基于MATLAB的OFDM系统设计及仿真
基于Matlab平台的OFDM系统仿真分析

目录
01 引言
03 系统仿真分析
02 预备知识 04 优化与改进
引言
正交频分复用(OFDM)技术是一种广泛应用于无线通信领域中的多载波调制 技术。它凭借高谱效率、抗多径干扰能力强和频谱利用率高等优点,在4G、5G等 通信系统中扮演着关键角色。本次演示将基于Matlab平台,对OFDM系统进行仿真 分析,探究其应用优势、存在问题以及未来发展方向。
(1)抗多径干扰能力强:由于OFDM技术将高速数据流分散到多个子载波上 传输,即使某些子载波受到干扰,也不会对整个系统造成太大影响。
(2)频谱利用率高:OFDM技术通过相邻子载波之间的正交性,允许不同用 户在同一频段上同时传输数据,从而提高了频谱利用率。
(3)适用于多用户通信:OFDM技术可以与多用户接入技术相结合,实现多 个用户在同一频段上同时传输数据,提高系统整体性能。
2、OFDM系统存在的问题和不足
尽管OFDM系统具有诸多优点,但在实际应用中仍存在一些问题和不足:
(1)对信道模型的准确性要求较高:如果信道模型不准确,将导致系统性 能下降,甚至出现通信中断。
(2)易受频率偏移影响:OFDM系统对频率偏移较为敏感,即使微小的频率 偏移也会导致子载波之间的正交性破坏,从而导致系统性能下降。
(3)实现复杂度较高:OFDM系统涉及到的计算量和复杂性较其他通信系统 要高,尤其是在处理高速数据流时,需要更高的计算能力和更高效的算法。
优化与改进
针对上述问题和不足,本次演示提出以下优化和改进方案:
1、信道模型估计与跟踪
在OFDM系统中,信道模型估计与跟踪是一个重要环节。通过采用准确的信道 模型,可以有效提高系统抗多径干扰能力和频谱利用率。在实际应用中,可以采 用基于导频的训练序列法、基于循环前缀的训练序列法等信道估计方法,并通过 对训练序列进行优化设计,提高信道估计准确性。
基于matlab的ofdm通信系统设计与仿真开题报告

基于matlab的ofdm通信系统设计与仿真开题报告一、选题背景随着通信技术的不断发展,OFDM技术成为了通信系统中广泛应用的一种调制技术。
OFDM技术相对于传统的调频调幅技术具有许多优势,例如对多径衰落的敏感性更低、扩频抗干扰性能更好等等。
因此,在实际应用场景中,OFDM技术得到了越来越广泛的应用。
因此,基于matlab的OFDM通信系统设计与仿真的研究也变得越来越受到人们的关注。
二、研究内容本文拟研究基于matlab的OFDM通信系统设计与仿真技术,研究内容包括以下几个方面:1. OFDM基础本文将首先介绍OFDM技术的基础知识,例如OFDM信号的生成、调制与解调原理等等。
同时,还会介绍OFDM技术的优缺点、应用领域等相关内容,以便更好地理解OFDM 技术在通信系统中的应用。
2. OFDM通信系统设计在了解了OFDM技术的基础知识之后,本文将研究如何基于matlab实现OFDM通信系统的设计。
具体而言,将会介绍OFDM通信系统中不同模块的实现,例如QPSK调制器、加扰器、插零器、IFFT模块、CP插入模块等等。
3. OFDM通信系统仿真通过matlab的仿真工具,可以对OFDM通信系统进行全面的仿真,并得到各种参数的数据。
本文将详细介绍如何进行OFDM通信系统的仿真设计,以及如何评估OFDM通信系统的性能。
三、研究意义随着通信技术的不断发展,OFDM技术正在逐渐成为通信系统中的主流技术之一。
因此,基于matlab的OFDM通信系统设计与仿真技术的研究对于通信系统的研发和应用具有十分重要的意义。
通过本文的研究,可以更好地了解OFDM技术的应用原理、技术优势和性能表现,同时也可以更加深入地理解无线通信系统这一领域。
四、研究方法与流程本文的研究方法主要包括文献调研、matlab仿真、性能评估等方面。
具体研究流程如下:1. 文献调研:在开始研究之前,需要进行大量的文献调研,了解OFDM技术的基础知识、历史发展、应用场景等等。
基于MATLAB的OFDM系统仿真及分析

基于MATLAB的OFDM系统仿真及分析OFDM(正交频分复用)是一种广泛应用于无线通信系统中的多载波调制技术。
在OFDM系统中,信号被分为多个独立的子载波,并且每个子载波之间正交。
这种正交的特性使得OFDM系统具有抗频率选择性衰落和多径干扰的能力。
本文将基于MATLAB对OFDM系统进行仿真及分析。
首先,我们需要确定OFDM系统的参数。
假设我们使用256个子载波,其中包括8个导频符号用于信道估计,每个OFDM符号的时域长度为128个采样点。
接下来,我们需要生成调制信号。
假设我们使用16QAM调制方式,每个子载波可以传输4个比特。
在MATLAB中,我们可以使用randi函数生成随机的比特序列,然后将比特序列映射为16QAM符号。
