含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)

合集下载

一元二次不等式(二)含参数不等式的解法与恒成立问题修改版

一元二次不等式(二)含参数不等式的解法与恒成立问题修改版

二次函数的区间恒成立问题
恒成立问题求参数范围常规思路: 方法一:利用函数性质(二次函数性质). 方法二:分离参数,转化为求函数最值.
a<f(x)恒成立
a<f(x)min a>f(x)恒成立 a>f(x)max
例1
课堂互动讲练 已知f(x)=x2-2ax+2,当x∈[-1,+∞)
时,f(x)≥a恒成立,求a的取值范围.
m 6或m 2 即 m 0 m 3 0
X=m/2
o
x1
x2
∴ 2≤ m<3.
(三)二次函数图象的应用
例3 分别求使方程x2-mx-m+3=0的两根满足下列条件的m值 的集合: (2)一个根大于0,另一个根小于0; 解: (2) ∵一个根大于0,另一个根小于0;
0 f (0) 0
m 6或m 2 即 m 3 0
x1 o
X=m/2
∴ m>3.
x2
(三)二次函数图象的应用 例3 分别求使方程x2-mx-m+3=0的两根满足下列条件的m 值的集合: (3)两根都小于0;
解: (3) ∵两根都小于0
X=m/2
x1
2 5 2 ∴不等式变为-3ax +-3ax+a<0,
即 2ax2+5ax-3a>0, 又∵a<0,∴2x2+5x-3<0.
1 ∴所求不等式的解集为x-3<x<2 .
方法二:由已知得 a<0
1 c - ×2= 知 a 3
2
1 1 ∴- , 是方程 ax2+bx+2=0 的两实根. 2 3 b 1 1 -2+3=-a 由根与系数的关系得 -1×1=2 2 3 a

含参一元二次不等式的解法与恒成立问题

含参一元二次不等式的解法与恒成立问题

含参一元二次不等式的解法与恒成立问题
一元二次不等式是几何、代数以及统计学等领域中使用最广泛的不等式之一,其解法和恒成立问题也是学习和研究的重要内容。

首先,要理解含参一元二次不等式的解法,我们需要对一元二次方程有所了解。

一元二次不等式也可以表示为一元二次方程形式,也可以将一元二次方程化为一元二次不等式形式。

一元二次方程有一般形式ax^2 + bx + c = 0,其中a,b,c均为实数,且a≠0,这个方程有两个实根,如果a,b,c满足一定条件,那么解得的方程式可以写作
x^2+px+q≥0,其中p为常数,q为常数。

在求解含参一元二次不等式的时候,要先化成一元二次方程的形式,然后根据首项系数是正还是负,分两种情况讨论,如果ax^2为正,那么此一元二次不等式在实数集上有解,只要保证满足一定条件即可;若ax^2为负,则含参一元二次不等式可以分离,而只要满足条件就必定存在解。

当求解不等式的恒成立问题时,一般的思路是先将不等式的非负部分和负部分分开,求解其左右两边的值,例如:若有ax^2+bx+c≥0,可先将其分解为ax^2+c≥0和bx≥0,然后求解其左右两边的值,根据不等式的性质,求解其两个值,确定其恒成立条件。

总之,一元二次不等式的解法及其恒成立问题是学习和研究中重要的内容,也是大家常用的不等式之一。

要正确求解,首先要正确分离不等式,然后根据不等式的性质确定相应的恒成立条件。

3.2.2含参数的一元二次不等式的解法(例题精讲)

3.2.2含参数的一元二次不等式的解法(例题精讲)

含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ;例1 解不等式:()0122>+++x a ax 分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项 系数进行分类讨论。

解:∵()044222>+=-+=∆a a a 解得方程 ()0122=+++x a ax 两根,24221a a a x +---=a a a x 24222++--= ∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式 分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。

解 ()()032)65(2>--=+-x x a x x a ∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x二、按判别式∆的符号分类,即0,0,0<∆=∆>∆;例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。

解:∵162-=∆a ∴当()4,4-∈a 即0<∆时,解集为R ;当4±=a 即Δ=0时,()00652≠>+-a a ax ax解集为⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且; 当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >, ∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或例4 解不等式()()R m x x m ∈≥+-+014122 解 因,012>+m ()()2223414)4(mm -=+--=∆,所以当3±=m ,即0=∆时,解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>-<m m 或,即0<∆时,解集为R 。

