(完整word版)高中数学必修三期末测试题
高中数学期末综合复习练习试卷(必修 )

期末综合复习练习试卷(必修3、4)(第一卷)本试卷分第一卷(选择题)和第二卷(填空题、解答题)两部分。
第一卷1至2页,第二卷3至6页,共21题,合计100分。
第一卷的选择题和第二卷的填空题、解答题都要答在第二卷上。
考试时间120分钟。
一、选择题:本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、 下面的结论不正确的是( )(A )一个程序的算法、步骤是不可逆的 (B )完成一件事情的算法是惟一的(C )设计算法要本着简单方便、明确有效的原则 (D )一个算法,执行的步骤总是有限次的 2、 把389化成四进制数的末位为( ) (A )1 (B )2 (C ) 3 (D )03、 人们常用来反映数据n x x x ,,,21 的变异特征的量是( ) (A )中位数 (B )众数 (C )标准差 (D )平均值4、 观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿的体重在[2700,3000]的频率为( ) (A )0.001 (B )0.01 (C )0.003 (D )0.35、 在500mL 的水中有一个草履虫,现从中随机取出2mL 水样放到显微镜镜下观察,则发现草履虫的概率为( )(A )0 (B )0.002 (C )0.004 (D )1 6、 函数R x x y ∈+=),2cos(π( )(A )是奇函数 (B )是偶函数 (C )既不是奇函数,又不是偶函数 (D )有无奇偶性不能确定7、 将函数x y 2tan =的图象向左平移6π个单位,得到图象的函数解析式是( ) (A ))62tan(π+=x y (B ))32tan(π+=x y(C ))62tan(π-=x y (D ))32tan(π-=x y8、在ABC ∆中,b CA a CB ==,,则=AB ( )(A )b a + (B ))(b a +- (C )b a - (D )a b -9、已知平行四边形ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标是( )(A )(9,7) (B )(1,5) (C )(-3,-9) (D )(2,6) 10、化简)4(sin )4(cos 22απαπ---得到( )(A )α2sin (B )α2sin - (C )α2cos (D )α2cos -11、函数)20(cos 2π≤≤=x x y 的图象和直线2=y 围成一个封闭的平面图形,则这个封闭图形的面积是( )(A ) π (B )π2 (C )π3 (D )π412、已知ABC ∆的三个顶点A 、B 、C 及平面内一点P ,若,AB PC PB PA =++则点P 与ABC ∆的位置关系是( )(A ) P 在AC 上 (B )P 在AB 边上或其延长线上 (C )P 在ABC ∆外部 (D )P 在ABC ∆内部(第二卷)一.选择题:本大题共12小题,每小题3分,共36分。
必修三期末考试数学试卷

考试时间:120分钟满分:100分一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确答案的字母填写在答题卡上。
)1. 函数y=2x+1在定义域内是()。
A. 增函数B. 减函数C. 奇函数D. 偶函数2. 若复数z满足|z-1|=|z+1|,则复数z对应的点在()。
A. x轴上B. y轴上C. 第一象限D. 第二象限3. 已知等差数列{an}的前n项和为Sn,若a1=1,S10=55,则公差d为()。
A. 2B. 3C. 4D. 54. 下列命题中正确的是()。
A. 必要条件不一定是充分条件B. 充分条件不一定是必要条件C. 必要条件是充分条件D. 充分条件是必要条件5. 下列函数中,y=f(x)在x=1处连续的是()。
A. f(x)=x^2B. f(x)=|x|C. f(x)=x/(x-1)D. f(x)=x/(x^2-1)6. 下列不等式中,正确的是()。
A. |x|>0B. |x|≤0C. |x|≥0D. |x|<07. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a=3,b=4,则c的取值范围是()。
A. 1≤c≤7B. 2≤c≤6C. 3≤c≤5D. 4≤c≤88. 若lim(x→0) (sinx/x) = 1,则下列结论正确的是()。
A. sinx=xB. sinx≠xC. sinx/x=1D. sinx/x≠19. 已知数列{an}的通项公式为an=n^2-1,则数列{an}的前n项和为()。
A. n(n+1)/2B. n(n-1)/2C. n(n+1)(n-1)/2D. n(n+1)(n-2)/210. 下列极限计算正确的是()。
A. lim(x→0) (x^2-1)/(x-1) = 2B. lim(x→0) (x^2+1)/(x+1) = 2C. lim(x→0) (x^2-1)/(x+1) = 2D. lim(x→0) (x^2+1)/(x-1) = 2二、填空题(本大题共5小题,每小题10分,共50分。
高中数学必修三期末测试题

高中数学必修三期末测试题必修三期末测试题考试时间:90分钟试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分。
在每小题给出的四个选项中,只有一项是符合要求的。
1.如果输入n=3,那么执行算法的结果是(。
)。
A。
输出3B。
输出4C。
输出5D。
程序出错,无法输出任何结果算法步骤:第一步,输入n。
第二步,n=n+1.第三步,n=n+1.第四步,输出n。
2.一个容量为1000的样本分成若干组,已知某组的频率为0.4,则该组的频数是(。
)。
A。
400B。
40C。
4D。
6003.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是(。
)。
A。
1/6B。
1/4C。
3/8D。
1/24.用样本估计总体,下列说法正确的是(。
)。
A。
样本的结果就是总体的结果B。
样本容量越大,估计就越精确C。
样本的标准差可以近似地反映总体的平均状态D。
数据的方差越大,说明数据越稳定5.把11化为二进制数为(。
)。
A。
1011(2)B。
(2)C。
(2)D。
0110(2)6.已知x可以在区间[-t,4t](t>0)上任意取值,则x∈[-1/t,t]的概率是(。
)。
A。
1/2B。
1/6C。
3/10D。
1/37.执行程序,如果输出的结果是4,那么输入的只可能是(。
)。
A。
-4B。
2C。
±2或者-4D。
2或者-48.从茎叶图可以看出甲、乙两名运动员得分的中位数分别是(。
)。
A。
31,26B。
36,23C。
36,26D。
31,239.按照程序框图执行,第3个输出的数是(。
)。
A。
3B。
4C。
5D。
610.在下列各图中,两个变量具有线性相关关系的图是(。
)。
A。
(1)(2)B。
(1)(3)C。
(2)(4)D。
(2)(3)11.执行程序的功能是(。
)。
A。
求两个正整数的最大公约数B。
求两个正整数的最大值C。
求两个正整数的最小值D。
求圆周率的不足近似值12.秦九韶算法可以用来快速求解多项式的值。