生成的符号序列可以通过IFFT(Inverse Fast Fourier Transform)将其转换为时域信号。
OFDM系统的发射端包括窗函数、导频符号插入、IFFT和并行到串行转换等模块。
窗函数用于增加OFDM符号之间的过渡带,导频符号用于信道估计和符号同步。
通过将符号序列与导频图案插入到OFDM符号序列中,然后进行IFFT变换,再进行并行到串行转换即可得到OFDM信号的时域波形。
接下来,我们需要模拟OFDM信号在信道中传输和接收。
假设信道是Additive White Gaussian Noise(AWGN)信道。
在接收端,OFDM信号的时域波形通过串行到并行转换,然后进行FFT(Fast Fourier Transform)变换得到频域信号。
通过在频域上对导频符号和OFDM信号进行正交插值,可以进行信道估计和等化。
最后将频域信号进行解调,得到接收后的比特序列。
通过比较发送前和接收后的比特序列,我们可以计算比特误码率(BER)来评估OFDM系统的性能。
比特误码率是接收到错误比特的比特数与总传输比特数之比。
通过改变信噪比(SNR)值,我们可以评估OFDM系统在不同信道条件下的性能。
基于MATLAB的OFMD仿真实验-OFDM系统设计1

GI, TG (frac of TU)
24.6%
SubC 1K/2K
spacing/Hz
(子载波间隔)
4K/8K
1⁄4, 1⁄32
1⁄8,
1⁄16,
1⁄4, 1⁄32
1⁄8,
1⁄16,
1⁄4,
1⁄6,
1⁄9
4, 464 1, 116
4,464, 2,232, 1,116
2,000
1/128, 1/32, 1/16, 19/256, 1/8, 19/128, 1/4.
(CFO):
f
f
tx c
f
rx c
Doppler Shift (多普勒偏移)
CFO Estimation & Compensation
(先估计出偏移然后补偿,然后就可以消除频偏CFO实现同步)
Time/Frequency Synchronization
Find the start point of OFDM symbols (ISI free) CFO Estimation & Compensation (ICI free)
Noise Figure
SNR -- Signal to Noise Ratio -- 信噪比
Tx/Rx process of OFDM system
Time Synchronization
(时间同步)
Inter-symbol Interference (ISI)
N
N
N
Find the start point of OFDM symbols
Physical Layer System Design
基于MATLAB的OFDM系统设计与仿真综述

基于MATLAB的OFDM系统设计与仿真摘要:随着通信产业的逐步发展,4G时代已经来临。
作为第四代移动通信技术的核心,OFDM得到了前所未有的关注。
它具有频谱利用率高、抗干扰能力强等优点。
本文首先简要介绍了OFDM的发展状况以及优缺点,然后详细分析了OFDM的工作原理及其相应的各个模块,并介绍了它的关键技术。
最后,分别利用M函数和Simulink做了OFDM 系统的设计与仿真,并对误码率进行了分析,得到了BER性能曲线。
关键词:正交频分复用;MATLAB;仿真;BERDesign and Simulation of OFDM System Based on MATLABAbstract:With the gradual development of the communication industry, 4G era has come. As the key technology of the fourth generation mobile communications,OFDM has received unprecedented attention. It has a high spectrum utilization, strong ability of anti-interference and so on. This article describes the development of OFDM and it’s advantages and disadvantages briefly, analysis the working principles of OFDM and each module detailed,and describes it’s key tec hnology.At last, design and