含参一元二次不等式解法及简单恒成立

含参一元二次不等式解法及简单恒成立
一、含参一元二次不等式解法
1、解关于 x 的不等式 x 2+(1-a)x -a<0.
[解]
方程 x2+(1-a)x-a=0 的解为 x1=-1,x2=a,函数
y=x2+(1-a)x-a 的图象开口向上,则当 a<-1 时,原不等式 解集为{x|a<x<-1}; 当 a=-1 时,原不等式解集为∅; 当 a>-1 时,原不等式解集为{x|-1<x<a}.
3、已知关于 x 的不等式 x 2+ax +b<0 的解集为{x |1<x <2},求 关于 x 的不等式 bx 2+ax +1>0 的解集.
[ 解] ∵x2+ax+b<0 的解集为{x|1<x<2},
∴1,2 是 x2+ax+b=0 的两根.
-a=1+2, 由韦达定理有 b=1×2,
x<1.
1 1 当 a<-1 时,-a<1,∴x>1 或 x<-a, 综上原不等式的解集是: 当 a=0 时,{x|x<1};当 a>0
1 时, x|-a<x<1; 1 时,x|x<1或x>-a .
当 a=-1 时,{x|x≠1};当-1<a<0 当 a<-1
a=-3, 得 b=2,
代入所求不等式,得 2x2-3x+1>0. 1 由 2x -3x+1>0⇔(2x-1)(x-1)>0⇔x< 或 x>1. 2
2
∴bx +ax+1>0
2
1 的解集为-∞,2∪(1,+∞).
[类题通法] 1.一元二次不等式 ax2+bx+c>0(a≠0)的解集的端点值是 一元二次方程 ax2+bx+c=0 的根, 也是函数 y=ax2+bx+c 与 x 轴交点的横坐标. 2.二次函数 y=ax2+bx+c 的图象在 x 轴上方的部分,是由 不等式 ax2+bx+c>0 的 x 的值构成的; 图象在 x 轴下方的部分, 是由不等式 ax2+bx+c<0 的 x 的值构成的, 三者之间相互依存、 相互转化.

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种:一、按$x$项的系数$a$的符号分类,即$a>0$,$a=0$,$a<0$。

例1:解不等式$ax+(a+2)x+1>2$分析:本题二次项系数含有参数,$\Delta=(a+2)^2-4a=a+4>0$,故只需对二次项系数进行分类讨论。

解:当$a>0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2+\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2-\sqrt{a+4}}{2a}$,因为$a>0$,所以$x_1x_2$或$x<x_1$,即$x\in\left(-\infty,\frac{a+2-\sqrt{a+4}}{2a}\right)\cup\left(\frac{a+2+\sqrt{a+4}}{2a},+\infty\right)$。

当$a=0$时,不等式为$2x+1>2$,解得$x>\frac{1}{2}$,即解集为$x>\frac{1}{2}$。

当$a<0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2-\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2+\sqrt{a+4}}{2a}$,因为$a<0$,所以$x_1<x_2$。

所以解集为$x_1<x<x_2$,即$x\in\left(\frac{a+2-\sqrt{a+4}}{2a},\frac{a+2+\sqrt{a+4}}{2a}\right)$。

例2:解不等式$ax-5ax+6a>(a\neq0)^2$分析:因为$a\neq0$,$\Delta>0$,所以我们只需讨论二次项系数的正负。

解:当$a>0$时,解得方程$ax-5ax+6a=0$的两根$x_1=2$,$x_2=3$,因为$a>0$,所以$x_13$,即$x\in\left(-\infty,2\right)\cup\left(3,+\infty\right)$。

含参不等式题型专题练(教师版)

含参不等式题型专题练(教师版)