对于给定的n次多项式f(x) = anxn + an-1xn-1 +。
河南省郑州市2008-2009高一下期期末数学试题(必修3+必修4)(含答案)(word版)

茎 叶 7 68 4 4 6 4 79 5 郑州市2008-2009高一下期期末数学试题第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知角α的终边经过点)1,3(,则角α的最小正值是A .π61B .π31C .π65D .π322.将十进制下的数72转化为八进制下的数为A .)8(011B .)8(101C .)8(110D .)8(111 3.已知平面向量)1,3(=,)3,(-=x ,且⊥,则=xA .3-B .3C .1-D .14.若x x f 2cos )(cos =,则)15(sin 0f 等于 A .23- B .23 C .21 D .21- 5.右图的算法流程图的输出结果是A .5B .7C .9D .11 6.在样本的频率分布直方图中,一共有n 个小矩形,若中间某一个小矩形的面积等于其余1-n 个小矩形面积和的41,且样本容量为160,则中间该组的频数是 A .32 B .20 C .40 D .257.如图所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a 的扇形,某人向此板投镖, 假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是A .41π- B .4π C .81π- D .与a 的取值有关 8.右图是某次歌唱比赛中,七位评委为某位选手打出分数(百分制) 的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数 和方差分别为A .84,4.84B .84,1.6C .85,1.6D .85,49.要得到函数)22cos(3π-=x y 的图象,可以将函数)42sin(3π-=x y 的图象沿x 轴 A .向右平移4π个单位 B .向左平移4π个单位 C .向右平移8π个单位 D .向左平移8π个单位 10.质地、形状、大小完全相同的3个白球和2个黑球排成一列,那么恰有2个白球相邻的概率为A .41 B .31 C .21 D .53 11.若2009tan 1tan 1=-+αα,则=++12tan 2cos 1αα A .2008 B .2009 C .2010 D .201112.已知0||2||≠=,且关于x 的方程0||2=⋅++x x 有实根,则与的夹角的 取值范围是A .]6,0[πB .],3[ππC .]32,3[ππD .],6[ππ 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第9行第8列的数4开始向右读,请你依次写出最先检测的4颗种子的编号分别是429,786, ,078.(在横线上填上所缺的种子编号)下面摘取了随机数表第7行至第9行84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5414.已知向量AB 与单位向量e 同向,且)2,1(-A ,)232,5(--B ,则e 的坐标为 .15.用秦九韶算法计算多项式1876543)(23456++++++=x x x x x x x f ,当4.0=x ,求)(x f 的值时,需要运算的乘法和加法总次数为 次.16.给出下列命题:①存在实数x ,使23cos sin =+x x ;②若α,β是第一象限角,且。
高中数学必修三期末试题带答案

一、选择题1.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为( )A .12B .34C .27D .382.质地均匀的正四面体的四个面上分别写有数字0,1,2,3,把两个这样的四面体抛在桌面上,露在外面的6个数字为2,0,1,3,0,3的概率为( ) A .19B .164C .18D .1163.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为423,现在半球内任取一点,则该点在正四棱锥内的概率为( )A .1πB 2C 3D .2π4.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是( )A.116B.18C.38D.3165.已知函数1()(1)g xx x=+,程序框图如图所示,若输出的结果1011S=,则判断框中可以填入的关于n的判断条件是()A.10?n≤B.10?n>C.11?n≤D.11?n>6.对任意非零实数a、b,若a b⊗的运算原理如图所示,则121log43-⎛⎫⊗ ⎪⎝⎭的值为()A .13B .1C .43D .27.定义语句“mod r m n =”表示把正整数m 除以n 所得的余数赋值给r ,如7mod31=表示7除以3的余数为1,若输入56m =,18n =,则执行框图后输出的结果为( )A .6B .4C .2D .18.如图的程序框图,当输出15y =后,程序结束,则判断框内应该填( )A .1x ≤B .2x ≤C .3x ≤D .4x ≤9.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号1,2,⋯,960,分组后在第一组采用简单随机抽样的方法抽到的号码为29,则抽到的32人中,编号落入区间[]200,480的人数为 A .7B .9C .10D .1210.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,811.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和9212.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据:11(,)x y ,22(,)x y ,33(,)x y ,44(,)x y ,55(,)x y .根据收集到的数据可知12345150x x x x x ++++=,由最小二乘法求得回归直线方程为0.6754.9y x =+,则12345y y y y y ++++的值为( )A .75B .155.4C .375D .466.2二、填空题13.重庆一中高一,高二,高三的模联社团的人数分别为25,15,10,现采用分层抽样的方法从中抽取部分学生参加模联会议,已知在高二年级和高三年级中共抽取5名同学,若从这5名同学中再随机抽取2名同学承担文件翻译工作,则抽取的两名同学来自同一年级的概率为__________.14.若正方体1111ABCD A BC D -的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.15.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.16.如下图,程序框图中,若输入4,10m n ==,则输出a 的值是________.17.某程序流程框图如图所示,现执行该程序,输入下列函数()2sin3f x x π=, ()2cos3f x x π=,()4tan 3f x x π=,则可以输出的函数是()f x =__________.18.执行如图所示的程序框图,输出的T =______.19.