运筹学资料3多目标规划

合集下载

多目标规划求解方法介绍

多目标规划求解方法介绍
*
0 0
0
0
0
j0
0
S x f j ( x) f j
* j
^

S
^
j 1
, j 2,3,, p
三、功效系数法:
设目标为:f1 ( x), f 2 ( x),, f p ( x) f1 ( x),, f k ( x) 其中: 要求min; f k 1 ( x),, f p ( x) 要求max。 由于量纲问题,处理目标之间的关系时往往带来困难。 1. 功效系数法:针对各目标函数 ,用功效 f j ( x)( j 1,, p) 系数 表示(俗称“打分”): d j d j ( f j ( x)) , j 1,, p 满足: d j 或 0 d j 1 0 d j 1 使最满意时 ,最不满意时(即最差时) 。 d j 1 dj 0 2. 常用的两种产生功效系数的方法: (1)线性型: min max min f ( x ) f , max f ( x ) f , j 1,2, , p j j j 设 xS j xS
解得:b0 f j1 ( f j0 f j1 ) , b1 1 ( f j0 f j1 ) (b1 0) 0 1 代入式(△),得到功效系数: ( f1 j f j ( x )) ( f j f j ) d j e e 同理可得当
j 1,, k
时的功效系数:
j
j j
例6:
V min F ( x) f1 ( x), f 2 ( x)T s.t. g1 ( x) x1 x2 3 0 g 2 ( x) x1 x2 8 0 ( LVP ) g 3 ( x) x1 6 0 g 4 ( x ) x2 4 0 g 5 ( x) x1 0 g 6 ( x ) x2 0

运筹学课件目标规划

运筹学课件目标规划

一 目标规划的数学模型
3 目标函数: 1 恰好达到目标:
minZ= f d +d+ 2 超过目标:
minZ= f d 3 不超过目标:
minZ= f d+
第四章
一 目标规划的数学模型 第四章
4 目标规划的目标:求一组决策变量的满意值;使 决策结果与给定目标总偏差最小
① 目标函数中只有偏差变量 ② 目标函数总是求偏差变量最小 ③ Z=0:各级目标均已达到

d4+
X2 =30
F
B
30 A d1+
d2- X1+X2 =50
X1
X1+X2 =40
1 满足目标① ②的满意域为ABCD
2 先考虑③的满意域为ABEF 再考虑④;无公共满意域
(3)、取E
X1+X2=50 X1=24
E(24,26) 获利2960
4 Zmin =d4 =30 X2 + d4+=3026=4>0
6x1+4x2 =240
2x1+3x2 =120 C
10
d2-
E
B
O 10 d3-
A d1+
x1
第四章
二 目标规划的图解法 第四章
分析:满足P1;部分满足P2的点有A;B;C;D 如果不考虑A;B产品均需生产 由解方程可得:A40;0; B60;0
C24;24; D0;60 比较与目标的偏差 A点:ZA = P1d1 + P2d2++ P2d3+ = 0+0+ P2d3+
另一种差别是相对的;这些目标具有相同的优先因 子;它们的重要程度可用权系数的不同来表示

多目标规划

多目标规划

解:
x2
A B C
x1
Eab = E pa = {B}, Ewp = AB, BC
{
}
O
T 2 2 例2 设 X = {( x1 , x2 ) ( x1 + 1) + 2 x = 4}, 求 X , 的 Eab , E pa , Ewp
2
解:
x2
Eab = φ , E pa = Ewp
= AB
{ }
第二节 多目标规划问题的解 一,向量集的极值 1 多目标规划的标准形式是
min( f1 ( x),..., f p ( x))T , p > 1, x ∈ E n g i ( x) ≥ 0 i = 1,..., m s.t. h j ( x) = 0 j = 1,..., l (2.1)
1
介绍A.M.Geoffrion于1968年提出的—种 真有效解—G-有效解.