simulate OFDM system with the M function and Simulink separately, analysis the error rate and obtain BER performance curve .Keywords: OFDM; MATLAB; Simulation; BER目录1 引言 (4)1.1 OFDM概述 (4)1.1.1 OFDM技术发展历史 (4)1.1.2 OFDM技术的优缺点 (5)2 OFDM基本原理及关键技术 (5)2.1 OFDM基本原理及系统构成 (5)2.1.1 OFDM基本原理 (5)2.1.2 串并转换 (6)2.1.3 调制与解调 (6)2.1.4 保护间隔与循环前缀 (8)2.2 OFDM的关键技术 (10)2.2.1 信道估计概述 (10)2.2.2 基于导频的信道估计方法 (10)2.2.3 信道的插值方法 (11)3 OFDM的系统设计与仿真 (12)3.1 MATLAB概述 (12)3.2 OFDM系统设计与仿真 (12)3.2.1 随机序列的产生 (12)3.2.2 串并转换 (14)3.2.3 QPSK调制 (14)3.2.4 QPSK调制星座图 (14)3.2.5 IFFT/FFT运算 (15)3.2.6 保护间隔和循环前缀 (16)3.2.7 并串转换 (16)3.2.8 加入高斯白噪声 (17)3.2.9 QPSK解调 (17)3.2.10 接收信号 (18)3.3 系统误码率的分析 (18)3.4 基于Simulink的系统仿真 (19)4 总结 (21)参考文献 (21)附录 (22)1 引言1.1 OFDM概述随着移动通信和无线网需求的不断增长,需要越来越高速的无线系统设计,而这其中一个最直接的挑战就是克服无线信道带来的严重的频率选择性衰落。
基于MATLAB的OFDM的仿真

一、实习目的1、熟悉通信相关方面的知识、学习并掌握OFDM技术的原理2、熟悉MATLAB语言3、设计并实现OFDM通信系统的建模与仿真二、实习要求仿真实现OFDM调制解调,在发射端,经串/并变换和IFFT变换,加上保护间隔(又称“循环前缀”),形成数字信号,通过信道到达接收端,结束端实现反变换,进行误码分析三、实习内容1.实习题目《正交频分复用OFDM系统建模与仿真》2.原理介绍OFDM的基本原理就是把高速的数据流通过串并变换,分配到传输速率相对较低的若干个子信道中进行传输。
由于每个子信道中的符号周期会相对增加,因此可以减轻由无线信道的多径时延扩展所产生的时间弥散性对系统造成的影响。
并且还可以在OFDM符号之间插入保护间隔,令保护间隔大于无线信道的最大时延扩展,这样就可以最大限度地消除由于多径而带来的符号间干扰(ISI)。
而且,一般都采用循环前缀作为保护间隔,从而可以避免由多径带来的子载波间干扰((ICI) 。
3.原理框图图1-1 OFDM 原理框图4. 功能说明4.1确定参数需要确定的参数为:子信道,子载波数,FFT 长度,每次使用的OFDM 符号数,调制度水平,符号速率,比特率,保护间隔长度,信噪比,插入导频数,基本的仿真可以不插入导频,可以为0。
4.2产生数据使用个随机数产生器产生二进制数据,每次产生的数据个数为carrier_count * symbols_per_carrier * bits_per_symbol 。
4.3编码交织交织编码可以有效地抗突发干扰。
4.4子载波调制OFDM 采用BPSK 、QPSK 、16QAM 、64QAM4种调制方式。
按照星座图,将每个子信道上的数据,映射到星座图点的复数表示,转换为同相Ich 和正交分量Qch 。
其实这是一种查表的方法,以16QAM 星座为例,bits_per_symbol=4,则每个OFDM 符号的每个子信道上有4个二进制数{d1,d2,d3,d4},共有16种取值,对应星座图上16个点,每个点的实部记为Qch 。
基于Matlab的OFDM系统设计与仿真

目录1绪论 (1)1.1课题研究背景及意义 (1)1.2无线通信 (1)1.2.1无线通信概述 (1)1.2.2无线信道特性 (2)1.3 OFDM概述及应用 (3)1.3.1 OFDM的发展 (3)1.3.2 OFDM的关键技术 (3)1.3.3 OFDM的优缺点 (4)2 OFDM基本原理 (6)2.1原理及数学描述 (6)2.1.1 OFDM基本原理 (6)2.1.2串并转换 (6)2.1.3子载波调制 (7)2.1.4 DFT变换 (10)2.1.5保护间隔、循环前缀和子载波数选择 (11)2.1.6 OFDM基本参数的选择 (14)2.1.7 QPSK调制 (15)2.1.8 QPSK信号的产生 (18)3 OFDM的系统仿真 (20)3.1 MATLAB特点与功能 (20)3.2 OFDM系统收发机 (20)3.3 OFDM系统仿真 (22)3.3.1串行数据的产生 (22)3.3.2串并转换 (23)3.3.3 QPSK调制 (25)3.3.4 QPSK调制星座图 (29)3.3.5 IFFT/FFT运算 (30)3.3.6保护间隔和循环前缀 (32)3.3.7并串转换 (34)3.3.8加入高斯噪声 (35)3.3.9 QPSK解调 (37)3.3.10接收信号 (38)3.4系统误码率的分析 (38)3.5 BER性能曲线 (40)3.6本章小结 (41)参考文献 (42)附录 (43)致谢........................................................................................................................... 错误!未定义书签。
摘要随着人们对通信数据化、宽带化、个人化和移动化的需求,OFDM技术在综合无线接入领域得到广泛应用,它将是第四代移动通信的核心技术之一。
基于Matlab的OFDM系统仿真

基于Matlab的OFDM系统仿真实验名称:基于matlab的OFDM系统仿真实验原理:图1 基带OFDM系统实验目的:根据给定的参数完成OFDM信号的调制、传输和解调以及信道建模和信道估计。
主要研究噪声和循环前缀的长度对系统误码率的影响。
实验内容:包括发送端、信道和接收端三个模块。
1、发送模块进行的处理包括OFDM 信号的产生、加入循环前缀、插入训练序列和加扰等部分;2、信道模块对发射端产生的信号施加多径、频偏、相偏等影响;3、接收模块进行的处理包括去循环前缀、解调和信道估计等。
实验参数:1、 Ns=5:一个帧结构中OFDM符号的个数;2、para=40:并行传输的子载波个数;3、gl=10:设置保护时隙的长度;4、an:每条多径的幅度增益0-10dB,粒度为0.1;5、tn:时延扩展0-4us,单位为us;6、wn:频偏-100Hz-100Hz,粒度为0.1Hz;7、sita:设置相偏0-2*pi,粒度为pi/100;8、Np:插入的导频数目实验步骤:1、产生二进制信息,这个可以通过matlab中的round(rand(1,para*Ns*4))命令来实现。
产生的是一个长度为para*Ns*4的0-1序列。
由于采用的是16QAM调制,所以每四个码元调制为一个符号,因此总长度要乘以4。
2、映射:采用的是16QAM调制。
这种调制有圆形星座图和方形星座图两种,本次实验采用方形的星座图。
这一过程是通过子函数fangQAM.m来实现的,图二为方形的星座图。
16-QAM星座图-4-3-2-101234图23、串并转换、插入导频:OFDM的原理就是通过串并转换将高速传输的串行数据转换为并行传输的数据,在matlab中,串并转换是通过reshape(x,para,Ns)来实现的,将串行传输的信号x转换为para个并行传输的子数据流,每个数据流中符号的个数为Ns。
为了接收端能够进行信道估计,在发送端要在发送信号中插入导频,导频的分布模式一般分为块状导频和梳状导频两种,本次实验中插入的是块状导频,所谓的块状分布就是指导频在时域周期性的分配给OFDM符号,这种导频分布模式特别适用于慢衰落的无线信道,由于训练符号包含了所有的导频,所以在频域就不需要插值,因此这种导频分布模式对频率选择性衰落相对不敏感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MATLAB的OFDM系统设计与仿真摘要:随着通信产业的逐步发展,4G时代已经来临。
作为第四代移动通信技术的核心,OFDM得到了前所未有的关注。
它具有频谱利用率高、抗干扰能力强等优点。
本文首先简要介绍了OFDM的发展状况以及优缺点,然后详细分析了OFDM的工作原理及其相应的各个模块,并介绍了它的关键技术。
最后,分别利用M函数和Simulink做了OFDM 系统的设计与仿真,并对误码率进行了分析,得到了BER性能曲线。
