重要的粉尘爆炸测试参数和标准

重要的粉尘爆炸测试参数和标准
重要的粉尘爆炸测试参数和标准

重要的粉尘爆炸测试参数有哪些?

现行常用测试标准

任何粉尘都能测的检测仪面粉扬尘金属粉尘都能测 空气中粉尘爆炸极限表

24小时在线监测型煤粉检测仪 SGA-500-DUST 一、产品简介 SGA-500-DUST煤粉检测仪是深国安电子专门针对粉尘类产品,所研发生产的一款24小时在线监测型煤粉检测仪。该产品采用光学技术原理,可以快速准确地检测粉尘浓度。每5秒种刷新一次数据同,可以实时查询现场环境的具体浓度。还可选配高分贝声光报警器,可达到危险值时,会第一时间声光报警,提示人员安全撤离。广泛于用抛光车间、五金加工厂、面粉厂、水泥厂、煤矿区域等。 二、产品参数 1、目标气体:可吸入颗粒物等粉尘; 2、量程: 0~30mg/m3(以1μm直径的颗粒为标准); 3、最小检出粒子直径:1μm以上; 4、相对误差:≦20%; 5、预热时间:<20秒; 6、数据刷新间隔:5秒; 6、显示方式:5位八段码LCD显示;

7、多种输出方式可选: 1) RS485有线数字接口; 2)声光报警信号选配(声音音量>120DB); 8、工作电源:24VDC; 9、体积:主机230mm×90 mm×42 mm; 10、重量:350g; 11、材料:铝 12、防护等级:IP20 13、工作环境: 0~50°C;10~95%RH非凝露 14、大气压力:86KPa~110KPa 三、应用场所 木材厂、塑胶厂、抛光车间、五金加工厂、面粉厂、水泥厂、大气环境监测等。 四、知识普及 1)粉尘为什么会发生爆炸呢? 无数微小的粉尘的表面积加在一起是非常大的。一块东西变成无数粉尘后,表面积大大增加了,表面分子与空气接触的机会增多了,使得表面分子的化学性质特别活泼。它们只要不多的热量,很少的空气,就可以充分燃烧。无数粉尘激烈燃烧,使周围的空气剧烈膨胀,就像炸药一样,引起爆炸。 2)粉尘爆炸的条件有哪些? 粉尘爆炸的条件有三:一是烧料,干燥的微细粉尘、浮游粉尘的浓度每立方米达到煤粉30-40克、铝粉40克、铁粉100克、木粉12.6-25克、小麦粉9.7克;二是氧气,空气中的氧气含量达到21%;三是热能,40毫焦尔的火源。 3)常见的可燃性粉尘有哪些? 最常见的可燃粉尘有煤粉尘、玉米粉尘、土豆粉尘、铝粉尘、锌粉尘、镁粉尘、硫磺粉尘等。比如电子产品如果普遍使用铝材,在生产过程中产生的粉尘,就属于典型的可燃粉尘 4)粉尘爆炸悲剧能避免吗? 在中国的大部分企业,工人对于粉尘爆炸的危害,大多所知甚少。 事实上,面粉或饲料等粉尘爆炸的温度,相当于一张易燃纸的点火温度。一星点的火花,都可能引发粉尘爆炸。而粉尘爆炸的威力巨大——因为它很容易产生二次爆炸。第一次爆炸气浪,会把沉积在设备或地面上的粉尘吹扬起来,在爆炸后短时间内爆炸中心区会形

粉尘爆炸极限及燃点

各种粉体的爆炸极限浓度及燃点全收录

影响粉尘爆炸的主要因素: 部因素(粉尘的理化性能): 粉尘的燃烧速度比气体的燃烧速度要小。粉尘的颗粒越小,相对表面越多,分散度越大,则爆炸极限围扩大,其爆炸危险性便增加。因为粒子越小,粒子带电性越强,使得体积和质量极小的粉尘粒子在空气中悬浮的时间更长,燃烧速度就更接近可燃性气体混合物的燃烧速度,燃烧过程也进行的更完全。 燃烧热高的粉尘,其爆炸浓度下限低,一旦发生爆炸即呈高温高压,爆炸威力大。 粉尘中含可燃挥发分越多,热分解温度越低,爆炸的危险性和爆炸产生的压力就越大。 粉尘中的灰分(即不燃物质)和水分的含量增加,其爆炸的危险性就降低。因为,它们一方面能够较多地吸收体系的热量,从而减弱粉尘的爆炸性能,另一方面灰分和水分会增加粉尘的密度,加快其沉降速度,使悬浮粉尘浓度降低。 外部条件: 含氧量是粉尘爆炸最敏感的因素,随着空气中氧含量的增加,爆炸浓度围也随之扩大,爆炸危险性也就增加。 空气湿度增加,粉尘爆炸的危险性减小。因为湿度增大,有利于消除粉尘静电和加速粉尘的凝聚沉降。同时水分的蒸发消耗了体系的热能,稀释了空气中的含氧量,降低了粉尘的燃烧反应速度,使粉尘不轻易发生爆炸。 当粉尘与可燃性气体共存时,粉尘爆炸浓度的下限相应下降,而最小点火能量也有一定程度的降低,即可燃气体的出现,大大增加了粉尘爆炸的危险性。 当温度升高压强增加时,粉尘爆炸浓度极限围会扩大,所需要的点火能量也会降低,从而造成危险性增大。 点火源的温度越高,强度越大,与粉尘和空气的混合物接触的时间越长。其爆炸浓度极限围就变得更宽。爆炸危险性也就增大。每一种可燃粉尘,在一定条件下,都有一个最小点火能量,若低于此能量,粉尘与空气形成的混合物就不能爆炸。粉尘的最小点火能量越小,其爆炸的危险性就越大。

