简单迭代法

合集下载

简单迭代法解方程例题

简单迭代法解方程例题

简单迭代法解方程例题
简单迭代法是一种求解方程的数值方法,它通过逐步逼近的方式求得方程的近似解。

本文将介绍一个具体的例题,并使用简单迭代法来解决。

假设我们要解如下方程:
x = e^(-x)
我们的目标是找到方程的解x。

首先,我们可以将方程改写成迭代格式:
x_{n+1} = e^(-x_n)
其中,x_n表示第n次迭代的近似解,x_{n+1}表示下一次迭代的近似解。

现在,我们需要选择一个初始值x_0作为起始点。

通常情况下,可以选择一个离方程解比较接近的初始值,这样可以加快收敛速度。

在本例中,我们选择x_0 = 0作为初始值。

接下来,我们按照迭代格式进行迭代计算,直到满足收敛条件。

在本例中,我们可以选择迭代次数达到一定的值,或者判断两次迭代之间的差值是否小于一个给定的容差。

具体的迭代计算如下:
x_1 = e^(-x_0)
x_2 = e^(-x_1)
...
x_n = e^(-x_{n-1})
在每一次迭代中,我们将得到一个新的近似解x_n。

我们可以继续进行迭代计算,直到满足收敛条件。

需要注意的是,简单迭代法并不保证能够得到方程的解。

有些方程可能不满足迭代过程的收敛条件,或者方程可能有多个解,而简单迭代法只能找到其中一个解。

总而言之,简单迭代法是一种简单但有效的数值方法,可以用于求解一些方程的近似解。

通过选择合适的初始值和收敛条件,我们可以得到方程的一个近似解。

然而,需要注意的是并不是所有方程都适合使用简单迭代法进行求解,有些方程可能需要使用其他更复杂的方法。

计算方法-迭代法讲义

计算方法-迭代法讲义

计算 xi(k1) 时,
x(k 1) j
(
j
i)的值已经算出
所以迭代公式可以修改成:
X (k1) D1LX(k1) D1UX (k) D1b
或写成分量形式
i1
n
x(k1) i
(bi
aij
x
( j
k 1)
aij x(jk) ) / aii
j 1
j i 1
7
把矩阵A 记为 A = D – L – U ,则方程组等价为 (D – L)X = UX+b , 从而有: X = (D – L)-1 UX + (D – L)-1b
2
4.1、雅可比(Jacobi)迭代法
把矩阵A 记为 A = D – L – U ,则方程组等价为
DX = (L+U)X+b ,
若 det(D)0, 则有:
X = D-1(L + U)X + D-1b
得到雅可比迭代矩阵:
BJ = D-1(L + U),b’= D-1b 从而,得到雅可比迭代公式:
注意:这里的对角 矩阵的D-1是非常 容易计算的。
(精度要求)
得到满足要求的近似解。
例子:p.55(p.52)例8 ,10-3的精度,迭代10 次。
3x1x12xx22
5 5
x( 1
k
1)
x(k) 2 3
5 3
x2( k
1)
x(k) 1
2
5 2
x(0 1
x2(0
) )
0 0
6
4.2、高斯-赛德尔迭代法 雅可比方法中
X (k1) D1(L U) X (k) D1b
|| B || 0.62875, || B ||1 0.648065375,

有限差分法-3

有限差分法-3

一、差分方程
下式为一维非稳定流的差分方程:
T Hi,k1 Hi1,k1 T 1 Hi,k Hi1,k
x
x
T
Hi1,k 1 x
Hi,k 1
T
1
Hi1,k x
Hi,k
S
x
Hi,k1 t
Hi,k
利用水量均衡原理,可得二维流的差分方程:
沿x方向流入量和流出量之差为:
T Hi, j,k 1 Hi1, j,k1 T 1 Hi, j,k Hi1, j,k
h2m,k 1
h m 1 1,k 1
h m 1 2,k 1
2
x
2
x
x
t
h m 1 1,k 1
h1,k
K
hm 1,k 1
hm 2,k 1
h m 1 1,k 1
h m 1 2,k 1
K
hm 2,k 1
h3m,k 1
h m 1 2,k 1
h m 1 3,k 1
x
2
x
2
x
t
h m 1 2,k 1
F3
A H m1 1 0,k 1
A H m1 2 1,k 1
A H m1 3 2,k 1
C1H
m 2,k
1
C2
H
m 3,k
1
C3
H
m 4,k
1
H m1 n1,k 1
Fn1
A H m1 n1 n2,k 1
Cn
1H
m n,k
1
简单迭代法也叫同步迭代法。
高斯-塞德尔迭代法也叫异步迭代法。
3、超松弛迭代法
2
x
x
t
hi,k 1 hi,k