关键词:正交频分复用;MATLAB;仿真;BERDesign and Simulation of OFDM System Based on MATLABAbstract:With the gradual development of the communication industry, 4G era has come. As the key technology of the fourth generation mobile communications,OFDM has received unprecedented attention. It has a high spectrum utilization, strong ability of anti-interference and so on. This article describes the development of OFDM and it’s advantages and disadvantages briefly, analysis the working principles of OFDM and each module detailed,and describes it’s key tec hnology.At last, design and simulate OFDM system with the M function and Simulink separately, analysis the error rate and obtain BER performance curve .Keywords: OFDM; MATLAB; Simulation; BER目录1 引言 (4)1.1 OFDM概述 (4)1.1.1 OFDM技术发展历史 (4)1.1.2 OFDM技术的优缺点 (5)2 OFDM基本原理及关键技术 (5)2.1 OFDM基本原理及系统构成 (5)2.1.1 OFDM基本原理 (6)2.1.2 串并转换 (6)2.1.3 调制与解调 (6)2.1.4 保护间隔与循环前缀 (8)2.2 OFDM的关键技术 (10)2.2.1 信道估计概述 (10)2.2.2 基于导频的信道估计方法 (10)2.2.3 信道的插值方法 (11)3 OFDM的系统设计与仿真 (12)3.1 MATLAB概述 (12)3.2 OFDM系统设计与仿真 (13)3.2.1 随机序列的产生 (13)3.2.2 串并转换 (14)3.2.3 QPSK调制 (14)3.2.4 QPSK调制星座图 (15)3.2.5 IFFT/FFT运算 (16)3.2.6 保护间隔和循环前缀 (16)3.2.7 并串转换 (17)3.2.8 加入高斯白噪声 (17)3.2.9 QPSK解调 (18)3.2.10 接收信号 (18)3.3 系统误码率的分析 (19)3.4 基于Simulink的系统仿真 (20)4 总结 (22)参考文献 (22)附录 (23)1 引言1.1 OFDM概述随着移动通信和无线网需求的不断增长,需要越来越高速的无线系统设计,而这其中一个最直接的挑战就是克服无线信道带来的严重的频率选择性衰落。
正交频分复用(OFDM)技术可以很好地克服无线信道的频率选择性衰落。
由于其简单高效,OFDM 已成为实现高速无线通信系统中最核心的技术之一。
OFDM(Orthogonal Frequency Division Multiplexing)是一种特殊的多载波传输方式,由于各子载波之间存在正交性,允许子信道的频谱互相重叠,与常规的频分复用系统相比,OFDM可以最大限度的利用频谱资源,使得频谱利用率提高近一倍。
同时它把高速数据通过串并转换,使得每个子载波上的数据符号持续长度相对增加,降低了子信道的信息速率,将频率选择性衰落信道转换为平坦衰落信道,从而具有良好的抗噪声、抗多径干扰的能力,适合在频率选择性衰落信道中进行高速数据的传输。
此外,在OFDM中引入循环前缀,克服了OFDM相邻块之间的干扰(IBI),保持了载波间的正交性,同时循环前缀长度大于信道扩展长度,有效地抑制了码间干扰(ISI)。
可以看出,OFDM技术抗多径能力强、频谱利用率高、易于实现的优势,对短波数据通信具有广阔的应用价值,为提高短波通信频谱利用率和传输速率提供了新的解决方案[1]。
1.1.1 OFDM技术发展历史正交频分复用技术己有近40年的发展历史,其概念最早出现于20世纪50年代中期。
20世纪60年代,人们对多载波调制(MCM)技术进行了许多理论上的研究,形成了并行数据传输和频分复用的思想。
20世纪80年代,人们对多载波调制在高速Modem、数字移动通信等领域中的应用进行了较为深入的研究。
到了90年代,数字信号处理技术和超大规模集成电路的飞速发展,又为OFDM技术的实现扫除了障碍。
此时,OFDM技术终于登上了通信的舞台。
1999年12月,包括Ericsson,Nokia和Wi-LAN在内的7家公司发起了国际OFDM论坛,致力于策划一个基于OFDM技术的全球性单一标准。
现在OFDM论坛的成员已增加到46个会员,其中15个为主要会员。
我国的信息产业部也参加了OFDM论坛,可见OFDM在无线通信领域的应用在当时已引起国内通信界的重视[2]。