线路参数测试方法

高感应电压下用SM501测试线路参数的方法 湖南省送变电建设公司调试所邓辉邓克炎 0引言 超高压输电线路工频参数测试时,经常遇到感应电压很高的情况,不能用仪器直接测试, 否则仪器被感应电压击穿损坏。本文根据厂家仪器给出的原理接线进行了改接,通过理论分析,实际测试,数据证实,此种方法确实有效可行。 1SM501的介绍: SM501线路参数测试仪,是专门用于输电线路工频参数测试的仪器。该仪器电路设计精巧,思路独特,使得其性能优越,功能强大,体积小,重量轻。该仪器内部采用先进的A/D同步交流采样及数字信号处理技术,成功的解决了多路信号在市电条件下同步测量和计算的难题。仪器操作简单方便,数据准确可靠,可完全取代传统仪表的测量方法,可显示并记录用户关心的所有测量数据,可作为现场高精度交流指示仪表使用。该仪器测试线路参数与传统仪表测试线路参数比较,减轻劳动强度,工作效率大大提高。 1.1SM501的主要功能与特点: (1)可测量输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电冰箱容,零序电容,线地电容,互感阻抗,电压,电流,功率,电阻,电抗,阻抗角,频率等参数。 (2)全部数据均在统一周期内同步测量,保证在市电条件下测量结果的准确性和合理性。

(3)在仪器允许的测量范围内可直接测量,超出测量范围时可外接一次电压互感器和电流互感器。 (4)可锁定显示数据并存储或打印全部测量结果,本仪器内置不掉电存储器,可长期保持测量数据并可随时查阅。 (5)全部汉字菜单及操作提示,直观方便。 1.2主要技术指标; (1)基本测量精度:电流、电压、阻抗0.2级,功率0.5级 (2)电压测量范围:AC 0-450V 电流测量范围:AC 0-50A 2为什么要对输电线路进行参数测试: 输电线路短距离也有几公里,长距离的有几十至几百公里,输电线路长距离的架设,中途的换位,变电站两端相位有时出现差错,输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电容,零序电容,线地电容,互感阻抗,电阻,电抗,阻抗角等实际与理论计算值不一至。 以上这些参数的准确对继电保护的整定至关重要,这些参数如果有误,保护不能正确动作,距离保护不能准确测距,甚至误动或不动,对电力设备造成直接经济损失。为了保证输电线路进行参数测试的准确,保定市超人电子有限公司研制了一种比较智能的参数测试仪那就是SM501。 3几种典型的参数测试: 3.1 输电线路正序阻抗的测试: 将线路末端三相短路悬浮。当测试电压和测试电流都不超过本测试仪器允许输入范围时,按图1接法测量。当测试电压和测试电流超过本测试仪器允许输入范围必须外接电压互感器和电流互感器,按图2接法测量。在仪器测试项目菜单中

线路参数测试方法

SM501测试线路参数的方法高感应电压下用邓克炎邓辉湖南省送变电建设公司调试所 引言0, ,不能用仪器直接测试超高压输电线路工频参数测试时,经常遇到感应电压很高的情况否则仪器被感应电压击穿损坏。本文根据厂家仪器给出的原理接线进行了改接,通过理论分析,实际测试,数据证实,此种方法确实有效可行。 SM501的介绍:1 线路参数测试仪,是专门用于输电线路工频参数测试的仪器。该仪器电路设计精巧,思路独特,SM501同步交流采样及数字信号处理技使得其性能优越,功能强大,体积小,重量轻。该仪器内部采用先进的A/D 术,成功的解决了多路信号在市电条件下同步测量和计算的难题。仪器操作简单方便,数据准确可靠,可完全取代传统仪表的测量方法,可显示并记录用户关心的所有测量数据,可作为现场高精度交流指示仪表使用。该仪器测试线路参数与传统仪表测试线路参数比较,减轻劳动强度,工作效率大大提高。 SM501的主要功能与特点:1.1 可测量输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电(1)冰箱容,零序电容,线地电容,互感阻抗,电压,电流,功率,电阻,电抗,阻抗角,频率等参数。全部数据均在统一周期内同步测量,保证在市电条件下测量结果的准确性和合理性。(2)在仪器允许的测量范围内可直接测量,超出测量范围时可外接一次电压互感器和电(3) 流互感器。可锁定显示数据并存储或打印全部测量结果,本仪器内置不掉电存储器,可长期保(4) 持测量数据并可随时查阅。 (5)全部汉字菜单及操作提示,直观方便。主要技术指标;1.2 0.5级级,功率(1)基本测量精度:电流、电压、阻抗0.2:AC 0-50A :AC 0-450V 电流测量范围(2)电压测量范围为什么要对输电线路进行参数测试:2输电线路短距离也有几公里,长距离的有几十至几百公里,输电线路长距离的架设,中途的换位,变电站两端相位有时出现差错,输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电容,零序电容,线地电容,互感阻抗,电阻,电抗,阻抗角等实际与理论计算值不一至。以上这些参数的准确对继电保护的整定至关重要,这些参数如果有误,保护不能正确动作,距离保护不能准确测距,甚至误动或不动,对电力设备造成直接经济损失。为了保证输电线路进行参数测试的准确,保SM501。定市超人电子有限公司研制了一种比较智能的参数测试仪那就是几种典型的参数测试:3: 输电线路正序阻抗的测试3.1 接法测量。1将线路末端三相短路悬浮。当测试电压和测试电流都不超过本测试仪器允许输入范围时,按图接法测量。2当测试电压和测试电流超过本测试仪器允许输入范围必须外接电压互感器和电流互感器, 按图在仪器测试项目菜单中应选择“正序阻抗”。 IUA a A I UB B b