解x=g(x)的简单迭代法

解x=g(x)的简单迭代法

若等号成立,则表示a是根或者b是根,[a,b]上已有根存在了, 若等号成立,则表示a是根或者b是根,[a,b]上已有根存在了,对于 上已有根存在了 一般情况,由根的存在定理 由根的存在定理, 一般情况 由根的存在定理, h( x) = 0在 [a , b] 上至少存在一个根 x*, 即x = g(x) 在[a,b]上至少存在一个根 x*, 即 h( x* ) = g( x* ) − x* = 0. [a,b]上至少存在一个根 * * * * * 设 [a,b]上另一根 上另一根, 下证唯一性, y 为 x = g(x)在[a,b]上另一根,则 y = g( y ),x = g(x ), 下证唯一性, y* − x* = g( y* ) − g( x* ) ≤ L y* − x*, ∴ y * = x *。 从而 20 由条件(1)知 { xk } 适定的,另外 适定的, 由条件(1)知
定理3 (压缩不动点定理或压缩映象定理) 若迭代函数g(x)满足 定理3 压缩不动点定理或压缩映象定理) 若迭代函数g(x)满足 g(x) (1) g( x ) ∈ [a , b], ∀x ∈ [a , b] (3.3) ( 2)∃0 < L < 1, 使∀x′, x′′ ∈[a, b] 有g( x′) − g( x′′) ≤ L x′ − x′′ (3.4)
k →∞
k ←∞
即 x * 是 ( 3 . 2 )的解 。g(x)把定义域的每个 映成了 把定义域的每个x 把定义域的每个 映成了g(x),因此 ( 3 .2 ) , 的不动点。 的解也称 g ( x ) 的不动点。 也可理解成: 是映射, 也可理解成:g(x ) 是映射,若 x* 满足 x* = g( x* ), 则 x * 称为 g ( x )的不动点。 的不动点。 适定是收敛必要条件 即不适定则一定不收敛 必要条件, 适定则一定不收敛。 注: 适定是收敛必要条件,即不适定则一定不收敛。

简单迭代法求方程的根matlab

简单迭代法求方程的根matlab

简单迭代法求方程的根1. 引言简单迭代法是一种常用的求解非线性方程根的方法。

它基于方程的连续性和局部斜率连续的性质,通过迭代逼近方程的根。

在本文中,我们将详细介绍简单迭代法的原理和步骤,并使用MATLAB编写代码来解决方程求根问题。

2. 简单迭代法原理简单迭代法的基本思想是,将非线性方程转化为迭代形式,通过不断迭代逼近方程的根。

其原理基于不动点定理,即给定一个函数f(x),若存在一个不动点x∗,满足x∗=f(x∗),则迭代过程x k+1=f(x k)中的序列x k将收敛到x∗。

对于求解方程f(x)=0的问题,我们可以将其转化为x=g(x)的形式,其中g(x)= x−f(x),且f′(x)不等于0。

这样,我们可以通过迭代逼近x=g(x)的根,从而得f′(x)到原方程的解。

3. 简单迭代法步骤简单迭代法的步骤如下:3.1 选择初始点选择一个合适的初始点x0作为迭代的起点。

3.2 迭代计算根据迭代公式x k+1=g(x k),计算序列x k的下一个值。

3.3 判断终止条件根据预设的终止条件,判断是否满足终止条件。

常用的终止条件包括: - 迭代次数达到预设的最大值。

- 迭代过程中下一个值与当前值之差小于预设的精度。

3.4 输出结果当满足终止条件时,输出最终的逼近根的值。

4. 简单迭代法在MATLAB中的实现以下是简单迭代法在MATLAB中的实现代码:function root = simple_iter_method(f, g, x0, max_iter, precision) % f: 原方程% g: 迭代函数% x0: 初始点% max_iter: 最大迭代次数% precision: 精度x = x0;iter = 0;while iter < max_iterx_next = feval(g, x); % 使用feval函数计算迭代值if abs(x_next - x) < precisionroot = x_next;return;endx = x_next;iter = iter + 1;enderror('达到最大迭代次数,未找到合适的解');end5. 示例与应用5.1 示例:求解方程x2−3x+2=0。

数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法)).