个性化教学辅导教案一.【方法总结】1.求解含参变量不等式时,往往需要分类讨论,而分类时讲究分类标准的一致性,并注意确保“不重不漏”.2.解决含参变量恒成立的不等式问题的步骤是:(1)分离变量:即将参变量与主变量分开,分别分布在不等式两侧.(2)求最值:要使h(a)≥f(x)恒成立,只需h(a)≥f(x);要使h(a)≤f(x)恒成立,只需h(a)≤f(x).同时应注意若不能分离变量,则将恒成立问题转化化归为函数问题,利用数形结合求解.二.【题型】(一)含参数的一元二次不等式问题(二)含参数的恒成立问题(三)对勾函数与不等式(四)不等式与逻辑(五)基本不等式的构造(六)根的分布与参数(七)多变量问题学生姓名年 级学 科授课老师日 期上课时间课 题含参不等式题型专题练教学目标了解参变量的含义,会解含参变量的简单不等式,会探究含参变量的不等式在某范围内恒成立等简单问题,从而培养分类与整合的数学思想.复习检查精准突破max min (八)不等式综合(一)含参数的一元二次不等式问题(二)含参数的恒成立问题(三)函数与不等式1当时,不等式恒成立,则的取值范围是( )A.B.C.D.答案解答【解析】∵时,不等式恒成立,∴,解得.故选A.2例2. .若,且,恒成立,则实数的取值范围是( )A.B.C.D.答案解答【解析】由基本不等式得,当且仅当,即当时,等号成立,所以,的最小值为.由题意可得,即,解得或.因此,实数的取值范围是,故选:B.3例3. 若函数在处取最小值,则等于()A.3B.C.D.4(四)不等式与逻辑(五)基本不等式的构造答案解答【解析】当时,,则,当且仅当时,即当时,等号成立,因此,,故选:A.4例4. 已知命题,命题,,则成立是成立的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件答案解答【解析】求解不等式可得,对于命题,当时,命题明显成立;当时,有:,解得:,即命题为真时,故成立是成立的充分不必要条件.故选:A.5例5. 设,,且恒成立,则的最大值是( )A.B.C.D.答案解答【解析】等价于(六)根的分布与参数(七)多变量问题故得到则的最大值是3.故答案为:B.6例6. 如果方程的两个实根一个小于1,另一个大于1,那么实数的取值范围是( )A.B.C.D.答案解答【解析】:因为方程的两个实根一个小于1,另一个大于1,所以可作出函数的简图如下:由图可得:,即:解得:故选:C7例7. 正数满足,若不等式对任意实数恒成立,则实数的取值范围是( )A.B.C.D.(八)不等式综合答案解答【解析】,当且仅当,即时,“=”成立,若不等式对任意实数恒成立,则,即对任意实数恒成立,实数的取值范围是.故选D.8例8.下列说法中:①若,满足,则的最大值为;②若,则函数的最小值为③若,满足,则的最小值为④函数的最小值为正确的有__________.(把你认为正确的序号全部写上)答案解答【答案】③④【解析】①由得,则,则,设,则,则,则上减函数,则上为增函数,则时,取得最小值,当时,,故的最大值为,错误;②若,则函数,则,即函数的最大值为,无最小值,故错误;③若,满足,则,则,由,得,则,当且仅当,即得,即时取等号,即的最小值为,故③正确;④练习1.,当且仅当,即,即时,取等号,即函数的最小值为,故④正确,故答案为:③④。

一元二次不等式的参数问题(含答案)

一元二次不等式的参数问题(含答案)

一元二次不等式的应用———不等式中的参数问题200000a b a ax bx c x c ==>⎧⎧++>⇔⎨⎨><⎩⎩ 不等式对任意实数恒成立或 200000a b a ax bx c x c ==<⎧⎧++<⇔⎨⎨<<⎩⎩不等式对任意实数恒成立或 1.(1)若不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,求实数a 的取值范围.(2)若不等式13642222<++++x x mmx x 的解集为R ,求实数m 的取值范围.答案:(1)()2,2a ∈- (2) 1<m<32.已知}0)1(|{},023|{22≤++-=≤+-=a x a x x B x x x A ,①若A B ,求实数a 的取值范围.;②若A B ⊆,求实数a 的取值范围.;③若B A 为仅含有一个元素的集合,求a 的值.① a>2 ② 1≤a ≤2 ③ a ≤1答案:13,2x ⎛⎫∈- ⎪⎝⎭2210{|2},30ax bx c x x cx bx a ++≥-≤≤++<3.若不等式的解集是 求不等式的解集.答案:10a c +=对于含参数的不等式恒成立问题的处理方法:方法1:将不等式化为f(x)>0(<0)的形式,构造函数y=f(x), 求函数的最小值(最大值),再令(fmin(x)> 0(fmax(x)<0)通过解不等式求得。