min f ( x) = ( f1 ( x), f 2 ( x))T
x∈D
f1 ( x) = x1 + 2 x2 , f 2 ( x) = x1 x2 , D = ( x1 , x2 )T 0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 1
的有效解和弱有效解. f1 ( x) = 3 x2 1 B
{
}
R pa = Rwp = {OA, AB}
解: 1 画出 D 及 D 的像 f (D )
f1
x
f1 , f 2 联立消去 x
O 1

f1 = f 22 + 2 f 2
f2
1
R pa = Rwp
. .
2
.
f2
x
o
1 2

运筹学必考知识点总结

运筹学必考知识点总结

运筹学必考知识点总结在运筹学中,有一些必考的知识点是非常重要的。

这些知识点涵盖了运筹学的基本概念、方法和模型,对于考生来说,掌握这些知识点是至关重要的。

本文将对运筹学的一些必考知识点进行总结,帮助考生更好地备考。

1. 线性规划线性规划是运筹学中的重要方法之一,它通过建立数学模型来解决各种决策问题。

在线性规划中,目标是最大化或最小化一个线性函数,同时满足一系列线性约束条件。

考生需要掌握线性规划的基本理论,包括线性规划模型的建立、单纯形法和对偶理论等内容。

2. 整数规划整数规划是线性规划的扩展,它要求决策变量取整数值。

整数规划在实际应用中有着广泛的用途,因此对于考生来说,掌握整数规划的基本理论和解题方法是必不可少的。

3. 动态规划动态规划是一种用于求解多阶段决策问题的优化方法。

在动态规划中,问题被分解为多个子问题,并且这些子问题之间存在重叠。

考生需要了解动态规划的基本原理、状态转移方程的建立以及动态规划算法的实现。

4. 网络流问题网络流问题是运筹学中的一个重要领域,它涉及到图论和优化算法等多个方面的知识。

在网络流问题中,主要考察最大流、最小割、最短路等问题的求解方法。

5. 效用理论效用理论是运筹学中的一个重要分支,它研究人们在做出决策时的偏好和选择。

效用函数、期望效用、风险偏好等概念是考试中的热点内容。

6. 排队论排队论是研究排队系统的运作规律和性能指标的数学理论。

在排队论中,考生需要了解排队系统的稳定性条件、平衡方程、性能指标的计算方法等。

7. 多目标决策多目标决策是指在考虑多个目标时的决策问题。

在多目标决策中,往往需要考虑到多个目标之间的矛盾和权衡,因此考生需要掌握多目标规划的基本原理和解题方法。

8. 随机规划随机规划是考虑到不确定因素的决策问题。

在随机规划中,目标函数、约束条件等参数都是随机变量,因此需要考虑到风险和概率的因素。

以上是一些运筹学中的必考知识点,考生在备考过程中需要重点关注这些知识点。

多目标规划运筹学课件

多目标规划运筹学课件

例:选择供给商
假设有四家供给商可以选择,从质量、价格、效劳、 交货期等四个方面(准那么)考察:
选择最佳供应商
目标类
质量
价格
服务 交货期
准那么类
S1
S1
S1
S1
S2
S2
S2
S2
S3
S3
S3
S3
S4
S4
S4
S4
措施类
15
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
行平均 0.297 0.087 0.053 0.563 1.00
21
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
价格 S1 S2 S3 S4 列和
S1 S2 S3 S4
价格方面两两比较
S1 1 3 1/5 1/8 4 13/40
S1 40/173 120/173
8/173 5/173
S2 1/3 1 1/7 1/9 1 37/63
S2 21/100 63/100
9/100 7/100
S3 5 7 1 1/2 13 1/2
S3 10/27 14/27
2/27 1/27
S4 8 9 2 1 20
S4 2/5 9/20 1/10 1/20
质量方面两两比较
质量 S1 S2 S3 S4
S1
1
5
6 1/3
S2
1
2 1/6
S3
1 1/8
S4
1
19
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利

多目标规划(运筹学

多目标规划(运筹学

环境与资源管理
资源利用
多目标规划可用于资源利用优化,以最 大化资源利用效率、最小化资源浪费为 目标,同时考虑环境保护、可持续发展 等因素。
VS
环境污染控制
多目标规划可以应用于环境污染控制,以 最小化污染排放、最大化环境质量为目标 ,同时考虑经济成本、技术可行性等因素 。
城市规划与交通管理
城市布局
发展更高级的建模语言和工具, 以简化多目标规划问题的描述和 求解过程。
求解算法
02
03
混合整数规划
研究更高效的求解算法,以处理 大规模、高维度的多目标规划问 题。
研究如何将连续变量和离散变量 有效地结合在多目标规划问题中, 以解决更广泛的优化问题。
数据驱动的多目标优化
数据驱动决策
利用大数据和机器学习技术,从大量数据中提取有用的信息,以 支持多目标决策过程。
案例二:投资组合优化
总结词
投资组合优化是多目标规划在金融领域的应 用,旨在实现投资组合的风险和回报之间的 最佳平衡。
详细描述
在投资组合优化中,投资者需要权衡风险和 回报两个目标。多目标规划方法可以帮助投 资者找到一个最优的投资组合,该组合在给 定风险水平下能够获得最大的回报,或者在 给定回报水平下能够实现最小的风险。通过 考虑多个目标,多目标规划可以帮助投资者 避免过度依赖单一目标而导致的潜在风险。
在多目标规划中,约束条件可能包括资源限制、时间限制、技术限制等,需要综合考虑各种因素来制 定合理的约束条件。
决策变量
决策变量是规划方案中需要确定的参 数,其取值范围和类型根据问题的实 际情况而定。
在多目标规划中,决策变量可能包括 投资规模、生产能力、产品种类等, 需要合理选择和定义决策变量,以便 更好地描述问题。