数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法)).

本科生实验报告实验课程数值计算方法学院名称信息科学与技术学院专业名称计算机科学与技术学生姓名学生学号指导教师实验地址实验成绩二〇一六年五月二〇一六年五月1实验一 非线性方程求根1.1问题描绘实验目的:掌握非线性方程求根的基本步骤及方法, 。

实验内容:试分别用二分法、简单迭代法、Newton 迭代法、弦截法(割线法、双点弦法),求x 5-3x 3+x-1=0在区间[-8,8]上的所有实根,偏差限为10-6。

要求:议论求解的全过程,对所用算法的局部收敛性,优弊端等作剖析及比 较,第2章算法思想2.1二分法思想:在函数的单一有根区间内,将有根区间不停的二分,找寻方程的解。

步骤:1.取中点mid=(x0+x1)/2 2.若f(mid)=0,则mid 为方程的根,不然比较与两头的符号,若与f(x0) 异号,则根在[x0,mid]之间,不然在[mid,x1]之间。

3并重复上述步骤,直抵达到精度要求,则 mid 为方程的近似解。

开始读入a,b,emid=(a+b)/2 F(a)*f(b)<0是 a=mid b=mid no |a-b|<e? yes 输出mid结束22.2简单迭代法思想:迭代法是一种逐次迫近的方法,它是固定公式频频校订跟的近似值,使之逐渐精准,最后获得精度要求的结果。

步骤:1.结构迭代公式f(x),迭代公式一定是收敛的。

2.计算x1,x1=f(x0).3.判断|x1-x0|能否知足精度要求,如不知足则重复上述步骤。

4.输出x1,即为方程的近似解。

开始输入x0,eX1=f(x0)f为迭代函数X1=x0;No|x1-x0|<eyes输出x1结束32.3Newton迭代法思想:设r是的根,选用作为r的初始近似值,过点做曲线的切线L,L的方程为,求出L与x轴交点的横坐标,称x1为r的一次近似值。

过点做曲线的切线,并求该切线与x轴交点的横坐标,称为r的二次近似值。

重复以上过程,得r的近似值序列,此中,称为r的次近似值步骤:1.计算原函数的导数f’(x);结构牛顿迭代公式2.计算,若f’(x0)=0,退出计算,不然持续向下迭代。

4.2简单迭代法

4.2简单迭代法

( x) L 1对 x[a, b] 成立。
则① 方程x=φ(x)在[a,b]上有唯一根x*; ② 任取 x0[a, b],由 xk+1 = φ(xk) 得到的序列 x k k 0 收敛于x*。并且有误差估计式: ③ x * x k
L xk xk ห้องสมุดไป่ตู้ 1 L
显然 ( x)在[1, 2]上单调增加。
而(1) 3 2 1,( 2) 3 3 2
即 ( x ) [(1), ( 2)] [1,2], 所以( x )满足条件(I)。

2 1 1 3 | ' ( x ) || ( x 1) | 3 L 1 3 3 4
③ ③
L x * xk xk xk 1 1 L
k ? ④ | x*x | L | x x | k 0 ? 1 L 1
x * xk L | x * xk 1 | L | ( x * xk ) ( xk xk 1 ) |
L x * xk xk xk 1 1 L
3 x2 2 x1 1 3
3 x3 2 x2 1 55
显然迭代法发散

(2) 如果将原方程化为等价方程 仍取初值
x0 0
x
3
x 1 2
迭代格式
xk 1
3
xk 1 2
x1 3 x2 3
依此类推,得
1 x0 1 3 0.7937 2 2 x1 1 3 1.7937 0.9644 2 2
( k = 1, 2, … )
可用 | xk xk 1 | 来控制迭代过程
Lk | x1 x0 | ④ | x * xk | 1 L