某校有高一学生n 名,其中男生数与女生数之比为6:5,为了解学生的视力情况,现要求按分层抽样的方法抽取一个样本容量为10n的样本,若样本中男生比女生多12人,则n =_______.20.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.三、解答题21.端午节吃粽子是我国的传统习俗,设一盘中装有6个粽子,其中豆沙粽1个,肉粽2个,白粽3个,这三种粽子的外观完全相同.(Ⅰ)从中不放回的任取3个,记X 表示取到的肉粽个数,求X 的分布列和()E X ; (Ⅱ)从中有放回的任取3个,记Y 表示取到的肉棕个数,求(2)P Y ≥; (Ⅲ)比较()E X 与()E Y 的大小(只需写出结论). 22.已知集合{(,)|[0,2],[1,1]}M x y x y =∈∈-. (1)若,x y Z ∈,求0x y +≥的概率; (2)若,x y R ∈,求0x y +≥的概率. 23.编写程序计算98246++⋅⋅⋅++的值.24.设计一个算法,找出闭区间[]20,25上所有能被3整除的整数.25.某“双一流”大学专业奖学金是以所学专业各科考试成绩作为评选依据,分为专业一等奖学金(奖金额3000元)、专业二等奖学金(奖金额1500元)及专业三等奖学金(奖金额600元),且专业奖学金每个学生一年最多只能获得一次.图(1)是统计了该校2018年500名学生周课外平均学习时间频率分布直方图,图(2)是这500名学生在2018年周课外平均学习时间段获得专业奖学金的频率柱状图.(Ⅰ)求这500名学生中获得专业三等奖学金的人数;(Ⅱ)若周课外平均学习时间超过35小时称为“努力型”学生,否则称为“非努力型”学生,列22⨯联表并判断是否有99.9%的把握认为该校学生获得专业一、二等奖学金与是否是“努力型”学生有关?(Ⅲ)若以频率作为概率,从该校任选一名学生,记该学生2018年获得的专业奖学金额为随机变量X ,求随机变量X 的分布列和期望.22()()()()()n ad bc K a b c d a c b d -=++++26.为鼓励职工积极参与健康步行,某单位组织职工进行了健身走活动.根据该单位的1000名职工在健身走中行走步数(单位:百步,步数均在50到210之间)得到如图的频率分布直方图,由频率分布直方图估计出这1000名职工中有56%的职工行走步数小于130(百步).(1)计算图中的a 值,并以此估计该单位职工行走步数的中位数;(2)为鼓励职工积极参与健康步行,该单位决定对本次步数排在前200名的职工进行奖励,授予“运动达人”称号.一名职工走了160(百步),请根据频率分布直方图判断该职工能否获得“运动达人”称号.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH的面积,由测度比为面积比得答案.【详解】如图所示,由正方形ABNH、DEFM的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB==,可得正方形MCNG的边长为2,则阴影部分的面积为224⨯=,多边形ABCDEFGH的面积为2332214⨯⨯-⨯=.则向多边形ABCDEFGH内投一点,则该点落在阴影部分内的概率为42 147=.故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.2.C解析:C【分析】露在外面的6个数字为2,0,1,3,0,3,则向下的数分别为1和2,求出所有的基本事件个数和向下数字为1和2的基本事件个数,代入概率公式即可.【详解】抛两个正四面体,共有4416⨯=个基本事件,向下数字为1和2的基本事件共有2个,分别是1,2和()2,1,所以向下数字为1和2的概率21168 P==,故选:C【点睛】本题主要考查随机事件概率的计算,难度较低.3.A解析:A【分析】先根据四棱锥的体积求出球的半径,再根据几何概型概率公式求结果.【详解】因为四棱锥的体积为3,设球半径为R,则1122332R R R R =⨯⨯⨯⨯∴=因此所求概率为3131423ππ=⨯,故选:A 【点睛】本题考查四棱锥体积、球体积以及几何概型概率公式,考查综合分析求解能力,属中档题.4.B解析:B 【分析】设阴影部分正方形的边长为a ,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率. 【详解】如图所示,设阴影部分正方形的边长为a,则七巧板所在正方形的边长为, 由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率()2218a =,故选:B. 【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.5.A解析:A 【分析】按照程序框图执行几次,找出此框图的算法功能,再根据已知条件1011S =进一步判断框内条件即可. 【详解】按照程序框图依次执行:110,1,01122S n S ===+=-⨯ 1111112,11+12232233n S ==-+=--=-⨯以此类推,可得111S n =-+ . 若1011S =,可得10n =,若要输出1011S =,则判断框内应填10n ≤?.故选:A. 【点睛】本题主要考查根据程序框图的输出结果判断程序框图中的选择条件,考查逻辑推理能力.6.B解析:B 【解析】模拟执行程序框图可得程序的功能是计算并输出分段函数1,2,b a b aa b a a b b-⎧⎪⎪⊗=⎨+⎪>⎪⎩的值,∵121log 4233-⎛⎫=<= ⎪⎝⎭.∴12131log 4132--⎛⎫⊗== ⎪⎝⎭.本题选择B 选项. 7.C解析:C 【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的m 的值. 【详解】第一次进入循环,因为56除以18的余数为2, 所以2r,18m =,2n =,判断r 不等于0,返回循环;第二次进入循环,因为18除以2的余数为0, 所以0r =,2m =,0n =,判断r 等于0, 跳出循环,输出m 的值为2.故选C. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8.C解析:C 【分析】计算出输出15y =时,3x =;继续运行程序可知继续赋值得:4x =,此时不满足判断框条件,结束程序,从而可得判断框条件. 【详解】解析 当x =-3时,y =3;当x =-2时,y =0;当x =-1时,y =-1;当x =0时,y =0; 当x =1时,y =3;当x =2时,y =8; 当x =3时,y =15,x =4,结束. 所以y 的最大值为15,可知x ≤3符合题意. 判断框应填:3x ≤ 故选C 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9.C解析:C 【分析】根据系统抽样的定义,可知抽到的号码数可组成一个以301=-n a n 为通项公式的等差数列,令*200301480,≤-≤∈n n N ,解不等式可得结果. 【详解】每组人数=9603230÷=人,即抽到号码数的间隔为30,因为第一组抽到的号码为29,根据系统抽样的定义,抽到的号码数可组成一个等差数列,且*2930(1)301,=+-=-∈n n n n N a ,令200301480≤-≤n ,得2014813030≤≤n ,可得n 的取值可以从7取到16,共10个,故选C . 