注塑机plc控制

合集下载

基于PLC注塑机系统控制设计

基于PLC注塑机系统控制设计

基于PLC注塑机系统控制设计PLC(可编程逻辑控制器)是一种特别设计用于自动化系统的电子装置。

它可以接收和处理输入信号,并根据预先编程的逻辑进行输出控制。

在工业生产中,其中一个常见的应用是注塑机系统控制。

注塑机是一种用于制造塑料制品的机器。

通过将熔化的塑料注入模具中,并经过一系列的冷却和固化过程,制造出各种各样的塑料制品。

PLC 可以对注塑机的运行进行监控和控制,提高生产效率和产品质量。

PLC控制注塑机系统设计的关键步骤如下:1.确定系统需求:首先需要确定系统的需求和操作要求。

这包括确定所需的注塑机容量、产品种类和规格、生产速度等。

2.选择PLC型号:根据系统需求选择合适的PLC型号。

PLC通常有不同的输入输出点数、处理速度和通信接口等性能参数可供选择。

选定PLC 后,还需要配置相应的输入输出模块和信号转换器等。

3.设计电路图和布线:根据系统需求和PLC选型设计电路图和布线方案。

这包括确定输入设备(如传感器和按钮)和输出设备(如电机和液压阀门)的位置和连接方式。

4.编写PLC程序:根据系统需求编写PLC程序。

程序包括输入信号的采集和处理、逻辑判断和计算、输出信号的控制和处理等。

还需要设定相关的定时器和计数器,以确保控制过程的准确性和稳定性。

5.联机调试和测试:在设计完成后,将PLC连接到注塑机系统,并进行联机调试和测试。

通过监控注塑机的运行状态和输出信号,对PLC程序进行调整和优化,直到达到系统要求。

6.系统运行和维护:当系统调试完成后,PLC开始正式工作。

定期检查PLC和相关设备的运行状态,进行必要的维护和保养,以确保系统的稳定性和可靠性。

注塑机系统的PLC控制设计需要考虑到多个因素,如安全性、可靠性、灵活性和性能要求。

PLC控制的优点包括快速响应、可编程性、可扩展性和可靠性高等。

通过PLC的控制,注塑机系统可以实现更加精确和高效的操作,提高生产效率和产品质量。

应用PLC技术改造注塑机的控制系统

应用PLC技术改造注塑机的控制系统

应用PLC技术改造注塑机的控制系统随着现代制造产业的不断发展,PLC技术的应用也逐渐得到了广泛的应用。

PLC (programmable logic controller)可编程逻辑控制器是一种数字化计算机,用于控制工业生产过程中的各种机械设备。

注塑机作为现代工业生产中不可缺少的设备之一,其控制系统的稳定性和可靠性对于生产效率的提高以及产品质量的保证至关重要。

因此,借助PLC技术改造注塑机的控制系统,可以有效提高生产效率、节约能源、提高产品精度、降低工人操作风险,具有重要的现实意义。

首先,PLC技术可以提高注塑机生产效率。

传统的注塑机控制系统通过人工控制运转,这种方式不仅效率低,且存在很多隐患。

而应用PLC技术可以实现自动化控制,大大提高了注塑机的生产效率。

例如,在注塑机的压力控制系统中,应用PLC技术能够快速精确地调节压力,有效地提高生产速度。

同时,PLC技术还能对加热系统进行优化,合理分配热能,提高加热速度,缩短注塑周期,从而提高生产效率。

其次,PLC技术可以节约注塑机的能源消耗。

在注塑机生产过程中,加热系统的能量消耗占到了全部能量消耗的很大比例。

传统注塑机的温度调节方式通常是根据工人经验进行调节,存在浪费能源的风险。

而PLC技术可以对加热系统进行精细控制,采用温度传感器和PID调节算法,准确控制加热系统的温度,避免过量消耗能源,从而降低了生产成本,同时也减少了对环境造成的不良影响。