《运筹学》教案-目标规划数学模型

《运筹学》教案-目标规划数学模型

《运筹学》教案-目标规划数学模型第一章:目标规划概述1.1 目标规划的定义与意义1.2 目标规划与其他规划方法的区别1.3 目标规划的应用领域1.4 目标规划的发展历程第二章:目标规划的基本原理2.1 目标规划的基本假设2.2 目标规划的数学模型2.3 目标规划的求解方法2.4 目标规划的评估与决策第三章:目标规划的数学模型3.1 单一目标规划模型3.2 多目标规划模型3.3 带约束的目标规划模型3.4 动态目标规划模型第四章:目标规划的求解方法4.1 线性规划求解方法4.2 非线性规划求解方法4.3 整数规划求解方法4.4 遗传算法求解方法第五章:目标规划的应用案例5.1 生产计划目标规划案例5.2 人力资源规划目标规划案例5.3 投资组合目标规划案例5.4 物流配送目标规划案例第六章:目标规划的高级应用6.1 目标规划在供应链管理中的应用6.2 目标规划在项目管理中的应用6.3 目标规划在金融管理中的应用6.4 目标规划在能源管理中的应用第七章:目标规划的软件工具7.1 目标规划软件工具的介绍7.2 常用目标规划软件工具的操作与应用7.3 目标规划软件工具的选择与评估7.4 目标规划软件工具的发展趋势第八章:目标规划在实际问题中的应用8.1 目标规划在制造业中的应用案例8.2 目标规划在服务业中的应用案例8.3 目标规划在政府决策中的应用案例8.4 目标规划在其他领域的应用案例第九章:目标规划的局限性与挑战9.1 目标规划的局限性分析9.2 目标规划在实际应用中遇到的问题9.3 目标规划的发展趋势与展望9.4 目标规划的未来研究方向10.1 目标规划的意义与价值10.2 目标规划在国内外的发展现状10.3 目标规划在未来的发展方向10.4 对运筹学领域的发展展望重点和难点解析重点环节一:目标规划的数学模型补充和说明:在讲解目标规划的数学模型时,重点关注单一目标规划模型和多目标规划模型的构建。