【点睛】本题主要考查系统抽样的定义及应用,转化为等差数列是解决本题的关键.10.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图11.A解析:A 【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.512.C解析:C 【分析】首先求得x 的值,然后利用线性回归方程过样本中心点的性质求解12345y y y y y ++++的值即可. 【详解】 由题意可得:12345305x x x x x x ++++==,线性回归方程过样本中心点,则:0.6754.975y x =⨯+=, 据此可知:12345y y y y y ++++5375y ==. 本题选择C 选项. 【点睛】本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.【分析】由人数之比求出抽出的5名同学中高二高三年级人数通过列举出从这5名同学中再随机抽取2名同学的所有可能即可求出抽取的两名同学来自同一年级的概率【详解】解:高二高三抽取人数之比为所以5名同学中高二解析:25【分析】由人数之比求出抽出的5名同学中高二、高三年级人数,通过列举出从这5名同学中再随机抽取2名同学的所有可能即可求出抽取的两名同学来自同一年级的概率. 【详解】解:高二高三抽取人数之比为15:103:2=,所以5名同学中高二有3人,高三有2人, 设高二3人为123,,A A A ,高三2人为12,B B ,则随机抽取2名同学的可能有12131112232122313212A A A A A B A B A A A B A B A B A B B B ,,,,,,,,,共十种可能,其中抽取的两名同学来自同一年级的有12132312,,,A A A A A A B B 四种可能,则 抽取的两名同学来自同一年级的概率为42105=, 故答案为:25. 【点睛】本题考查了分层抽样,考查了古典概型概率的求解.本题的关键是求出高二、高三各抽出的人数.14.【解析】【分析】先求出满足题意的体积运用几何概型求出结果【详解】由题意可知总的基本事件为正方体内的点可用其体积满足的基本事件为为球心3为半径的求内部在正方体中的部分其体积为故则的长度大于3的概率【点 解析:16π-【解析】 【分析】先求出满足题意的体积,运用几何概型求出结果 【详解】由题意可知总的基本事件为正方体内的点,可用其体积3327=, 满足||3AE 的基本事件为A 为球心3为半径的求内部在正方体中的部分, 其体积为31493832V ππ=⨯⨯=,故则AE 的长度大于3的概率9211276P ππ=-=-.【点睛】本题考查了几何概型,读懂题意并计算出结果,较为基础15.80【分析】本道题一一列举把满足条件的编号一一排除即可【详解】该数可以表示为故该数一定是5的倍数所以5的倍数有5101520253035404550556065707580859095100该数满足解析:80 【分析】本道题一一列举,把满足条件的编号一一排除,即可. 【详解】该数可以表示为32,5,73k m n ++,故该数一定是5的倍数,所以5的倍数有5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,该数满足减去3能够被7整除,只有10,45,80,而同时要满足减去2被3整除,所以只有80. 【点睛】本道题考查了列举法计算锁编号问题,难度一般.16.20【解析】模拟执行程序可得:不满足条件整除以不满足条件整除以不满足条件整除以不满足条件整除以满足条件整除以退出循环输出的值为点睛:本题主要考查的程序框图的知识点解题的关键是要读懂程序框图模拟执行程解析:20 【解析】模拟执行程序,可得:4,10m n ==,1i =,4a =不满足条件n 整除以a2i =,8a =不满足条件n 整除以a3i =,12a =不满足条件n 整除以a4i =,16a =不满足条件n 整除以a5i =,20a =满足条件n 整除以a ,退出循环,输出a 的值为20点睛:本题主要考查的程序框图的知识点.解题的关键是要读懂程序框图.模拟执行程序,依次写出每次循环得到的i ,a 的值,当20a =的时候,满足条件n 整除以a ,退出循环,即可得到输出a 的值为20.17.【分析】根据得知函数的图象关于点对称由可得知函数的周期为于此可在题中三个函数中找出合乎条件的函数作出输出结果【详解】可知函数的图象关于点对称由得所以函数的周期为由三角函数的周期公式可知函数和的最小正解析:()2cos 3f x x π=. 【分析】根据()302f x f x ⎛⎫+--= ⎪⎝⎭得知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()f x + 302f x ⎛⎫+= ⎪⎝⎭可得知函数()y f x =的周期为3,于此可在题中三个函数中找出合乎条件的函数作出输出结果. 【详解】()302f x f x ⎛⎫+--= ⎪⎝⎭,可知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()302f x f x ⎛⎫++= ⎪⎝⎭,得()3322f x f x f x ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的周期为3.由三角函数的周期公式可知,函数()2sin3f x x π=和()2cos 3f x x π=的最小正周期为3,函数()4tan3f x x π=的最小正周期为34,不合乎要求; 对于函数()2sin 3f x x π=,323sin sin 04342f ππ⎡⎤⎛⎫⎛⎫-=⨯-=-≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;对于函数()2cos3f x x π=,323cos cos 04342f ππ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,合乎题意. 所以,函数()2cos3f x x π=的图象关于点3,04⎛⎫- ⎪⎝⎭对称, 故输出的函数为()2cos 3f x x π=,故答案为()2cos 3f x x π=. 【点睛】本题考查程序框图,考查三角函数的周期性和对称性,能根据抽象函数关系式得出函数的基本性质,是解本题的关键,属于中等题.18.16【解析】第一次运行:;第二次运行:;第三次运行:此时程序结束所以输出的解析:16 【解析】第一次运行:1,145,123,134T S S n T ===+==+==+=;第二次运行:45,549,325,459T S S n T =<==+==+==+=;第三次运行:9,9413,527,9716T S S n T ===+==+==+=.此时1613T S =>=,程序结束,所以输出的16T =19.【分析】依题意可得解之即得解【详解】依题意可得解得故答案为1320【点睛】本题主要考查分层抽样意在考查学生对这些知识的理解掌握水平和分析推理能力 解析:1320【分析】 依题意可得6512111110n⎛⎫-⨯= ⎪⎝⎭,解之即得解. 【详解】 依题意可得6512111110n⎛⎫-⨯=⎪⎝⎭,解得1320n =. 故答案为1320 【点睛】本题主要考查分层抽样,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.