PLC技术还可以提高注塑机产品的精度。

传统注塑机的控制系统通过人工控制运转,往往存在一定的误差。

而通过PLC技术的应用,可以实现高精度、高速度的控制,确保每一次注塑都能保证产品的精度。

例如,在注塑机的开模调节系统中,应用PLC技术可以准确控制模板的开启和关闭速度,确保模板的位置精确,并可以实现模板位置的自动调整,提高了注塑产品的精度和一致性。

最后,PLC技术可以减少工人操作风险。

传统注塑机控制需要工人进行操作,存在一定的人为因素和风险。

注塑机的PLC控制

注塑机的PLC控制

注塑机的PLC控制摘要各种机械动作由液压电动机提供动力,由于注塑机在各种工作状态所需要的动力不同,如静止准备状态只需泵提供一定的静压力,而工作状态随着液压阀的打开需要提供更大的动压力,这就需要我们对泵电动机提供变速控制。

所以采用变频器与PLC对泵电动机进行转速控制。

关键词变频;节能;PLC控制1研究对象根据注塑工艺的需要,对注塑机有以下几方面的控制要求。

1.1 总压得恒压控制注塑机的各种机械动作由液压电动机提供动力,由于注塑机在各种工作状态所需要的动力不同,如静止准备状态只需泵提供一定的静压力,而工作状态随着液压阀的打开需要提供更大的动压力,这就需要我们对泵电动机提供变速控制。

所以采用变频器与PLC对泵电动机进行转速控制。

1.2模拟量的控制要求1)输入的模拟量(1)压力信号的输入由压力传感器将液压转换成电流信号输给变频器与PLC作为PLD控制的当前值;(2)三段溶胶的加热温度由温度传感器经FX2N-4ADTC特殊功能模块转换成数字信号传递给PLC;(3)抽胶、溶胶量由位置传感器的长度信号转换成电信号有FX2N-4AD送给PLC。

2)输出的模拟量(1)PID运算的输出数据,对总液压进行PID控制后得到一个PID运算数据,此数据由变频器自动产生并控制电动机的转速;(2)压力与流量的模拟量输出,系统可以通过人机界面任意设置药理与速度并将此数据通过D/A转换后年改制比例阀和比例流量阀,所以我们要用到FX2N-4AD功能模块。

(7)电动机过载报警界面:要求在任一界面中,只要变频器RUN端发出过载信号均能切换到此面板。

5)PLC程序的设计(3)温度的比较控制温度控制程序主要用到比较命令;(4)FXZN-4AD的驱动与位置控制溶胶量的控制是通过电子尺与A/D转换模块FXZN-4AD来实现的,电子尺将位置量转换为电压信号,再经模块的转换送至PLC;(5)液压压力与速度控制压力与流量控制是由比例压力阀与比例流量阀实现的,比例电磁阀可通过输入的电流大小来控制油路中的压力与流量,我们将此两个量由FXZN-4AD模块转化为相应的电压或电流值,然后由功能电路去控制比例阀。