《接地装置工频特性参数的测量导则》DL475-92

接地装置工频特性参数的测量导则DL475—92 中华人民共和国电力行业标准 接地装置工频特性参数的测量导则DL475—92 中华人民共和国能源部1992-11-03 批准1993-04-01 实施 1 主题内容与适用范围 本导则规定了接地装置工频特性参数的测量方法以及减小或消除某些因素对测量结果影响的方法。 本导则适用于发电厂、变电所和杆塔等接地装置工频特性参数的测量,拟建发电厂、变电所和杆塔的场地土壤电阻率的测量。本导则也适用于避雷针和微波塔等其它接地装置工频特性参数的测量。 2 对接地装置工频特性参数测量的基本要求 2.1 在一般情况下尽量用本导则中推荐的方法测量接地装置的工频特性参数,如在测量中遇到困难时,可以由有关单位的负责人决定采用行之有效的方法测量。 2.2 发电厂、变电所和杆塔等接地装置的工频特性参数尽量在干燥季节时测量,而不应在雨 后立即测量。 2.3 通常应采用两种或两种以上电极布置方式(包括改变电极布置的方向)测量接地装置的工频特性参数。有时,还需要采用不同的方法测量,以互相验证,提高测量结果的可信度。 2.4 如条件允许,测量回路应尽可能接近输电线接地短路时的电流回路。 3 发电厂和变电所接地装置的工频接地电阻、接触电压和跨步电压的测量 3.1 发电厂和变电所接地装置的工频接地电阻的测量 3.1.1 测量原理 接地装置工频接地电阻的数值,等于接地装置的对地电压与通过接地装置流入地中的工频电流的比值。接地装置的对地电压是指接地装置与地中电流场的实际零位区之间的电位差。图1 是测量工频接地电阻的电极布置和电位分布的示意图,图上点P 是实际零电位区中的一点,实际零电位区是指沿被测接地装置与测量用的电流极C 之间连接线方向上电位梯度接近于零的区域。实际零电位区范围的大小,与测量用的电流极离被测接地装置的距离dGC 的大小、通过被测接地装置流入地中测试电流的大小以及测量用的电压表的分辨率等因素有关。 用电压表和电流表分别测量接地装置G 与电压极P 之间的电位差UG 和通过接地装置流入地中的测试电流I,由UG 和I 得到接地装置的工频接地电阻 (1) 3.1.2 测量工频接地电阻的三极法 三极法的三极是指图2 上的被测接地装置G,测量用的电压极P 和电流极C。图中测量 用的电流极C和电压极P离被测接地装置G边缘的距离为dGC=(4~5)D 和dGP=(0.5~0.6)dGC,D 为被测接地装置的最大对角线长度,点P 可以认为是处在实际的零电位区内。如果想较准确地找到实际零电位区,可以把电压极沿测量用电流极与被测接地装置之间连接线方向移动 三次,每次移动的距离约为dGC 的5%,测量电压极P 与接地装置G 之间的电压。如果电压 表的三次指示值之间的相对误差不超过5%,则可以把中间位置作为测量用电压极的位置。 图1 测量接地装置工频接地电阻的 电极布置和电位分布示意图 G—被测接地装置;P—测量用的电压极;C—测量用的电流极; D—被测接地装置的最大对角线长度 图2 三极法的原理接线图 (a)电极布置图;(b)原理接线图 G—被测接地装置;P—测量用的电压极;C—测量用的电流极; E —测量用的工频电源;A—交流电流表;V—交流电压表;

空气中粉尘爆炸极限表

粉尘爆炸极限表 粉尘爆炸极限包括爆炸下限和爆炸上限。粉尘爆炸下限是指在空气中,遇火源能发生爆炸的粉尘最低浓度。一般用单位体积内所含粉尘质量表示,其单位为g/mso爆炸下限越低,粉尘爆炸危险性越大。 也随条件变化而改变。 空气中粉尘爆炸极限表 不同种类粉尘其爆炸下限不同,同种物质粉尘其爆炸下限 金属粉尘 爆炸下极限 g/m3 起火; 点C ! g ■钳35 645 ■■ ft1■ ■ ■ ■辛弟420 416 t1 锌500 680 t L 1 40 常温 I 1 1 1硅160 775 …?飞 1 ■钛45 460 ■ ■ S 1 ■ < 1铁120 316 220 500 硅铁合金425 860 J 镁20 520 ■- 镁铝合金50 535 1 1镭210 450 ? 绝缘胶木30 460 ■ 环氧树脂20 540 ■1; 1酚甲酰胺25 500 ■? 酚糠醛25 520 A■ ■ 粉尘种类 热固性塑料

精选文库 缩乙醛 35 440 醇酸 155 500 乙基纤维素 20 340 合成橡胶 30 320 醋酸纤维素 35 420 四氟乙烯 ■ 670 尼龙 30 500 丙酸纤维素 25 460 聚丙烯酰胺 40 410 聚丙烯月青 25 500 聚乙烯 20 410 聚对苯二屮酸乙 酯 40 500 聚氯乙烯 ■ 660 聚醋酸乙烯酯 40 550 聚苯乙烯 20 490 聚丙烯 20 420 聚乙烯醇 35 520 甲基纤维素 30 360 ■ L -- — ■■■■ ■…?、 65 510 松香 55 440 热塑性 塑料

精选文库 (1) (2)氧浓度越高,爆炸下限越低。 (3)可燃挥发性成分含量越高,粉尘爆炸下限越低。

电力电缆工频参数测试

https://www.360docs.net/doc/6a11775977.html,/610/ 电力电缆工频参数测试 随着城市规模的扩大,架空输电线路逐渐减少,因此测试电缆工频参数为计算系统短路电流、继电保护整定值、推算潮流分布和选择合理运行方式等提供实际依据,并可以检查电缆在安装、敷设时的质量是否满足设计的要求。 电力电缆工频参数测试的注意事项是: (1)在测量阻抗时,短路线截面积应尽可能大。 (2)在试验时为避免电流线压降的影响,功率表、电压表的电压最好从线路端子处进行测量。 (3)零序阻抗测试中,接地线截面积应足够大,与接地端连接应可靠,以防止接地不良干扰零序电阻测量。 (4)测量感应电流时,电缆线路末端应不接地,避免分流造成测量不准确。(5)零序阻抗测试中,电缆“金属护层”的接地方式与运行时的实际方式保持一致。 (6)施工方提供的电缆线路长度要准确,若提供的理论线路长度和实际长度相差过大会严重干扰对测量值的判断。 (7)严禁在雷雨天气进行线路参数测量,若在测量过程中沿线路有雷阵雨,则应立即停止测量。