【分析】首先从茎叶图中找到出现次数最多的数从而得到甲组数据的众数找出乙组数据的最大值和最小值两者作差求得极差得到结果【详解】根据众数的定义可以断定甲组数据的众数是21;从茎叶图中可以发现其最大值为其 解析:21,43【分析】首先从茎叶图中找到出现次数最多的数,从而得到甲组数据的众数,找出乙组数据的最大值和最小值,两者作差求得极差,得到结果. 【详解】根据众数的定义,可以断定甲组数据的众数是21;从茎叶图中可以发现,其最大值为52,其最小值为9,所以极差为52943-=, 故答案为21,,43. 【点睛】该题考查的是茎叶图的应用,涉及到的知识点有一组数据的众数和极差的概念,只要明确众数是数据中出现次数最多的数,极差是最大值和最小值的差距,从而求得结果.三、解答题21.(Ⅰ)见解析,()1E X =;(Ⅱ)727;(Ⅲ)()()E X E Y =. 【分析】(Ⅰ)X 的取值分别为0,1,2,分别求出其概率可得分布列,再由期望公式计算期望;(Ⅱ)(2)P Y ≥(2)(3)P Y P Y ==+=,由此可得; (Ⅲ)Y 的取值分别为0,1,2,3,分别计算概率后可得期望. 【详解】(Ⅰ)由题意X 的取值分别为0,1,2,34361(0)5C P X C ===,1224363(1)5C C P X C ===,14361(2)5C P X C ===,X 的分布列为:期望为()0121555E X =⨯+⨯+⨯=; (Ⅱ)2233242(2)69C P Y ⨯⨯===,3321(3)627P Y ===, 所以217(2)(2)(3)92727P Y P Y P Y ≥==+==+=, (Ⅲ)又3348(0)627P Y ===,1233244(1)69C P Y ⨯⨯===,所以421()12319927E Y =⨯+⨯+⨯=. 所以()()E X E Y = 【点睛】本题考查随机变量的分布列与数学期望,掌握概率公式是解题基础. 22.(1)89 (2)78【解析】试题分析:(1)因为x ,y ∈Z ,且x ∈[0,2],y ∈[-1,1],基本事件是有限的,所以为古典概型,这样求得总的基本事件的个数,再求得满足x ,y ∈Z ,x+y≥0的基本事件的个数,然后求比值即为所求的概率.(2)因为x ,y ∈R ,且围成面积,则为几何概型中的面积类型,先求x ,y ∈Z ,求x+y≥0表示的区域的面积,然后求比值即为所求的概率. 试题(1)设"x+y 0,,"x y Z ≥∈为事件,,A x y Z ∈,[]0,2x ∈,即[]0,1,2;1,1x y =∈-,即1,0,1y =-.则基本事件有:()()()()()()()()()0,1,0,0,0,1,1,1,1,0,1,1,2,1,2,0,2,1---共9个,其中满足的基本事件有8个,所以()89p A =.故,,0x y Z x y ∈+≥的概率为89. (2)设"0,,"x y x y R +≥∈为事件B ,因为][0,2,1,1x y ⎡⎤∈∈-⎣⎦,则基本事件为如图四边形ABCD 区域,事件B 包括的区域为其中的阴影部分.所以()11-1122-11722===228ABCD ABCDABCD S S p B S S ⨯⨯⨯⨯⨯=⨯四边形阴影四边形四边形,故",0"x y R x y ∈+≥,的概率为78. 点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.23.答案详见解析. 【解析】 【分析】根据题干要求写出循环结构的程序即可. 【详解】 程序如下: i=2 sum=0 DO sum=sum+i i=i+2LOOP UNTIL i>98 PRINT sum END 【点睛】应用循环语句编写程序时需注意: ①循环语句中的循环变量一般要设初始值.②在循环过程中需要有“结束”的语句,程序中最忌“死循环”. 24.见解析 【解析】试题分析:可通过循环结构的算法实现求闭区间[]20,25上所有能被3整除的整数. 试题第一步,用20除以3,余数不为0,故20不能被3整除; 第二步,用21除以3,余数为0,故21能被3整除; 第三步,用22除以3,余数不为0,故22不能被3整除; 第四步,用23除以3,余数不为0,故23不能被3整除; 第五步,用24除以3,余数为0,故24能被3整除; 第六步,用25除以3,余数不为0,故25不能被3整除; 第七步,指出在闭区间[20,25]上能被3整除的整数为21和24. 25.(Ⅰ)160人;(Ⅱ)有;(Ⅲ)见解析. 【分析】(Ⅰ)根据频率之和为1,得到获得三等奖学金的频率,再由总人数得到答案;(Ⅱ)根据频率分布直方图和频率柱状图,填写好列联表,再计算出2K 进行判断,得到答案;(Ⅲ)先得到X 可取的值,再分别求出其概率,根据数学期望的公式,得到答案. 【详解】()I 获得三等奖学金的频率为:()()()0.0080.0160.0450.150.040.0560.01650.40.0160.00850.40.32++⨯⨯+++⨯⨯++⨯⨯=5000.32160⨯=,故这500名学生获得专业三等奖学金的人数为160人.()II 每周课外学习时间不超过35小时的“非努力型”学生有()5000.0080.0160.040.040.0560.0165440⨯+++++⨯=人,其中获得一、二等奖学金学生有()()()5000.0080.0160.0450.055000.040.0560.01650.250.0592x ++⨯⨯+⨯++⨯⨯+=每周课外学习时间超过35小时称为“努力型”学生有5000.1260⨯=人,其中获得一、二等奖学金学生有()600.350.2536⨯+=人,22⨯列联表如图所示:()250034836922442.3610.8344060128372K ⨯⨯-⨯=≈>⨯⨯⨯故有99.9%的把握认为获得一二等奖学金与学习“努力型”学生的学习时间有关;()III X 的可能取值为0,600,1500,3000 ()6000.32P X ==, ()15000.198P X ==, ()30000.058P X ==,()010.320.1980.0580.424P X ==---=X 的分布列00.4246000.3215000.19830000.058192297174663EX x =⨯+⨯++⨯=++=元.【点睛】本题考查利用频率分布直方图求频率和频数,通过求2K 的值进行判断是否相关,随机变量的分布列和数学期望,属于中档题. 26.(1)0.012a =,中位数125;(2)能. 【分析】(1)由小于130步的频率是56%可计算出a ,同时也可计算出b ,由频率分布直方图可计算出中位数(频率0.5对应的步数);(2)前200人,即频率为0.2,求出频率0.2对应的步数后可得. 【详解】解(1)因为1000名职工中有56%的单位职工行走步数小于130(百步). 所以(0.0020.0060.008)200.56a +++⨯=. 所以0.012a =.因为[]50,110的频率为(0.0020.0060.008)200.32++⨯=, 又[]110,130的频率为0.24,所以中位数m 在[]110,130里面,所以1100.500.320.75200.560.32m --==-. 所以125m =.(2)设步数为y 百步能获得称号,前200名即占1000名职工的0.20由于[150,170]是0.16,[170,210]是0.08, 所以y 应在[150,170]中取值,1500.04200.16y -=,所以155y =百步, 160155>,该职工能获得“运动达人”称号.【点睛】本题考查频率分布直方图,由频率分布直方图计算中位数,属于基础题.。