1.1.2 OFDM技术的优缺点OFDM技术主要有如下几个优点:(1)抗衰落能力强(2)频率利用率高(3)适合高速数据传输(4)抗码间干扰能力强OFDM技术的不足之处包括:(1)对频偏和相位噪声比较敏感(2)峰均值比大导致射频放大器功率效率低2 OFDM基本原理及关键技术2.1 OFDM基本原理及系统构成OFDM由大量在频率上等间隔的子载波构成(设共有N个载波),各载波可用同一种数字调制方法,或不同的载波使用不同的调制方法,将高速串行数据分成多路并行的低速数据加以调制,所以OFDM实际上是一种并行调制方案,将符号周期延长N 倍,从而提高了抗多径衰落的抵抗能力。
在传统的频分复用中,各载波的信号频谱互不重叠,频带利用率较低。
在OFDM系统中,各子载波在整个符号周期上是正交的,即加于符号周期上的任何两个载波的乘积等于零,因此各子载波信号频谱可以相互重叠,大大提高了频带利用率。
2.1.1 OFDM 基本原理OFDM 技术的基本思想是把一个高速的数据流分解成很多低速的子数据流,以并行的方式在多个子载波上传输,子载波间彼此保持相互正交的关系以消除子载波间数据的干扰,并且每个子载波可以看成一个独立的子信道。
由于每个子信道的数据传输速率较低,当信号通过无线频率选择性衰落信道时,虽然整个信号频带内信道是有衰落的,但是每个子信道可以近似看成是平坦的,因此只要通过简单的频域均衡就可以消除频率选择性衰落信道的影响,同时利用IFFT/FFT 的周期循环特性,在每个传输符号前加一段循环前缀,可以消除多径信道的影响,防止码间干扰[3]。
2.1.2 串并转换数据传输的典型形式是串行数据流,符号被连续传输,每一个数据符号的频谱可占据整个可利用的带宽。
但在并行数据传输系统中,许多符号被同时传输,减少了那些在串行系统中出现的问题。
在OFDM 系统中,每个传输符号速率的大小大约在几十bps 到几十Kbps 之间,所以必须进行串并变换,将输入串行比特流转换为可以传输的OFDM 符号。
由于调制模式可以自适应调节,所以每个子载波的调制模式是可变化的。
每个子载波可传输的比特数也是可以变化的,所以串并转换需要分配给每个子载波数据段的长度是不一样的。
在接收端执行相反的过程,从各个子载波处来的数据被转换回原始的串行数据。
2.1.3 调制与解调一个OFDM 符号间之内包含多个经过相移键控(PSK)或者正交幅度调制(QAM)的子载波。
其中,N 表示子载波的个数,T 表示OFDM 符号的持续时间(周期),i f 是第i 个子载波的载波频率,矩形函数()2,1T t t rect ≤=,则从s t t =开始的OFDM 符号可以表示为:错误!未找到引用源。
(1)一旦将要传输的比特分配到各个子载波上,某一种调制模式将它们映射为子载波的幅度和相位,通常采用等效基带信号来描述OFDM 的输出信号错误!未找到引用源。
(2)式(2)中,s(t)的实部和虚部分别对应于OFDM符号的同相和正交分量,在实际系统中可以分别与相应子载波的cos分量和sin分量相乘,构成最终的子载波信号和合成的OFDM符号。
根据式(1),每个OFDM符号在其周期T内包括多个非零的子载波。
因此其频谱可以看作是周期为T的矩形脉冲的频谱与一组位于各个子载波频率上的δ函数的卷积。
矩形脉冲的频谱幅值为sinc(fT)函数,这种函数的零点出现在频率为1/T整数倍的位置上。
图1 OFDM系统中子信道符号的频谱图1中给出了相互覆盖的各个子信道内经过矩形脉冲得到的符号的sinc函数频谱。
在每个子载波频率的最大值处,所有其它子信道的频谱值恰好为0。
由于在对OFDM符号进行解调的过程中,需要计算这些点上所对应的每个子载波频率的最大值,因此可以从多个相互重叠的子信道符号中提取每一个信道符号,而不会受到其它子信道的干扰。
从图1可以看出,OFDM符号频谱实际上可以满足奈奎斯特准则,即多个子信道频谱之间不存在相互干扰。
因此这种一个子载波频谱出现最大值而其它子信道频谱为零的特点可以避免载波间干扰(ICI)[4]。
2.1.4 IDFT/DFT变换对于N比较大的系统来说,式(2)中的OFDM复等效基带信号可以采用离散傅立叶t=s,并且忽略矩形函数,对信号s(t)以T/N的速率逆变换来实现。
可以令式(2)中的0进行抽样,即令,0,1,1==-可以得到:t KT N K N()∑-=⎪⎭⎫ ⎝⎛==102exp N i j k N ik j d N KT s s π()1k 0-≤≤N (3) 可以看到,错误!未找到引用源。
等效为对错误!未找到引用源。
进行IDFT 运算。
同样在接收端,为了恢复出原来的数据符号错误!未找到引用源。
,可以对错误!未找到引用源。
进行逆变换,即DFT 得到:⎪⎭⎫ ⎝⎛-=∑-=N ik j s N k k i π2ex p d 10 (4) 由此可见,OFDM 系统的调制和解调可以分别由IDFT 和DFT 来代替。