https://www.360docs.net/doc/6a11775977.html,/610/ (8)当被测电缆线路感应电压过高(>1000V)、感应电流过大(>30A)时,应向上级部门汇报,取消线路参数测量工作或将同沟敷设运行的电缆线路配合停电以降低感应电压、电缆。 (9)在测量正序阻抗时,采用双功率表法,要注意“极性”。 (10)在测量零序阻抗时,应采用隔离变压器,以避免系统零序分量的干扰。(11)测量直流电阻值与试验方案计算值比较,有明显差异,表面设计长度与施工长度不一致。若考虑电缆两端与GIS相连,直流电阻值包含GIS内隔离开关、断路器的接触电阻,以及到GIS内接地开关接触电阻的影响。 一般都超过厂家的计算值,直流电阻值作为参考值。

室内外热环境参数测定实验指导书

【实验名称】室内外热环境测试 【实验性质】综合性实验 【实验任务】测试不同类型建筑、不同建筑空间的热环境,对室外气象因素对室内热环境的影响进行分析,并根据分析结果针对建筑热工设计提出结论性意见。 【实验目的】 通过实验,使学生了解室内外热环境参数测定的基本内容,初步掌握仪器仪表的性能和使用方法,进一步感受和了解室外气象因素对建筑热环境的影响。 【实验内容】 建筑室内外热环境参数的测定主要分为室内热环境测定和室外热环境测定两部分。其中:室内热环境参数的测量主要包括2个方面的内容: ■温度的测定 ■空气相对湿度的测定 室外热环境参数的测试同样主要包括2个方面的内容: ■温度的测定 ■空气相对湿度的测定 ■风环境的测定 【实验仪器设备】 1、室内热环境的测定主要使用TESTO174H温湿度记录仪。 2、室外热环境参数的测定主要使用温湿度记录仪及8910便携气象站。 【实验方法和步骤】 1、室内热环境参数的测定 (1)将记录仪与计算机连接,设置记录仪时间及存储间隔等信息; (2)选择测点,注意避免测点受到日照等因素的影响; (3)选择完整时间段对选定测点和室外温湿度进行测试; (4)上传数据,进行数据整理和处理; (5)结合测点房间的特点(建筑形式、外环境、布局、朝向、围护结构等等)对实测数据的差异进行分析,提出建筑热工设计的改进型意见及设计原则; 测点A 位于建艺馆地下一层综合实验室西侧,有西向外墙外窗,有采暖; 测点B位于建艺馆地下一层综合实验室西侧,无外墙外窗,有采暖,暖气配置较少; 测点C 位于建艺馆地下一层综合实验室构造展室,无外墙外窗,无采暖;

【数据整理】 根据提供的数据图表选择所研究的时间段(周期10个小时),将对应的时刻、数据参数填入表格。 【分析】 根据数据结果分析同样外扰作用下不同室内环境的原因。 【结论及建议】 根据分析结果,归纳建筑热环境影响因素及其影响机理,提出通过建筑设计和设备等多种措施改善室内热环境的建议。

输电线路工频参数测试的技术要点及注意事项_刘焕强

65 第11卷 (2009年第10期)电力安全技术 输电线路工频参数测试的技术要点及注意事项 〔摘 要〕输电线路参数的测试是一项专业性极强的工作,要求测试方案科学,测试方法安全,测试参数准确。在介绍输电线路参数测试的基本原则后,结合实际工程的经验,提出了在测试线路参数中技术上应掌握的要点及安全方面应注意的事项。 〔关键词〕输电线路;参数测试;注意事项1 概述 新建高压输电线路在投入运行前,除了检查线路绝缘、核对相位外,还应测试各种工频参数值,以作为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作的实际依据。对于投入运行多年的线路,由于投运后导线的老化、邻近线路的建设、土壤电阻率的变化,或气候、环境及地理等因素的影响,可能使输电线路的实际工频参数发生变化,也需定期测试。因此输电线路参数的测试是一项专业性极强的工作,要求测试方案科学,测试方法安全,测试参数准确。2 编制测试方案的主要内容2.1 收集有关参数资料 线路工频参数值的准确测试将为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作提供实际依据。因此测试参数前,应收集线路的有关设计资料,如线路名称、电压等级、线路长度、杆塔型式、导线型号和截面,了解线路参数设计值,并根据资料和现场实际条件制订测试方案。对于己投入运行的线路,由于电网结构的改变,可能会出现同杆架设的多回路或距离较近、平行段较长的线路,以致严重影响初期测试的耦合电容和互感阻抗参数值,同样要收集有关资料,根据电网的发展变化编制出符合实际的测试方案。2.2 确定需测试的线路参数 线路工频参数测试包括:正序阻抗、零序阻抗、线间阻抗、线地阻抗、互感阻抗、正序电容、零序电容、线间电容、线地电容及耦合电容。对新架线路各相的绝缘电阻、直流电阻也是需测试的线路参 刘焕强,欧阳青 (广东电网公司河源供电局,广东 河源 517000) 数。其中互感阻抗、耦合电容是当出现两回平行线 路运行时继电保护整定、考虑电容传递过电压影响必须用到的参数。 2.3 选定符合现场实际条件的试验方法 目前测量线路参数的方法大致包含以下3种。2.3.1 仪表法 仪表法是最早采用的方法。即在被测线路上施加电源后,使用电压表、电流表、功率表、频率计等,通过人工读取各表刻度,经运算后求得各参数值。由于在实测中工频干扰电压对线路零序参数和线路互感阻抗的测量精度影响很大,作为主要成分的工频分量必须予以消除,因此提出了一些改进,如电源倒相法、附加工频电源法、提高信噪比法。经过长时间的现场实践,证明仪表法是容易掌握、实用性强、使用广泛、行之有效的测量方法,但是在消除干扰方面稍显不足。2.3.2 数字法 实际上,这种方法的测量原理基本上是采用第一种方法,只是在信号的提取和处理上有了进一步提高。因为引入了单片机技术,使得处理方法上有了质的飞跃。首先是通过高精度的电压、电流互感器进行信号采集,再通过滤波器的按需组合,在硬件上实现对信号的滤波,再经过模/数转换,最后用单片机处理离散化的数字信号,得到最终结果。数字法在处理干扰的方面要明显优越于仪表法。但是,测量信号和干扰信号的主要成分是工频信号,因此在干扰很大时,就算使用再强大的数字信号处理方法,也不能达到应有的效果。如果想得到较为准确的结果,依然是以提高输出功率为代价。通过提高施加电压来提高信噪比,这就大大削弱了数字法的优越性。 A njipingtai 安 技 平 台