数值分析2 迭代法

数值分析2 迭代法

§2简单迭代法——不动点迭代(iterate)迭代法是数值计算中的一类典型方法,被用于数值计算的各方面中。

一、简单迭代法设方程f(x)=0 (3)在[a,b]区间内有一个根*x ,把(3)式写成一个等价的隐式方程x=g(x) (4)方程的根*x 代入(4)中,则有)(**=x g x (5)称*x 为g的不动点(在映射g下,象保持不变的点),方程求根的问题就转化为求(5)式的不动点的问题。

由于方程(4)是隐式的,无法直接得出它的根。

可采用一种逐步显式化的过程来逐次逼近,即从某个[a,b]内的猜测值0x 出发,将其代入(4)式右端,可求得)(01x g x =再以1x 为猜测值,进一步得到)(12x g x =重复上述过程,用递推关系——简单迭代公式求得序列}{k x 。

如果当k →∞时*→x x k ,}{k x 就是逼近不动点的近似解序列,称为迭代序列。

称(6)式为迭代格式,g(x)为迭代函数,而用迭代格式(6)求得方程不动点的方法,称为简单迭代法,当*∞→=x x k k lim 时,称为迭代收敛。

构造迭代函数g(x)的方法:(1)=x a x x -+2,或更一般地,对某个)(,02a x c x x c -+=≠;(2)x a x /=; (3))(21xa x x +=。

取a=3,0x =2及根*x =1.732051,给出三种情形的数值计算结果见表表 032=-x 的迭代例子问题:如何构造g(x),才能使迭代序列}{k x 一定收敛于不动点?误差怎样估计?通常通过对迭代序列}{k x 的收敛性进行分析,找出g(x)应满足的条件,从而建立一个一般理论,可解决上述问题。

二、迭代法的收敛性设迭代格式为),2,1,0()(1 ==+k x g x k k而且序列}{k x 收敛于不动点*x ,即∞→→-*k x x k (0时)因而有)3,2,1(1 =-≤-*-*k xx x x k k (7)由于),(),)((11*-*-*∈-'=-x x x x g x x k k k ξξ当g(x)满足中值定理条件时有),(),)((11*-*-*∈-'=-x x x x g x x k k k ξξ (8)注意到(8)式中只要1)(<<'L g ξ时,(7)式成立.经过上述分析知道,迭代序列的收敛性与g(x)的构造相关,只要再保证迭代值全落在[a,b]内,便得:假定迭代函数g(x)满足条件(1) 映内性:对任意x ∈[a,b]时,有a ≤g(x) ≤b ;(2) 压缩性:g(x)在[a,b]上可导,且存在正数L<1,使对任意 x ∈[a,b],有L x g <')( (9)则迭代格式)(1k k x g x =+对于任意初值0x ∈[a,b]均收敛于方程x=g(x)的根,并有误差估计式011x x LL x x kk --≤-*(10)证明 :收敛性是显然的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题: 由g ( x k ) = x k + 1 , 求 x k + 1,然而 x k 是否是g(x)定义域上的值? 问题: 是否是g(x)定义域上的值? g(x)定义域上的值 定义4 保持有界, 且全在g(x)定义域内, g(x)定义域内 定义4 若迭代序列 { x k } 保持有界, 且全在g(x)定义域内,则 lim xk = x* . 则简单迭代 简单迭代法(3.2)称为适定 (3.2)称为适定的 若进一步有 k → ∞ 简单迭代法(3.2)称为适定的; 称为收敛 法(3.2)称为收敛的。 称为收敛的 迭代公式 x k + 1 = g ( x k ), k = 0,1,L ( 3 . 2 ) 当迭代(3.2)收敛时, 又是g(x)的连续点, g(x)的连续点 当迭代(3.2)收敛时,极限点 x * 又是g(x)的连续点,则 (3.2)收敛时 * = g( lim xk ) = g( x * ) x = limxk +1 = lim g ( xk ) k →∞
a ≤ x ≤b
x ∈[ a , b ]