郑州市2012-2013高一下期期末数学试题(必修3+必修4)(含答案)(WORD版)

kg )郑州市2012-2013学年下期期末试题高一数学第Ⅰ卷 (选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.tan 600的值是A.3-B .3C .D .2.已知向量(4,2)a = ,向量(,3)b x =,且a ∥b ,则x 等于A .9B .6C .5D .33.某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家.为了掌握各商店的营业情况,要从中抽取一个容量为20的样本.若采用分层抽样的方法,抽取的中型商店数是A .2B .3C .5D .134.下列各数化成10进制后最小的数是A .85(9)B .210(6)C .1000(4)D .111111(2)5.为了了解某地区高三学生的 身体发育情况,抽查了该地区 100名年龄为17.5岁—18岁的 男生体重(kg ),得到频率分布直方图如右:根据右图可得这 100名学生中体重在[56.5,64.5]的学生人数是 A .20 B .30C .40D .506.若△ABC 的内角A 满足2sin 23A =,则sin cos A A += AB .C .53D .53-7.已知(,)2παπ∈,3sin 5α=,则tan()4πα+等于A .17B .7C .17- D .7-8.将函数sin()(0,||2y x πωϕωϕ=+>≤的图象沿x 轴方向向左平移3π则ω,ϕ的值分别为A .1,3π B .1,3π- C .2,3πD .2,3π-9.已知向量a 与b的夹角为120,||3a = ,||a b += ||b 等于A .5BC .2D .410.要得到函数cos(2)4y x π=-的图象,只需将函数cos(23y x π=+的图象 A .向左平移24π个单位长度B .向右平移24π个单位长度C .向左平移724π个单位长度D .向右平移724π个单位长度11.已知(2sin cos )(32sin 2cos )0x x x x -++=,则2sin 22cos 1tan x xx++的值为A .85B .58C .43D .3412.已知sin ,0()(1)1,0x x f x f x x π<⎧=⎨-->⎩,则1111(()66f f -+的值为A .0B .12C .1-D .2-第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.)13.若某程序框图如右图,则该程序运行后输出的k 的值为 . 14.cos 43cos77sin 43cos167+的值为 .15.已知向量(1,sin )a θ= ,(1,cos )b θ= ,则||a b - 的最大值为 .16.对于下列命题:①函数sin()()y k x k Z π=-+∈为奇函数;。
2020-2021学年北师大版高中数学必修三期末检测试题(3套)及答案解析

最新(新课标)北师大版高中数学必修三期末测试(1)一、选择题4.高一(1)班学生50人,学号从01~50,学校举行某项活动,要求高一(1)班选出5人参加,班主任老师运用随机数表法选了5名学生,首先被选定的是第21行第15个数码,为26,然后依次选出,那么被选出的5个学生是()附随机数表的第21行第11行个数开始到第22行第10个数如下:…44 22 78 84 26 04 33 46 09 526807 97 06 57 74 57 25 65 765929 97 68 60 …A.26号、22号、44号、40号、07号B.26号、10号、29号、02号、41号C.26号、04号、33号、46号、09号D.26号、49号、09号、47号、38号5.在某餐厅内抽取100人,其中有30人在15岁以下,35人在16至25岁,25人在26岁至45岁,10人在46岁以上,则数0.35是16至25人员占总体分布的()A.概率B.频率C.累积频率D.频数2.读程序:0=sum:S=i;1:=:;0repeatS = S + ii= i+ 1sum = sum + Suntil i> = 100输出sum该程序的运行结果是__________的值.()A.+1+++2+Λ3+321…+99 B.100+C.99+++++))+Λ(+Λ++23121()2+1+1(3D.)++++++Λ(+Λ++))213100+321(1(1+23.右侧的算法流程图中必含有()A.条件语句B.循环语句C.赋值语句D.以上语句都有1.在解决下列各问题的算法中,一定用到循环结构的是()A .求函数1)(2+32xf当5x=x-x时的值B.用二分法求3发近似值=C.求一个给定实数为半径的圆的面积D.将给定的三个实数按从小到大排列6.要了解某市高三学生身高在某一范围的学生所占比例的大小,需知道相应样本的()A.平均数B.样本数C.众数D.频率分布7.抽测10只某种白炽灯的使用寿命,结果如下:(单位:h)1067,919,1196,785,t,936,918,1156,920,948若x= 997,则t大约是()A.1120 B.1124 C.1125 D.11288.一个样本的数据在200左右波动,各个数据都减去200后得到一组新数据,算得其平均数是6,则这个样本的平均数是()A.200 B.6 C.206 D.20.69.设一组数据的方差是S“,将这组数据的每个数都乘以10,所得到的一组新数据的方差是()A. 0.12S B.2S C.102S D.1002S10.从分别写有A,B,C,D,F,的五张卡片中任取两张,这两张卡片上的字母顺序恰好相邻的概率为( ) A .52 B .51 C .103 D .107 11.一个三位数字的密码锁,每位上的数字都在0到9这十个数字中任选,某人忘记了密码最后一个号码,那么此人开锁时,在对好前两位数码后,随意拨动最后一个数字恰好能开锁的概率为( )A .3101B .2101C .101D .1000112.将一部四卷的文集,任意排放在书架的同一层上,则卷序自左向右或自右向左恰为1,2,3,4的概率为( )A .81 B .121 C .161 D .241二、填空题13.采用系统抽样方法,从121人中抽取一个容量为12的样本,则每人被抽取到的概率为__________.14.15台电脑,有10台兼容机、5台品牌机,从中任取两台,至少有一台兼容机的概率是________. 15.在大小相同的6个球中,2个是红球,4个是白球,若从中任意选取3个,则所选的3个球至少有一个红球的概率是_______(用分数表示).16.一个口袋装有3个红球和n 个绿球,从中任取3个,若取出的3个球中至少有1个是绿球的概率是3534,则 n _______. 三、解答题17.用辗转相除法求153与119的最大公约数,并列出更相减损术的检验过程.18.标有1,2,3,4,5,6六个号码的小球,有一个最重,写出挑出此重球的算法并画出程序框图.19.某校有在校高中生共1600人,其中高一学生520人,高二学生500人,高三学生580人,如果想通过抽查其中的80人,来调查学生的消费情况,考虑到学生的年级高低消费情况有明显差别,而同一年级内消费情况差异较小,问应采用怎样的抽样方法?