空气中粉尘爆炸极限表之欧阳光明创编

粉尘爆炸极限表 欧阳光明(2021.03.07) 中,遇火源能发生爆炸的粉尘最低浓度。一般用单位体积内所含粉尘质量表示,其单位为g/m3。爆炸下限越低,粉尘爆炸危险性越大。不同种类粉尘其爆炸下限不同,同种物质粉尘其爆炸下限也随

锰210 450 热固性塑料绝缘胶木30 460 环氧树脂20 540 酚甲酰胺25 500 酚糠醛25 520 热塑性塑料缩乙醛35 440 醇酸155 500 乙基纤维素20 340 合成橡胶30 320 醋酸纤维素35 420 四氟乙烯- 670 尼龙30 500 丙酸纤维素25 460 聚丙烯酰胺40 410 聚丙烯腈25 500 聚乙烯20 410 聚对苯二甲酸乙 酯 40 500 聚氯乙烯- 660 聚醋酸乙烯酯40 550

聚苯乙烯20 490 聚丙烯20 420 聚乙烯醇35 520 甲基纤维素30 360 木质素65 510 松香55 440 塑料一次原料己二酸35 550 酪蛋白45 520 对苯二酸50 680 多聚甲醛40 410 对羧基苯甲醛20 380 塑料填充剂软木35 470 纤维素絮凝物55 420 棉花絮凝物50 470 木屑40 430 农产品及其它玉米及淀粉45 470 大豆40 560 小麦60 470 花生壳85 570 砂糖19 410

煤炭(沥青)35 610 肥皂45 430 干浆纸60 480

**指游离SiO2低于10%,不含石棉和有毒物质,而尚未制定容许浓度的粉尘。表中列出的各种粉2尘(石棉纤维尘外),游离SiO2高于10%者,却按矽尘容许浓度对待。

接地电阻测试报告

接地电阻测量结果分析 曾宪奎 摘要:本文通过对乌江渡发电厂接地网改造前、后工频接地电阻测量结果分析比较,阐述了地处高土壤电阻率的水电厂,充分利用水库中水位相对稳定,水深有一定的保证和水具有良好的导电性能以及弱腐蚀等特点,敷设水下接地网,增大接地网的散流面积。将工频接地电阻降低到0.3064~0.3281Ω,满足设计值≤0.35Ω,保证安全生产,达到接地网改造的目的。 关键词: 地网构成; 接地电阻测量; 比较与分析 1 概述 乌江渡发电厂位于乌江峡谷石灰岩和页岩高电阻率地区,分为一厂和二厂,一厂增容后装机容量3×250MW, 220kV GIS出线4回架空线路,110kV出线6回架空线路。二厂装机容量2×250MW,220kVGIS出线3回架空线路。一厂和二厂分别接入系统运行,共用一个接地网。1980年设计计算的单相接地短路电流为12200A,接地电阻设计值为0.5Ω,计算值为0.325Ω。五台机组分别于1979、1981、1982、2003年并网发电,老接地网已运行近23年。通过近几年对乌江渡发电厂工频接地电阻的监测发现,地网接地电阻有逐年上升的趋势,为保证扩建后若最大单相短路电流上升,不影响电气主设备的安全稳定运行,2004年我们敷设了水库接地网,同时对两厂接地网进行了有效连接,从而使工频接地电阻和接地电位分布得到有效的改善,满足了安全运行要求。 2 接地网构成 2.1 乌江渡发电厂接地网构成如图1所示,主要由三部分组成: 2.1.1 一厂接地网 2.1.2 二厂接地网 2.1.3 水库接地网