方法2:分离参数法:分离参数,构造函数y=f(x), 求函数的最小值(最大值),使参数t<fmin(x)(参数t>fmax(x))。

21. 10(0,]2x ax x a ++≥∈5不等式对于一切恒成立,求的最小值。

答案:min 52a =-6.已知函数3()f x x x =+,对任意的m ∈[-2,2],(2)()0f mx f x -+<恒成立, 则x 的取值范围为____.223x -<<7.2lg()R,y x bx b b =++若函数的定义域为求实数的取值范围。

含参一元二次不等式解法及恒成立 高中数学课件

含参一元二次不等式解法及恒成立 高中数学课件

3 m
,
1 m
课堂小结
• 本节课重点学习了含参一元二次不等式的解法及与一元二次不等式有关 的恒成立问题,能正确进行分类讨论(确定分类讨论的原因和标准)及确 立参数的取值范围是本节重难点,正确书写不等式的解集,掌握分类讨论 和数形结合的方法。
• 活动三:课堂检测
• 1.若不等式 a 2 x2 2a 2 x 4 0 对一切实数 x 恒成立,求实数 a 的
取值范围.
2, 2
• 2.设 m R,解关于 x 的不等式 m2x2 2mx 3 0.
当m=0时,原不等式的解集为R
当m&l>0时,原不等式的解集为
R
• (3) x2 6x 9 0
3
• (4) (x 1)(3 2x) 0
1,
3 2
教学过程
• 活动一:掌握含参数不等式的解法
• 1.解关于x 的不等式 x a x 1 0 a R.
解:当a=1时,原不等式解集为
当a>1时,原不等式解集为1, a
当a<1时,原不等式解集为a,1
• 2.解关于x的不等式 x 2ax 2 0. aR
解:当a 0时,原不等式的解集为,2
当a 1时,原不等式的解集为,2 2,
当a
0时,原不等式的解集为
2 a
, 2
当0 a 1时,原不等式的解集为,2
a2,
当 a 1时 , 原 不 等 式 的 解 集 为 , 2 2 ,
含参一元二次不 等式的解法及恒成立问题
教学目标
• 1.复习巩固一元二次不等式的解法; • 2.掌握含参一元二次不等式解法 (重点); • 3.掌握与一元二次不等式有关的恒成立问题 (难点) .
复习巩固
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项系数进行分类讨论。

解:∵()044222>+=-+=∆a a a解得方程 ()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式()00652≠>+-a a ax ax分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。

解 ()()032)65(2>--=+-x x a x x a∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x二、按判别式∆的符号分类,即0,0,0<∆=∆>∆; 例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。

解:∵162-=∆a∴当()4,4-∈a 即0<∆时,解集为R ;当4±=a 即Δ=0时,解集为⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且; 当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >,∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或例4 解不等式()()R m x x m ∈≥+-+014122解 因,012>+m ()()2223414)4(m m -=+--=∆所以当3±=m ,即0=∆时,解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>-<m m 或,即0<∆时,解集为R 。

三、按方程02=++c bx ax 的根21,x x 的大小来分类,即212121,,x x x x x x <=<;例5 解不等式)0( 01)1(2≠<++-a x aa x 分析:此不等式可以分解为:()0)1(<--ax a x ,故对应的方程必有两解。

本题只需讨论两根的大小即可。

解:原不等式可化为:()0)1(<--a x a x ,令aa 1=,可得:1±=a ∴当1-<a 或10<<a 时,a a 1<,故原不等式的解集为⎭⎬⎫⎩⎨⎧<<a x a x 1|; 当1=a 或1-=a 时,aa 1=,可得其解集为φ; 当01<<-a 或1>a 时, a a 1>,解集为⎭⎬⎫⎩⎨⎧<<a x a x 1|。

例6 解不等式06522>+-a ax x ,0≠a分析 此不等式()0245222>=--=∆a a a ,又不等式可分解为()0)3(2>--a x a x ,故只需比较两根a 2与a 3的大小.解 原不等式可化为:()0)3(2>--a x a x ,对应方程()0)3(2=--a x a x 的两根为 a x a x 3,221==,当0a时,即23a a ,解集为{}a x a x x 23|<>或;当0<a 时,即23a a ,解集为{}|23x x a x a ><或含参不等式恒成立问题的求解策略“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。