高三学生中应抽查多少人?20.为了了解高三年级一、二班的数学学习情况,从两个班各抽出10名学生进行数学水平测试,成绩如下(单位:分)一班:76,90,84,86,81,87,86,82,85,83二班:82,84,85,89,79,80,91,89,79,74比较两组数据的方差,并估计一、二两个班哪个班学生的数学成绩比较整齐.21.下表给出了某校120名12岁男孩身高的资料( l )列出样本的频率分布表;(2)估计134的人数约占的百分数、22.同时投掷两颗骰子,求总数和为T的概率.答案:一.选择题1、D2、D3、C4、D5、C6、D7、C8、C9、D 10、A11、C 12、B期末测试(2)一、选择题1.抽查汽车排放尾气的合格率,某环保单位在一路口随机抽查,这种抽样是( ) A .简单随机抽样 B .随机数表法 C .系统抽样 D .分层抽样2.一个总体中共有10个个体,用简单随机抽样的方法从中抽取一容量为3的样本,则某特定个体人样的概率是( )A .401 B .89101⨯⨯ C .103 D .101 3.分层抽样适用的范围是( )A .总体中个数较少B .总体中个数较多C .总体中由差异明显的几部分组成D .以上均可以4.某住宅小区有居民2万户,从中随机抽取200户,调查是否安装电话,调查的结果如图所示,则该小区已安装电话的户数估计有( )A.6500户B.300户C.19000户D.9500户5.有一个样本容量为50的样本数据分布如下,估计小于30的数据大约占有()[12. 5,15.5)3;[15. 5,18.5) 8;[18.5,21.5)9;[21. 5,24.5) 11;[24. 5,27.5)10;[27. 5,30.5) 6;[30. 5,33.5) 3.A.94%B.6%C.88%D.12%6.已知10个数据如下:63,65,67,69,66,64,66,64,65,68,对这些数据编制频率分布表,其中[64. 5,66. 5)这组的频率是()A.5 B.4 C.0.5 D.0.47.对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为()A.92%B.24%C.56%D.76%8.某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元.某人想从01至10中选3个连续的号,从1l至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号买全,至少要花()A.3360元B.6720 C.4320元D.8640元9.在一对事件A J3中,若事件A是必然事件,事件13是不可能事件,那么事件A和事件B()A.是互斥事件,但不是对立事件B.是对立事件,但不是互斥事件C.是互斥事件,也是对立事件D.既不是对立事件,也不是互斥事件10.把红、黑、白4张纸牌随机地分发给甲、乙、丙、丁,1个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( )A .不可能事件B .互斥但不对立事件C .对立事件D .以上答案都不对11.一块各面均有油漆的正方体被锯成1000个同样大小的正方体,若将这些小正方体均匀搅混在一起,则任意取出的一小正方体其两面均涂有油漆的概率是( ) A .12512 B .253 C .101 D . 121 12.将数字1,2,3,4填入标号为1,2,3,4的四个方格中,每格填一个数字,则每个方格的标号与所填数字均不相同的概率是( ) A .41 B .83 C .241 D .449 二、填空题13.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取___________,_________,________辆.14.在分别标有2,4,6,8,11,12,13的七张卡片中任取两张,用卡片上的两个数组成一个分数,在所得分数中既约分数的概率为__________.15.若以连续掷两次般子分别得到的点数m ,n 作为P 点的坐标,则点P 落在圆,1622=+y x 内的概率是_________.16.以下是用Scilab 编写的程序,输出a ,b 的含义是______________________. a =input (“please give the first number ”) b =input (“please give the second number ”) while a <>b if a >=b a =a -b ; elseb =b -a ; end endprint (%io (2),a ,b ) 三、解答题17.已知一组数据10321,,,,x x x x Λ。
(word完整版)高中数学必修三期末测试题(2021年整理)

(word完整版)高中数学必修三期末测试题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高中数学必修三期末测试题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高中数学必修三期末测试题(word版可编辑修改)的全部内容。
必修三期末测试题考试时间:90分钟 试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.如果输入n =3,那么执行右图中算法的结果是( ). A .输出3B .输出4C .输出5D .程序出错,输不出任何结果2.一个容量为1 000的样本分成若干组,已知某组的频率为0。
4,则该组的频数是( ). A .400B .40C .4D .6003.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是( ). A .61B .41C .31D .214.用样本估计总体,下列说法正确的是( ). A .样本的结果就是总体的结果 B .样本容量越大,估计就越精确C .样本的标准差可以近似地反映总体的平均状态D .数据的方差越大,说明数据越稳定 5.把11化为二进制数为( ). A .1 011(2)B .11 011(2)C .10 110(2)D .0 110(2)6.已知x 可以在区间[-t ,4t ](t >0)上任意取值,则x ∈[-21t ,t ]的概率是( ).(word 完整版)高中数学必修三期末测试题(word 版可编辑修改)A .61 B .103C .31D .217.执行右图中的程序,如果输出的结果是4,那么输入的只可能是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修三期末测试题
考试时间:90分钟 试卷满分:100分
一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.
1.如果输入n =3,那么执行右图中算法的结果是( ). A .输出3 B .输出4 C .输出5
D .程序出错,输不出任何结果
2.一个容量为 1 000的样本分成若干组,已知某组的频率为0.4,则该组的频数是( ).
A .400
B .40
C .4
D .600
3.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是( ). A .
6
1
B .
4
1
C .3
1
D .