2.2 一厂、二厂接地网主要由自然接地体和大坝迎水面敷设的人工接地体构成。水库接地网采用120mm2镀锌钢绞线在距大坝约400m处的水库内敷设一个面积约20万㎡的水下接地网。然后用三根120mm2铜绞线引出后分别与一厂、二厂接地网相连接。 3 工频接地电阻测量 3.1 测量依据 根据《接地装置工频特性参数的测量导则》(DL-475-92)、《水力发电厂接地设计技术导则》(DL/T-5091-1999)以及《接地系统的土壤电阻率、接地阻抗和地面电位测量导则》(GB/T17949-2000)。 3.2 “参考原点”的确定 如何确定测量间距的参考原点,即电流极和电压极距离从地网的那一点算起是接地测量布线合理与否的第一个问题。但对于大型水电站来说,由于水工枢纽布置范围很大,地网边缘就很难确定。根据国家标准《接地系统的土壤电阻率、接地阻抗和地面电位测量导则》的要求,宜确定“电气中心”。 由乌江渡发电厂接地网(见图1)构成可知,主要由一厂、二厂接地网以及水库接地网构成。 假设: R 1------一厂接地电阻 I 1 -------流入一厂地网电流 R 2------二厂接地电阻 I 2 -------流入二厂地网电流 R 3------水库接地电阻 I 3 -------流入水库地网电流 R ij ------三个地网间互电阻 则有: U 1=I 1 R 1 +I 2 R 12 +I 3 R 13 U 2=I 1 R 12 +I 2 R 2 +I 3 R 23 U 3=I 1 R 13 +I 2 R 23 +I 3 R 3 又设地网近似为等电位则: U=U 1=U 2 =U 3 I=I 1+ +I 2 +I 3 由于 U=IR 则: I=R-1U 将接地电阻测量值R 1=0.47Ω、R 2 =0.831Ω、R 3 =0.514Ω(理论值) 代入后得到: R 12=0.17Ω、R 13 =0.127Ω、R 13 =0.16Ω 通过计算可知,各个接地网电流占总电流的百分数分别为: 一厂地网入地电流I 1 占总电流的百分数为43.41%; 二厂地网入地电流I 2 占总电流的百分数为17.76%; 水库地网入地电流I 3 占总电流的百分数为 38.83%。 由此可以看出,乌江渡发电厂地网“电气中心”近似在一厂接地网和水库接地网几何中心连线上,且偏于一厂地网一侧。因此,我们将工频接地电阻测量参考原点选择在大坝顶的一点。至于参考原点的定位问题相对于电流极距离3000m而言影响也就很小了。 3.3 接地电阻测量电流极距离 乌江渡发电厂全厂接地网总面积约50万㎡,等值半径约为800m。与电流极距离3000m之比为3.75D。而地网最大长度约为1250m,与电流极距离3000m之比为2.4D。基本满足水电站接地

图解线路工频参数测试感应电干扰量及分析方法

图解线路工频参数测试感应电干扰量及分析方法 【摘要】输电线路工频参数测量中的干扰主要由静电分量、高频分量和工频分量三大类,但试验中前两项影响基本可以忽略。这里分析由工频分量感应电与测试电源的向量关系。 【关键词】高压输电线路工频参数测试工频分量干扰量真值电压矢量图 1.引言: 随着国家电力建设的发展、电网的供电半径的缩小、供电线路的同杆架设、跨越架设线路的增多而导致输电线路自身的感应电压不断提高和增多, 增加试验电源的容量以及提高试验电压来克服干扰问题,但是,由于现场的条件限制,加大试验电源的容量来解决干扰问题是比较困难的。但必须测试得到真值(排除干扰),现通过分析得到较优的测量判断方法。 2.电压矢量图图解及分析: 下面典型理论分析一个假设500kV站测试时的各电量的矢量图: 说明:黑色为理论电源施加电压;蓝色为干扰量电压;红色为叠加后仪器测量到电压。 2.1同频干扰量的确定: 正、负序阻抗、正、负序容抗试验干扰电压的测量,可以采用若电压小于表记最大量程可以直接读数,否则则利用PT等进行转换测量。我们需要测量干扰电压:线路A-地、线路B-地、线路C-地;A-B、B-C、C-A(电源N直接接地,即同地)。增加以电源输出为参考点:电源A-线路A、电源B-线路A;(A-C;B-A、B-B、B-C;C-A、C-B、C-C可以不用测量)。 现以(500kV舜兰5451线线参正、负序容试验时实际测量为参考:A-地/300V;以电源输出为参考量A-A/200V、B-A/330V)。通过三线相交原理,可确定线路A干扰量的大小和方向: 同理可确定线路B、C的大小和方向。 零序序阻抗、零序容抗试验干扰电压的测量。我们需要测量干扰电压:线路A-地(电源N直接接地,即同地)。增加以电源输出为参考量:电源A-A、电源B-A。 假设1:试验站,主变接线组别为YN,yn0,d11;所用变接线组别为D,yn11。那么试验电源的向量图如右:

环境监测系统实验报告

信息与通信工程学院 单片机系统课程设计报告完成日期:2012年 11 月 16 日

目录 目录 (1) 一、设计任务和要求 (1) 1.1设计任务 (1) 1.2性能指标 (1) 二、设计方案 (2) 2.1.方案设计 (2) 2.1.1单片机控制模块的选择论证 (2) 2.1.2温度湿度检测模块的选择与论证 (2) 2.1.3显示模块的选择与论证 (2) 2.2本设计采用方案及原理 (3) 三、系统硬件设计 (4) 3.1单片机最小系统设计 (4) 3.2温湿度采集电路 (5) 3.3电源电路 (6) 3.4光敏电阻接入电路 (7) 3.5键盘电路 (8) 3.6LCD显示电路 (8) 3.7报警电路 (9) 3.8串行接口电路 (10) 四.系统软件设计 (10) 4.1主程序设计 (10) 4.2LCD12864模块程序 (11) 4.3DHT11模块程序 (12) 4.4光敏电阻模块程序 (14) 五.调试及性能分析 (15) 5.1调试过程中出现的问题 (15) 5.2性能分析 (15) 六.心得体会 (16) 参考文献 (17)

附录1 程序清单 (18) 附录2 电路原理图 (24) 附录3 PCB图 (25) 附录4 硬件电路板图 (26)

一、设计任务和要求 1.1 设计任务 基本要求: (1)利用单片机控制传感器采集环境温湿度,光照强度等参数,并在液晶屏上显示环境参数值。 (2)系统设有键盘,可实现系统参数的设置。 提高部分: (1)将上述环境数据记录在SD或TF卡上; (2)采集并显示三轴加速度值; (3)无线传输所测环境参数。 1.2 性能指标 (1)温度湿度光照强度显示:用LCD12864进行显示。 (2)环境温度:单位/℃。 (3)环境湿度:单位/%RH。 (4)环境光强:单位/lux (5)键盘 (6)报警