邻近讨论, 因此有局部收敛定理4 实际计算中往往只在根 x 邻近讨论, 因此有局部收敛定理4: 若 ( 定理4 局部收敛定理) 定理4 局部收敛定理) g ( x ) 在不动点 x * 的 δ 邻域满足 x ∈ [ x* δ , x* + δ ], 有 g ( x ) g ( x * ) ≤ L x x * ,( 3 . 7 ) 0 < L < 1, * x0 ∈ [ x* δ , x* + δ ], 由 xk +1 = g( xk ) 产生的序列{ x k } 收敛于 x , 则 x* xk ≤ Lk x* x0 , k = 0,1,L. ( 3 .8 ) 且有误差估计: 且有误差估计: 证明: 证明:k ≥ 1, x* xk = g( x* ) g( xk 1 ) ≤ L x* xk 1 ∴ x* x1 ≤ L x* x0 ≤ Lδ < δ,
§3 解x=g(x)的简单迭代法 x=g(x)的简单迭代法
3.1 简单迭代法公式
问题: f(x)实函数 实函数. f(x)=0的近似值 的近似值。 问题: f(x)实函数.求f(x)=0的近似值。 基本思想方法: 基本思想方法: ( 3 .1 ) x = g( x ) (1)先将f(x)=0化为等价方程 (1)先将f(x)=0化为等价方程 先将f(x)=0 (2) 从某 x 0 出发,作序列 { x k } : 出发, 初始近似 x = g ( x ), k = 0,1,L 迭代公式) (迭代公式) ( 3 . 2 ) k +1 k k+1次近似 次 f(x)=0的根 的根。 若 { x k } 收敛于 x* 且 g ( x ) 连续,则 x * 是f(x)=0的根。 连续, 称 (3.2)式称为简单迭代法或单点迭代法或单步迭代法。 g(x)称 (3.2)式称为简单迭代法或单点迭代法或单步迭代法。 式称为简单迭代法 迭代函数。 为迭代函数。 说明: f(x)=0化成等价方程x=g(x)的化法有很多种 化成等价方程x=g(x)的化法有很多种。 说明: 由f(x)=0化成等价方程x=g(x)的化法有很多种。 讨论的问题: 如何选取迭代函数g(x)? 迭代函数g(x) 讨论的问题: (1) 如何选取迭代函数g(x)? g(x)满足什么条件 迭代序列收敛?收敛速度是多少? 满足什么条件, (2) g(x)满足什么条件,迭代序列收敛?收敛速度是多少? 如何加速迭代序列的收敛速度 迭代序列的收敛速度? (3) 如何加速迭代序列的收敛速度?
若等号成立,则表示a是根或者b是根,[a,b]上已有根存在了, 若等号成立,则表示a是根或者b是根,[a,b]上已有根存在了,对于 上已有根存在了 一般情况,由根的存在定理 由根的存在定理, 一般情况 由根的存在定理, h( x) = 0在 [a , b] 上至少存在一个根 x*, 即x = g(x) 在[a,b]上至少存在一个根 x*, 即 h( x* ) = g( x* ) x* = 0. [a,b]上至少存在一个根 * * * * * 设 [a,b]上另一根 上另一根, 下证唯一性, y 为 x = g(x)在[a,b]上另一根,则 y = g( y ),x = g(x ), 下证唯一性, y* x* = g( y* ) g( x* ) ≤ L y* x*, ∴ y * = x *。 从而 20 由条件(1)知 { xk } 适定的,另外 适定的, 由条件(1)知
0
1 Lk ( 30 有误差估计 : x * xk ≤ xk + 1 xk ≤ x1 x0 ; 3.5 ) 1 L 1 L * x xk + 1 0 * 4 若g′( x )存在, 则 lim * = g′( x* ) k →∞ x x k (3.4) g( x′) g( x′′) ≤ L x′ x′′ * g(x ) g(xk ) 证明: 证明:
h(a ) = g(a ) a ≥ 0, h(b) = g(b) b ≤ 0,
x* xk +1 = g( x* ) g( xk ) ≤ L x* xk , k = 0,1,L, * x* xk ≤ Lk x* x0 → 0, ∴ lim x k = x 。 k→∞
k →∞
x* xk ≤ x* xk +1 + xk +1 xk ≤ L x* xk + xk +1 xk 3 k ≥ 0, 1 * xk+1 xk . (3.4) ∴ x xk ≤ 1 L xk +1 xk = g( xk ) g( xk 1 ) ≤ L xk xk 1 ≤ L ≤ Lk x1 x0 , 又 Lk ∴ x* xk ≤ x1 x0 . 导数的定义) 1 L (导数的定义) * * x xk +1 g( x ) g( xk ) 0 lim * = lim = g′( x* ). 4 k # * k →∞ →∞ x x x xk k 注: 从定理的结论3知,L越小收敛越快,L叫做渐进收敛因子。 (1)从定理的结论 越小收敛越快, 叫做渐进收敛因子 渐进收敛因子。 (1)从定理的结论3
注: 1 3 3 3 ′( x) = x2在 1 1] (2)定理 不是必要条件, 定理3 [ , (2)定理3不是必要条件,如 x 2x = 0 x = x g 2 2 是解, 只要 x0 取在0 上不满足定理3的条件( ),实际上 取在0 上不满足定理3的条件(2),实际上 x = 0 是解, 可以满足。 附近, (-1 附近,把(-1,1)缩小使 g′( x ) ≤ L < 1可以满足。 3.4)式的条件较难验证,常采用导数来代替。即有推论1 (3.4)式的条件较难验证,常采用导数来代替。即有推论1 : 3.4) 推论1 定理3 推论1 定理3 中(3.4)可用下式替代 max g ′( x ) ≤ L < 1 ( 3.4)′ 证明: 证明: 只证 (3.4)′ (3.4), 因 x′, x′′ ∈ [a , b], g( x′) g( x′′) ≤ g′(ξ ) x′ x′′ ≤ max g′( x ) x′ x′′ ≤ L x′ x′′ . # 思考: 思考:3.4)′不成立时结论是否成立 ? 不一定 ( 因此该推论是充分条件但不是必要条件。 若 ( 3 . 4 )′ 不成立时,则 因此该推论是充分条件但不是必要条件。 不成立时 则 需要判断(3.4) (3.4)。 需要判断(3.4)。
几何意义 x=g(x)的根 求x=g(x)的根