运筹学第四章多目标规划

运筹学第四章多目标规划

4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19
di+= fi(X)-fi(0) fi(X)>fi(0)
0
fi(X)fi(0)
负偏差变量(di-):
实际决策值低于第i个目标值的数量
di-= 0
fi(X)fi(0)
fi(0) -fi(X) fi(X)<fi(0)
di+0 说明实际值超过目标值 则di-=0
di-0 说明实际值低于目标值 则di+=0
9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。21 .7.221. 7.2Frid ay , July 02, 2021 10、阅读一切好书如同和过去最杰出 的人谈 话。23:46:4423 :46:442 3:467/2 /2021 11:46:44 PM 11、一个好的教师,是一个懂得心理 学和教 育学的 人。21. 7.223:4 6:4423:46Jul-2 12-Jul- 21 12、要记住,你不仅是教课的教师, 也是学 生的教 育者, 生活的 导师和 道德的 引路人 。23:46:4423:4 6:4423:46Friday , July 02, 2021 13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。21.7.221.7.22 3:46:44 23:46:4 4July 2, 2021 14、谁要是自己还没有发展培养和教 育好, 他就不 能发展 培养和 教育别 人。202 1年7月 2日星 期五下 午11时4 6分44 秒23:46:4421.7. 2 15、一年之计,莫如树谷;十年之计 ,莫如 树木; 终身之 计,莫 如树人 。2021 年7月下 午11时 46分21 .7.223:46July 2, 2021 16、提出一个问题往往比解决一个更 重要。 因为解 决问题 也许仅 是一个 数学上 或实验 上的技 能而已 ,而提 出新的 问题, 却需要 有创造 性的想 像力, 而且标 志着科 学的真 正进步 。2021 年7月2 日星期 五11时4 6分44 秒23:46:442 17、儿童是中心,教育的措施便围绕 他们而 组织起 来。下 午11时4 6分44 秒下午1 1时46 分23:46:4421.7. 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
34
多目标的综合 •若决策目标中规定 x b, 当 d+ = 0 时目标才算达到。
35
多目标的综合
•若决策目标中规定 x b, 当 y+=0 时目标才算达到。
•若决策目标中规定 x b, 当 d= 0 时目标才算达到。
36
多目标的综合
•若决策目标中规定 x b, 当 y+=0 时目标才算达到。 •若决策目标中规定 x b, 当 y-=0 时目标才算达到。
13
(3)不使A、B车间停工(权数由 生产费用确定);
(4)A车间加班时间限制在20小时 内;
(5)每月销售录音机为100台;
(6)两车间加班时数总和要尽可 能小(权数由生产费用确定);
14
项目品种
工时消耗
(时/台)
A
B
库存费用 利润 (元/台月) (元/台)
唱机
2
1
50
250
录音机
1
3
30
150
总工时/月 180 200
生产费用/时 100 50
15
多目标优先级
先将目标等级化:将目标 按重要性的程度不同依次分 成一级目标、二级目标…..。 最次要的目标放在次要的等 级中。
16
目标优先级作如下约定:
•对同一个目标而言,若有几个 决策方案都能使其达到,可认为 这些方案就这个目标而言都是最 优方案;若达不到,则与目标差 距越小的越好。
28
方案3与(2)的差距: 工时损失=0*5+(190-120)*1=70 方案1优于方案3。
方案2优于方案1优于方案3优于方 案4
29
例4-4:继续上例
方 案 编 号 利 润 (百 元 ) 钢 (吨 ) 工 时 (时 )
1
270
108 130
2
270
80 160
3
260
80 120
30
目标:(1)利润达到280百元;(2) 钢材不超过100吨,工时不超过120 小时;
11
(1)生产量达到210件/周; (2) A生产线加班时间限制在 15小时内; (3)充分利用工时指标,并依 A、B产量的比例确定重要性。
12
例4-3:某电器公司经营的唱机和 录音机均有车间A、B流水作业组 装。数据见下表。
要求按以下目标制订月生产计划:
(1)库存费用不超过4600元; (2)每月销售唱机不少于80台;
X1 + 3X2+ d5-- d5+=200 (不使B车间停工)
d4++ d41-- d41+=20 (A车间加班时间限制在20小时内)
X1,X2,di-, di+ ,d41-,d41+ 0(i=1,2,3,4,5) 49
目标函数:Min S=P1d1++P2d2-+2 P3d4-+ P3d5-
3
•线性规划致力于某个目标函数的 最优解,这个最优解若是超过了实 际的需要,很可能是以过分地消耗 了约束条件中的某些资源作为代价。
•线性规划把各个约束条件的重要 性都不分主次地等同看待,这也不 符合实际情况。
4
•求解线性规划问题,首先要求 约束条件必须相容,如果约束 条件中,由于人力,设备等资 源条件的限制,使约束条件之 间出现了矛盾,就得不到问题 的可行解,但生产还得继续进 行,这将给人们进一步应用线 性规划方法带来困难。
6X1+4X2+ d1-- d1+=280 2X1+3X2+ d2-- d2+=100 4X1+2X2+ d3-- d3+=120
X1,X2,di-, di+ 0(i=1,2,3)
39
例4-6(例4-2) 某车间有A、B两条 设备相同的生产线,它们生产同一 种产品。A生产线每小时可制造2件 产品,B生产线每小时可制造1.5件 产品。如果每周正常工作时数为45 小时,要求制定完成下列目标的生 产计划:
(生产量达到210件/周)
X1
+ d2-- d2+=60
(A生产线加班时间限制在15小时内)
42
X1
+ d3-- d3+=45
(充分利用A的工时指标)
X2+ d4-- d4+=45 (充分利用B的工时指标)
X1,X2,di-, di+ 0(i=1,2,3,4)
43
A,B的产量比例2:1.5 = 4:3
Sds绝对是假的
例4-7(例4-3): (1)库存费用不超过4600元; (2)每月销售唱机不少于80台; (3)不使A、B车间停工(权数由生产 费用确定);
(4)A车间加班时间限制在20小时内;
46
(5)每月销售录音机为100台; (6)两车间加班时数总和要尽可能 小(权数由生产费用确定); 解:设每月生产唱机、录音机X1,X2 台。且A、B的生产费用之比为100: 50=2:1
对于(1),三个方案都没有完成。 但方案3离目标最远,方案3最差。
方案1与(2)的差距:
工时损失=
(108-100)*5+(130-120)*1=50
31
方案2与(2)的差距: 工时损失 =0*5+(160-120)*1=40 方案2优于方案1
方案2优于方案1优于方案3
32
4-2 多目标规划问题的数学模型
25
对例4-1的问题,设超过一吨钢材与超过5 个工时的损失相同。现有四个方案进行比 较优劣?
方 案 编 号 利 润 (百 元 ) 钢 (吨 ) 工 时 (时 )
1
290 110 130
2
280 100 115
3
285
95 190
4
270
90 120
26
目标:(1)利润达到280百元;(2) 钢材不超过100吨,工时不超过120 小时;
•若决策目标中规定 x = b, 当 d+ = d- = 0 时目标才算达到。
37
例4-5(例4-4) 解:引进级别系数
P1:(1)利润达到280百元; P2:(2)钢材不超过100吨, 工时不超过120小时;(权数之 比5:1)
38
数学模型:
目标函数:Min S=P1d1-+P2(5d2++d3+) 约束方程:
19
多目标规划解的概念: •若多目标规划问题的解能使所 有的目标都达到,就称该解为 多目标规划的最优解;
20
多目标规划解的概念: •若多目标规划问题的解能使所 有的目标都达到,就称该解为 多目标规划的最优解; •若解只能满足部分目标,就称 该解为多目标规划的次优解;
21
多目标规划解的概念:
•若多目标规划问题的解能使所 有的目标都达到,就称该解为 多目标规划的最优解;
23
产品 /资源