高压输电线路工频参数测量方法

高压输电线路工频参数测量方法 根据GB50150-2006标准规定,新建及改建的35kV高压输电线路在投入运行前,除了检查线路绝缘情况,核对相位外,还应测量各种工频参数值,以作为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作的实际依据,并可借以验证长线路的换相效果和无功补偿是否达到了设计的预期 目前,高压输电线路工频参数测量方法有2种:传统工频法和变频法测试 目前国内不少电业部门在现场进行线路工频参数测量时,有的还采用指针式表计组合,需人工多次不同步读取测量数据,人工工作量大;有的虽已使用了专用的数字测量仪表或线路参数测试仪,但当线路较长时,所需用的工频试验电源容量仍将会很大;而且采用工频电源进行测试需要用调压器,隔离变压器,高压电流互感器、电压互感器等众多设备, 使得试验设备重、大、多,试验接线非常繁杂。整套试验设备体积庞大,重量大,需要吊车等配合工作,十分不利于现场工作,而且由于测试电源是工频电源,容易与耦合的工频干扰信号混频,带来很大的测量误差,需要大幅度提高信噪比,对电源的容量和体积要求又进一步提高 随着国家电力建设的发展、供电线路的同杆架设和交叉跨越增多,导致输电线路相互间的感应电压不断提高,对测试人员和仪器仪表的安全造成严重的威胁;给线路工频参数的准确测量带来了强力的干扰。因此,采用传统的工频电源进行线路参数的测试难以保证工作的安全性及测试结果的准确性 变频法测试系统可采用非工频频率的电源进行线路的测试,以代替目前线路测试需用的众多设备,并规避了工频感应对测量准确性的干扰。为了进一步削弱工频感应电压、电流对于测量安全的威胁和对测量准确性的干扰,我公司在测试系统的核心部件-变频电源内部做了特殊处理,用于泄放工频感应电流和削除工频感应电压 测试系统主机可对设定的频率信号进行定频采样,并根据主机仪器中数据库内置的不同类型及线径的输电线路每公里的理论参考值用于对测试结果的非工频频率进行 校正得出工频下的线路参数测试值 用户可根据被测线路的工频感应电压、电流的大小确定试验频率为工频或变频,若采用定频测试,仪器可将线路测试参数自动归算到工频条件下的测试结果,并且生成标准规范的测试报告。这样一来,极大的简化了线路参数的传统测试,而且可不必再考虑 量仪表、数学模型于一体,消除强干扰的影响,保证仪器设备的安全,能极其方便快速、准确地测量输电线路的工频参数 MS-110输电线路工频参数测试系统主要特点有 1、快速准确完成线路的正序电容,正序阻抗,零序电容,零序阻抗等参数的测量,还可以测量线路间互感和耦合电容(线路直阻采用线路直阻仪进行测量) 2、抗干扰能力强,能在异频信号与工频干扰信号之比为1:10的条件下准确测量; 3、外部接线简单,仅需一次接入被测线路的引下线就可以完成全部的线路参数测量

温湿度测试实验报告

简易环境参数测试仪设计总结报告 目录: 1.系统方案……………………………………………………………… 1.1方案论证…………………………………………………………… 1.2方案选定 1.3系统设计……………………………………………………………… 1.4结构框图……………………………………………………………… 2.理论分析与计算……………………………………………… 2.1测量与控制方法………………………………………………………… 2.2理论计算…………………………………………………………………… 3.电路与程序设计…………………………………………………………………3.1硬件电路各模块或单元电路的设计 3.2检测与驱动电路设计………………………………………………………… 3.3总体电路设计………………………………………………………………… 3.4软件设计与流程图…………………………………………………………… 4.结果分析………………………………………………………………………… 4.1与设计指标进行比较,分析产生偏差的原因,并提出改进方法………………

1.系统方案 1.1方案论证 方案1:温湿度传感器采用传统的模拟式器件,使用光敏电阻测光照,利用单片机进行显示与按键。 方案2:温湿度采用集成式器件,使用光敏电阻测光照,利用单片机进行显示与按键。 方案3:温湿度传感器采用数字式器件,使用光敏传感器,再通过单片机进行显示与按键。方案论证:比较三种方案,在传感器的选择上,模拟传感器的模拟信号要先经过采样、放大和模数转换电路处理,再将转换得到的表示温度值的数字信号交由微处理器或DSP处理。被测量信号从敏感元件接收的非物理量开始到转换微处理器可处理的数字信号之间。而且模拟信号在传输的过程中容易受到干扰而产生误差。而且魔术转换的精度不可能很高,存在一定的非线性,互换性较差。直接采用数字数传感器就可以避免以上的问题。数字传感器可以直接将被测模拟量直接换成数字量输出,具有很强的抗干扰能力,且具有高的精度和分辨率,稳定性好,信号易处理。其次在光照方面光敏电阻达不到要求故选择光敏传感器。 1.2方案选定:选择方案三 1.3系统设计:以A T89S52 为核心的单片机。系统整体硬件电路包括,电源电路,传感器电路,温度显示电路,上下限报警电路等。温湿度控制的基本原理为:当DSl8B20 采集到温度信号后,将温度信号送至AT89S52 中处理,同时将温度送到LCD 液晶屏显示,单片机根据初始化设置的温度上下限进行判断处理,即如果温度大于所设的最高温度就启动风扇降温;如果温度小于所设定的最低温度就启动报警装置。同时通过按键对温湿度进行调整与确认。检测光照。 1.4结构框图