0 < g′(x*) <1 y
p0
p1
p2
y=x
y = g ( x)
y
1 < g ′( x ) < 0
*
p0
p2

xk → x* 迭代法收敛 ←
x
x*
p1
y=x
y = g(x)
* 0 x 0 x1 x 2 x
g ′( x ) > 1
*
y
x
p1
*
分析: 结论(1) (1)中 有唯一根,因此想到根的存在性定理, 分析: 结论(1)中 x = g(x)有唯一根,因此想到根的存在性定理, 连续条件。 (3.4)实际是 (3.4)实际是Lip .z .连续条件。
1 0 x = g ( x ) 在 [ a , b ]内有唯一解 x *; 20 对xo ∈ [a , b]由xk + 1 = g( xk )得到的{ xk } [a , b], 且 lim xk = x *; k →∞ 1 Lk 0 * ( 3 有误差估计 : x xk ≤ xk + 1 xk ≤ x1 x0 ; 3.5 ) 1 L 1 L x * xk + 1 收敛程度) (收敛程度) 0 ′( x* )存在, 则 lim * ′( x* ) 4 若g =g 收敛速度) (收敛速度) k →∞ x x k
1 0 x = g ( x ) 在 [ a , b ]内有唯一解 x *; 则 0 2 对xo ∈ [a , b]由xk + 1 = g( xk )得到的{ xk } [a , b], 且 lim xk = x *; k →∞ 0 证明:1 作 h( x ) = g ( x ) x ,由(1), 得 h( x ) ∈ C [a , b ], 且 证明:
定理3 (压缩不动点定理或压缩映象定理) 若迭代函数g(x)满足 定理3 压缩不动点定理或压缩映象定理) 若迭代函数g(x)满足 g(x) (1) g( x ) ∈ [a , b], x ∈ [a , b] (3.3) ( 2)0 < L < 1, 使x′, x′′ ∈[a, b] 有g( x′) g( x′′) ≤ L x′ x′′ (3.4)
y = g ( x)
y= x
p0
g ′( x * ) < 1 y
* x 0 x 0 x 2 x x1 p2 y=x p0
相关文档
最新文档