另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。

本文就结合实例谈谈这类问题的一般求解策略。

一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。

一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有1)0)(>x f 对R x ∈恒成立⎩⎨⎧<∆>⇔0a ;2)0)(<x f 对R x ∈恒成立.00⎩⎨⎧<∆<⇔a 例1:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。

解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。

(1)当m-1=0时,元不等式化为2>0恒成立,满足题意;(2)01≠-m 时,只需⎩⎨⎧<---=∆>-0)1(8)1(012m m m ,所以,)9,1[∈m 。

例2.已知函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。

解:由题设可将问题转化为不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有04)1(22<--=∆a a 解得311>-<a a 或。

所以实数a 的取值范围为),31()1,(+∞--∞ 。

若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。

二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)a x f >)(恒成立min )(x f a <⇔ 2)a x f <)(恒成立max )(x f a >⇔例3、若[]2,2x ∈-时,不等式23x ax a ++≥恒成立,求a 的取值范围。

解:设()23f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。

(1) 当22a -<-即:4a >时,()()min 2730f x f a =-=-≥ 73a ∴≤又4a >所以a 不存在;(2) 当222a -≤≤即:44a -≤≤时,()2min 3024a a f x f a ⎛⎫=-=--≥ ⎪⎝⎭62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤(3) 当22a-> 即:4a <-时,()()min 270f x f a ==+≥ 7a ∴≥-又4a <-74a ∴-≤<-综上所得:72a -≤≤例4.函数),1[,2)(2+∞∈++=x xax x x f ,若对任意),1[+∞∈x ,0)(>x f 恒成立,求实数a 的取值范围。

解:若对任意),1[+∞∈x ,0)(>x f 恒成立,即对),1[+∞∈x ,02)(2>++=xax x x f 恒成立, 考虑到不等式的分母),1[+∞∈x ,只需022>++a x x 在),1[+∞∈x 时恒成立而得 而抛物线a x x x g ++=2)(2在),1[+∞∈x 的最小值03)1()(min >+==a g x g 得3->a注:本题还可将)(x f 变形为2)(++=xax x f ,讨论其单调性从而求出)(x f 最小值。

例5:在∆ABC 中,已知2|)(|,2cos )24(sin sin 4)(2<-++=m B f B B B B f 且π恒成立,求实数m 的范围。

解析:由]1,0(sin ,0,1sin 22cos )24(sin sin 4)(2∈∴<<+=++=B B B B BB B f ππ,]3,1()(∈B f ,2|)(|<-m B f 恒成立,2)(2<-<-∴m B f ,即⎩⎨⎧+<->2)(2)(B f m B f m 恒成立,]3,1(∈∴m例6:求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。

解析:由于函]43,4[4),4sin(2cos sin ππππ-∈--=->x x x x a ,显然函数有最大值2,2>∴a 。

三、分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。

这种方法本质也还是求最值,但它思路更清晰,操作性更强。

一般地有:1)为参数)a a g x f )(()(<恒成立max )()(x f a g >⇔ 2)为参数)a a g x f )(()(>恒成立max )()(x f a g <⇔ 。

例7、已知(],1x ∈-∞时,不等式()21240x x a a ++-⋅>恒成立,求a 的取值范围。

解:令2xt =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:221t a a t +-<, 要使上式在(]0,2t ∈上恒成立,只须求出()21t f t t +=在(]0,2t ∈上的最小值即可。

()22211111124t f t t t t t +⎛⎫⎛⎫==+=+- ⎪ ⎪⎝⎭⎝⎭11,2t ⎡⎫∈+∞⎪⎢⎣⎭()()min 324f t f ∴==234a a ∴-< 1322a ∴-<< 例8、已知函数()lg 2a f x x x ⎛⎫=+- ⎪⎝⎭,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。

解:根据题意得:21ax x+->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立,设()23f x x x =-+,则()23924f x x ⎛⎫=--+ ⎪⎝⎭当2x =时,()max 2f x = 所以2a >例9.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(<x f 恒成立,求实数a 的取值范围。

解: 将问题转化为xx x a 24-<对]4,0(∈x 恒成立。

相关文档
最新文档