输电线路工频参数

MS-110型输电线路工频参数测试仪 1术语和定义 MS-110型输电线路工频参数测试仪所涉及到的工频参数:即输电线路的工频序阻抗,在工频序电压作用下,输电线路对所施加的工频序电压所呈现的阻抗。包括:正序阻抗、零序阻抗、正序电容、零序电容、相间电容、耦合电容、互感阻抗等。 2技术要求 2.1,输电线路工频参数测试仪供电电源 电源电压:AC220(1±10%)V 电源频率:50(1±2%)Hz 电源波形失真度:≤10% 在以上供电电源条件下应能正常工作。 2.2,外观 测试仪外观应整洁完好,各种标志清晰准确。各种调节旋钮、按键灵活可靠。 测试仪应有明显的接地端钮。 2.3,安全性能要求 2.3.1,绝缘电阻 电源输入端对机壳的绝缘电阻大于2MΩ。 2.3.2,介电强度 测试仪电源输入端对机壳应能承受工频1500V、历时1min的耐压,无击穿和飞弧现象。 2.4,测量性能要求 2.4.1,电流测量要求 输电线路工频参数测试仪必须具备测量电流功能,测量类型为有效值。 测量范围上限: 异频≥10A 测量范围下限: ≤0.06A 准确度:不低于0.5% 2.4.2,电压测量要求 输电线路工频参数测试仪必须具备测量电压功能,测量类型为有效值。 测量范围上限: ≥450V 测量范围下限: ≤10V 准确度: 不低于0.5% 2.4.3,有功功率测量要求 输电线路工频参数测试仪应具备低功率因数的有功功率测量功能。 准确度:功率因数在0.1-1.00时,≤0.5% 功率因数在0.02-0.1时,≤1.0% 2.4.4,测量电源要求 MS-110输电线路工频参数测试仪的测量电源采用45-55Hz范围内异频电源,并且需考虑输电线路参数随频率变化的特性,最后的结果归算到工频下的值。 测量电源应达到以下要求: a) 输出频率的稳定度优于±0.2 Hz b) 输出电压波形应是正弦波,波形畸变小于3% c) 三相输出电压的不平衡度小于1%。

线路参数测试方法

线路参数测试方法公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

高感应电压下用SM501测试线路参数的方法 湖南省送变电建设公司调试所邓辉邓克炎 0引言 超高压输电线路工频参数测试时,经常遇到感应电压很高的情况,不能用仪器直接测试, 否则仪器被感应电压击穿损坏。本文根据厂家仪器给出的原理接线进行了改接,通过理论分析,实际测试,数据证实,此种方法确实有效可行。 1SM501的介绍: SM501线路参数测试仪,是专门用于输电线路工频参数测试的仪器。该仪器电路设计精巧,思路独特,使得其性能优越,功能强大,体积小,重量轻。该仪器内部采用先进的A/D同步交流采样及数字信号处理技术,成功的解决了多路信号在市电条件下同步测量和计算的难题。仪器操作简单方便,数据准确可靠,可完全取代传统仪表的测量方法,可显示并记录用户关心的所有测量数据,可作为现场高精度交流指示仪表使用。该仪器测试线路参数与传统仪表测试线路参数比较,减轻劳动强度,工作效率大大提高。 1.1SM501的主要功能与特点: (1)可测量输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电冰箱容,零序电容,线地电容,互感阻抗,电压,电流,功率,电阻,电抗,阻抗角,频率等参数。 (2)全部数据均在统一周期内同步测量,保证在市电条件下测量结果的准确性和合理性。

(3)在仪器允许的测量范围内可直接测量,超出测量范围时可外接一次电压互感器和电流互感器。 (4)可锁定显示数据并存储或打印全部测量结果,本仪器内置不掉电存储器,可长期保持测量数据并可随时查阅。 (5)全部汉字菜单及操作提示,直观方便。 1.2主要技术指标; (1)基本测量精度:电流、电压、阻抗级,功率级 (2)电压测量范围:AC 0-450V 电流测量范围:AC 0-50A 2为什么要对输电线路进行参数测试: 输电线路短距离也有几公里,长距离的有几十至几百公里,输电线路长距离的架设,中途的换位,变电站两端相位有时出现差错,输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电容,零序电容,线地电容,互感阻抗,电阻,电抗,阻抗角等实际与理论计算值不一至。 以上这些参数的准确对继电保护的整定至关重要,这些参数如果有误,保护不能正确动作,距离保护不能准确测距,甚至误动或不动,对电力设备造成直接经济损失。为了保证输电线路进行参数测试的准确,保定市超人电子有限公司研制了一种比较智能的参数测试仪那就是SM501。 3几种典型的参数测试: 输电线路正序阻抗的测试: 将线路末端三相短路悬浮。当测试电压和测试电流都不超过本测试仪器允许输入范围时,按图1接法测量。当测试电压和测试电流超过本测试仪器允许输入

室外热环境参数测定

室外热环境参数测定 一、实验目的和要求 了解室外热环境参数测定的基本内容,初步掌握常用仪器仪表的性能和使用方法,明确各项测定应达到的目的,进一步感受和了解室外气象因素对建筑热环境的影响。 二、实验内容 (1)温度的测定; (2)空气相对湿度的测定; (3)气流速度的测定; (4)太阳辐射的测定。 三、测试原理 温湿度测量原理:半导体式温度传感器是利用半导体电阻随着温度的改变而改变的原理进行温度测量的传感器。电容式湿度传感器是利用湿敏元件的电容值随湿度变化的原理进行湿度测量的传感器。 风速仪测量原理:热电偶的冷端连接在磷不同段的支柱上,直接暴露在气流中,当一定大小的电流通过电热圈后,玻璃球的温度升高,升高程度的大小通过热电偶在电表上指示出来,根据电表读数,得出风速(m/s)。 辐射测量原理:将接收到的太阳辐射信号以最小的损失转化为电信号。 四、测试设备 高精度微风速仪、RS-232/湿度/温度数据记录仪表、太阳辐射观测站 五、实验步骤 1、室外温度、湿度测定:将温度、湿度计测量仪放置在室外距地面1.5米处,通风2-3min温度稳定后,再读数,每15s记录一次数据,共记录20次数据(5min)。 2、室外风速测定:用热电风速仪测出风速,和记录温湿度一样,每15s记录一次数据,共记录20次。 3、太阳辐射测定:数据从太阳辐射观测站处得来。

4、整理收好实验数据,根据实验记录管理分析实验数据。 六、注意事项 1、测量温度时,温度计应该在地面1.5m高度,测量时避免太阳直接辐射。 2、测量计放好后,待通风2-3min温度稳定后,再读数,以避免实验误差。 七、实验数据及处理

相关文档
最新文档