2
1 4.用样本估计总体,下列说法正确的是( ). A .样本的结果就是总体的结果 B .样本容量越大,估计就越精确
C .样本的标准差可以近似地反映总体的平均状态
D .数据的方差越大,说明数据越稳定 5.把11化为二进制数为( ). A .1 011(2)
B .11 011(2)
C .10 110(2)
D .0 110(2)
6.已知x 可以在区间[-t ,4t ](t >0)上任意取值,则x ∈[-2
1
t ,t ]的概率是( ). A .
6
1
B .103
C .3
1
D .
2
1 7.执行右图中的程序,如果输出的结果是4,那么输入的只可能是( ).
第一步,输入n . 第二步,n =n +1. 第三步,n =n +1. 第四步,输出n .
A.4
B.2
C.±2或者-4 D.2或者-4
8.右图是根据某赛季甲、乙两名篮球运动员每场比赛得
分情况画出的茎叶图.从这个茎叶图可以看出甲、乙两名运动
员得分的中位数分别是( ).
A.31,26
B.36,23
C.36,26
D.31,23
9.按照程序框图(如右图)执行,第3个输出的数是( ).
A.3
B.4
C.5
D.6
10.在下列各图中,两个变量具有线性相关关系的图是( ).
(1)(2)(3)(4)
A.(1)(2) B.(1)(3) C.(2)(4) D.(2)(3) 11.右图执行的程序的功能是( ).
A.求两个正整数的最大公约数
B.求两个正整数的最大值
C.求两个正整数的最小值
D.求圆周率的不足近似值
12.已知n 次多项式f (x )=a n x n
+a n -1x
n -1
+…+a 1x +a 0,用秦九韶算法求当x =x 0时f (x 0)
的值,需要进行的乘法运算、加法运算的次数依次是( ).
A .n ,n
B .2n ,n
C .
2
1+)
(n n ,n D .n +1,n +1
13.有一位同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计得到了一天所卖的热饮杯数(y )与当天气温(x ℃)之间的线性关系,其回归方程为y
ˆ=-2.35x +147.77.如果某天气温为2℃时,则该小卖部大约能卖出热饮的杯数是( ).
A .140
B .143
C .152
D .156
14.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的坐标,求点P 落在圆x 2
+y 2
=16外部的概率是( ).
A .
9
5
B .
3
2
C .
9
7
D .
9
8 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第7列的数7开始向右读,请你依次写出最先检测的4颗种子的编号 , , , .
(下面摘取了随机数表第7行至第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 16.由经验得知,在某商场付款处排队等候付款的人数及其概率如下:
则排队人数为2或3人的概率为 .
17.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样 本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出80人作进一步调查,则在[1 500,2 000)(元)月收入段应抽出 人.
18.已知数列{a n },a 1=1,a n +1=a n -n ,计算数列{a n }的第20项.现已给出该问题算法的程序框图(如图所示).
为使之能完成上述的算法功能,则在右图判断框中(A)处应填上合适的语句是 ;在处理框中(B)处应填上合适的语句是 .
三、解答题:本大题共3小题,共28分. 解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分8分)
从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:
甲 8 9 7 9 7 6 10 10 8 6 乙
10
9
8
6
8
7
9
7
8
8
(1)计算甲、乙两人射箭命中环数的平均数和标准差; (2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.
0.000 1
0.000 2 0.000 3 0.000 4 0.000 5 1 000 1 500 2 000 2 500 3 000 3 500 4 000 月收入/元
频率 组距
20.(本小题满分10分)
按右图所示的程序框图操作:
(1)写出输出的数所组成的数集.若将输出的数按照输出
的顺序从前往后依次排列,则得到数列{a n},请写出数列{a n}
的通项公式;
(2)如何变更A框内的赋值语句,使得根据这个程序框图
所输出的数恰好是数列{2n}的前7项?
(3)如何变更B框内的赋值语句,使得根据这个程序框图
所输出的数恰好是数列{3n-2}的前7项?
21.(本小题满分10分)
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.
(1)求取出的两个球上标号为相同数字的概率;
(2)求取出的两个球上标号之积能被3整除的概率.
期末测试题
参考答案
一、选择题: 1.C 2.A
3.A
4.B
5.A
6.B
7.B
8.C
9.C
10.D 11.A 12.A 13.B 14.C 解析:
7.解:如x ≥0,则x 2
=4,得x =2;;
如x <0,则由y =x ,不能输出正值,所以无解.故选B . 14.解:点P (m ,n )的坐标的所有可能有6×6=36种, 而点P 在圆x 2
+y 2
=16内部只有8种,即
⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ , 故点P 在圆x 2+y 2
=16内部概率为92,而点P 落在该圆外部的概率为9
7. 二、填空题:
15. 785,567,199,810. 16. 0.6.
17. 16.
18.n ≤19?(或n <20?);S =S -n .
三、解答题:
19.解:(1)计算得甲x =8,乙x =8; s 甲≈1.41,s 乙≈1.10.
(2)由(1)可知,甲、乙两名学生射箭命中环数的平均数相等,但s 乙<s 甲,这表明乙的成绩比甲更稳定一些. 从成绩的稳定性考虑,选择乙参赛更合适.
20.解:(1)输出的数组成的集合为{1,3,5,7,9,11,13}; 数列{a n }的通项公式为a n =2n -1,n ∈N *且n ≤7.
(2)将A 框内的语句改为“a =2”即可. (3)将B 框内的语句改为“a =a +3”即可.
m =1 n =3 m =1 n =1 m =1 n =2 m =2 n =1 m =2 n =2 m =2 n =3 m =3 n =1 m =3
n =2
21.解:设从甲、乙两个盒子中各取1个球,其数字分别为x ,y , 用(x ,y )表示抽取结果,则所有可能的结果有16种,即
(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4). (1)设“取出的两个球上的标号相同”为事件A , 则A ={(1,1),(2,2),(3,3),(4,4)}. 事件A 由4个基本事件组成,故所求概率P (A )=164=4
1. 答:取出的两个球上的标号为相同数字的概率为
4
1. (2)设“取出的两个球上标号的数字之积能被3整除”为事件B , 则B ={(1,3),(3,1),(2,3),(3,2),(3,3),(3,4),(4,3)} 事件B 由7个基本事件组成,故所求概率P (A )=
167. 答:取出的两个球上标号之积能被3整除的概率为
16
7.。