变电站内重要设备,而变压器差动保护是保证变压器安全运行重要保证。为防止差动保护在投运后留下隐患引起的拒动或误动给变压器带灾难性影响,必须对差动保护在变压器在投运前进行带负荷测试,以彻底消除差动保护安全隐患。全文结合本人实际工作经验,介绍主变带负荷测试方法,以及用该方法测试具体数据的分析,其分析内容包括了差动保护二次回路相序、CT变比、CT极性及系统参数的整定,并在其中提出了自己工作上遇到实际问题的解决办法。 关键词:带负荷测试;差流;CT极性;系统参数 0引言 差动保护是变压器主保护之一,能快速无时限切除其保护范围内各种故障,其范围包括变压器本身、各侧CT及变压器套管引出线之间。所以构成差动保护的二次回路由主变各侧CT汇集到保护装置,接线较为复杂,容易造成安全隐患。长期运行经验表明:新主变投产前或差动二次回路更改后重新投运时进行带负荷测试是确保主变差动回路良好性的最后一道防线。必须用带负荷测试确认主变差流,主变各侧CT变比、极性,二次回路相序及其系统参数的定值的正确性。 1 带负荷测试的方法 带负荷测试就是我们利用相位表在主变带负荷时,一般习惯以高压侧或低压侧A相电压为基准,用钳形相位表保持同一方向在保护屏端子排依次测出变压器各侧A相、B相、C相电流的幅值和相位,同时记录下监控后台机主变各侧间隔潮流的有功功率、无功功率送受情况及一次电流大小,然后根据测量数值作出向量图进行具体细致分析,判断出变压器差动保护的运行性能。 2 带负荷测实例分析 2.1实测数据 根据以上带负荷测试方法,实测出我局新建220kV热水变电站主变投运时高低压两侧具体数据如下表1、表2、表3所示。 其中+P、+Q为输出有功无功;-P、-Q为受进有功无功;ia、ib、ic为低压侧保护电流;IA、IB、IC 为高压侧保护电流。 2.2 差动保护二次回路相序分析 根据2.1数据分析可知,主变各侧A相电流超前B相120°,B相电流超前C相120°,C相电流超前A相120°,且电流幅值基本相等,相位互差120°,可判断为主变各侧为正序电流且相序正确。若有某两相相位偏差大于10%时,则原因一是变压器负荷功率因数波动较大,造成测量一相电流相位时功率因数大,而测另一相时功率因数小,应反复多测几次进行对比分析。我们这次新站投产,还没出线负荷,测试的是电容器负荷,较为稳定,所以不存在此问题;原因二是电流回路存在寄生回路或有两点接地,造成该相电流相位偏移或是分流,应查明

变压器差动保护拒动的案例分析

变压器差动保护拒动 一、情况介绍 某变电站有两台主变压器,1号主变压器的容量是90MV A,变电站由220kV电路供电。 1号主变压器配置有两套完全独立的成套微机保护,双套差动保护。差动保护是具有比率制动及二次谐波制动的差动保护,有CT断线闭锁。还设有电流速断。 事故前的运行方式是:两台主变压器均运行,220kV母线上接有5条出线。 二、事故过程及调查 1998年6月27日,由于1号主变压器220kV侧隔离开关操作机构箱内受潮,使操作回路绝缘下降,引起给隔离开关带负荷自动分闸,造成弧光短路。 事故发生后,1号主变压器差动保护拒动,变电站5条220kV线路对侧的距离Ⅱ段动作,将5条线路切除。 事故扩大为3个220kV变电站、11个35kK变电站和1个燃汽轮机电厂全部停电。 事后检查,故障点在差动保护区内,故障电流116A(二次值),但两套微机差动保护均未动作。 三、对差动保护装置的试验检查 事故后对差动保护装置进行了校验检查,即输入电流检查及采样值,试验结果发现:当输入电流大于80A时,装置采样出的电流只有0.2~0.3A。这是由于当输入电流大于80A时,模/数转换芯片输入电压溢出,而软件处理又

不当等原因造成的。 四、两套差动保护同时拒动原因分析 两套差动保护同时拒动的原因是由于在如此大的短路电流下,装置软、硬件不能满足要求。 保护装置设计的最大故障电流为16倍的额定电流即5×16=80A,当超过80A时,电流变换装置趋向饱和,同时二次电流也将超过A/D模块的上限测量电压,又由于软件处理不当,致使测得的差流很小。 另外,装置中采用的CT断线闭锁装置有问题,当故障电流大于80A时,CT断线闭锁装置误判为“电流回路断线”而将两套差动保护闭锁。造成两套差动保护同时拒动。 五、对策 以我厂校验保护装置为例,采样值测试时施加5A电流,测试差流速断也仅施加9A电流原因有两个:①我们所使用的继电保护测试装置最大仅施加32A电流;②施加过大电流对保护装置有很大的冲击,施加时间、次数还会影响保护装置的寿命。因此无法测试变流器是否饱和以及A/D转换等设计类的缺陷。这就需要我们在选择微机型继电保护装置时明确“继电保护故障时所造成的损失远大于选择最昂贵保护装置的花费”的原则,因此要选择知名厂家、运行经验丰富、售后服务优质的产品,出现同类故障时也应及时与生产厂家沟通便于厂家升级和改进产品。 王祖印 2011年10月13日11:11:03

相关文档
最新文档