原材料钢 (吨)
2
可利用 乙 的资源
总量
3
100
加工时间(小时)
4
2
120
单位利润(百元)
6
4
如何安排生产,使利润达到最大。
前面已经求得最优解=(20,20) 最优值=200(百元)
24
问题:该厂提出如下目标 (1)利润达到280百元; (2)钢材不超过100吨,工时不 超过120小时; 如何安排生产?
•若解只能满足部分目标,就称 该解为多目标规划的次优解;
•若找不到满足任何一个目标的 解,就称该问题为无解。
22
例4-4:(例4-1)一个企业需要 同一种原材料生产甲乙两种产品, 它们的单位产品所需要的原材料 的数量及所耗费的加工时间各不 相同,从而获得的利润也不相同 (如下表)。那么,该企业应如 何安排生产计划,才能使获得的 利润达到最大?
目标规划
(Goal programming)
目标规划概述 目标规划的数学模型
目标规划的图解法 目标规划的单纯形法
1
同时考虑多个决策目标 时,称为多目标规划问题。
2
4-0 引言
从线性规划问题可看出:
•线性规划只研究在满足一定条件下,单 一目标函数取得最优解,而在企业管理 中,经常遇到多目标决策问题,如拟订 生产计划时,不仅考虑总产值,同时要 考虑利润,产品质量和设备利用率等。 这些指标之间的重要程度(即优先顺序) 也不相同,有些目标之间往往相互发生 矛盾。
47
目标函数:
Min S=P1d1++P2d2-+2 P3d4-+ P3d5+P4d41++ P5d3-+ P5d3++2P6d4++ P6d5+
约束方程: 50X1+30X2+ d1-- d1+=4600
(库存费用不超过4600元)
X1
+ d2-- d2+=80
(每月销售唱机不少于80台)
48
X2 + d3-- d3+=100 (每月销售录音机为100台) 2X1 + X2+ d4-- d4+=180 (不使A车间停工)
多目标的处理 为了将不同级别的目标的重要性
用数量表示,引进P1,P2,….,用它 表示一级目标,二级目标,….,的 重要程度,规定P1》P2 》 P3 》….。 称P1,P2,….,为级别系数。
33
约束方程的处理 差异变量: 决策变量x超过目标值b的部分记d+ 决策变量x不足目标值b的部分记dd+ 0, d- 0 且 x- d+ + d-= b
+P4d41++ P5d3-+ P5d3++2P6d4++ P6d5+
相关文档
最新文档