应用PLC技术改造注塑机的控制系统

应用PLC技术改造注塑机的控制系统

应用PLC技术改造注塑机的控制系统
通过采用PLC技术改造注塑机的控制系统,可以实现自动化控制。

传统的注塑机控制系统多采用电气元器件组合的方式,操作复杂,容易出错,需要人工干预。

而采用PLC技术进行改造后,可以将注塑机的各个工艺参数进行编程,实现自动化控制,减少了人为操作的干预,提高了生产效率。

PLC技术改造注塑机的控制系统可以提高生产的稳定性和可靠性。

PLC系统本身具有高可靠性和抗干扰能力,可以稳定地运行在恶劣的工作环境中。

PLC技术还具有自诊断和故障检测功能,可以对注塑机的工作状态进行检测和监控,及时发现和处理故障,保障生产的稳定性。

PLC技术改造注塑机的控制系统还可以实现多种工艺参数的调整和优化。

传统的注塑机控制系统往往只能实现有限的工艺参数调整,限制了产品的品质和工艺的优化。

而采用PLC技术改造后,可以通过对各个工艺参数的编程设置,实现更加精确的工艺调整,提高产品的质量和工艺的稳定性。

PLC技术还具有数据采集和远程监控功能,可以实现对注塑机工作过程中的各种参数进行实时采集和监测,为生产管理提供更加精确的数据支持。

PLC技术还可以与其他生产设备进行联动,实现产线的自动化和智能化。

应用PLC技术改造注塑机的控制系统

应用PLC技术改造注塑机的控制系统

应用PLC技术改造注塑机的控制系统PLC (可编程逻辑控制器) 技术是一种广泛应用于自动化控制系统中的技术。

在注塑机控制系统中应用PLC技术可以提高注塑机的性能和生产效率。

下面将介绍应用PLC技术改造注塑机控制系统的优势和步骤。

应用PLC技术可以提高注塑机的稳定性和精确性。

传统的注塑机控制系统使用开关、继电器和电气元件进行控制,容易引起电气干扰和控制误差。

而PLC技术可以通过逻辑程序控制,减少电气干扰,提高控制精确度,使注塑机的运行更加稳定和可靠。

应用PLC技术可以实现注塑机的自动化控制。

通过PLC编程,可以实现对注塑机的自动开启和关闭,自动调节注塑机的温度、压力和流量等参数,实现注塑机的自动化生产。

这不仅减少了人工操作的劳动强度,还提高了生产效率和产品质量。

PLC技术具有良好的扩展性和可编程性。

PLC控制器可以根据注塑机的不同需求进行编程,实现各种功能和操作模式的切换。

可以实现不同工艺的选择,不同型号产品的生产等。

这种灵活性和可编程性使得注塑机的应用范围更广,适应性更强。

第一步,进行控制系统的设计。

根据注塑机的工作原理和要求,确定需要控制的参数和功能,设计PLC控制程序。

第二步,选购适合的PLC控制器和相关的传感器和执行器。

根据注塑机的规模和要求,选购符合要求的PLC控制器和其他控制元件。

第三步,进行接线和布线工作。

根据PLC控制器和其他控制元件的接口要求,进行接线和布线工作,确保各个元件之间的正确连接。

第四步,进行PLC编程。

按照设计的控制程序,进行PLC编程工作,包括输入输出的定义、逻辑程序的编写和测试等。

第五步,进行系统调试和测试。

在完成PLC编程后,进行系统调试和测试,验证控制系统的功能和性能。

进行现场应用。

在完成调试和测试后,将改造好的控制系统安装到注塑机上,并进行现场应用。

在应用过程中,可以根据实际需求进行调整和优化,以达到最佳的控制效果。

应用PLC技术改造注塑机的控制系统可以提高注塑机的稳定性和精确性,实现注塑机的自动化控制,具有良好的扩展性和可编程性。

PLC在注塑机控制中的应用

PLC在注塑机控制中的应用

目录第1章注塑机控制工艺流程分析 (1)1.1 注塑机控制过程描述 (1)1.2 注塑机控制工艺分析及流程图 (1)第2章控制系统总体方案设计 (3)2.1 PLC选型的方法及原则 (3)2.2 I/O分配 (4)2.3 系统结线图设计 (4)第3章控制系统梯形图程序设计 (6)3.1 控制程序流程图设计 (6)3.3 注塑机控制系统PLC梯形图 (6)第4章课程设计心得 (9)参考文献 (11)第1章注塑机控制工艺流程分析1.1 注塑机控制过程描述注塑机是塑料加工行业的主要设备,能加工各种热塑性或热固性塑料。

注塑机控制系统是整机的一个重要部分,其性能的优劣对整机有着至关重要的影响,随着微电子技术和计算机技术的迅速发展,PLC(可编程控制器)不仅用逻辑编程取代了硬接线逻辑,还增加了运算、数据传送和处理的功能,真正成为一种计算机工业控制装置。

PLC的功能远远超出逻辑控制、顺序控制的范围,所以在工业发达国家,PLC在其自动化设备中的比例占首位。

近年来,我国的PLC技术也从初期的引进、消化走向吸收和推广应用阶段,并且在许多工业领域取得了良好的经济效益和社会效益。

在以往国内的注塑机控制系统中,主要存在三种控制类型:(1)继电器控制(2)单片机控制(3)PLC控制在现代控制系统中,前两种方法因其自身的局限性,多不采用。

而多是采用PLC控制系统,这是一种工业控制机,具有抗干扰能力强,工作可行性高,平均无故障时间长,可在恶劣环境下正常工作,并可与计算机联网运行。

此外,PLC系统还可大大缩短系统的设计,加快工作进度。

在本次设计中我们采用了可编程控制系统。

注塑机控制通常指的是电液控制,即由液压和电气控制部分组成。

注塑机的控制系统是保证注塑机按工艺过程规定的要求(压力、速度、温度、时间等)和动作程序,准确有效地工作的控制系统。

目前注塑机的发展主要集中在:(1)提高制品尺寸精度和稳定性(2)提高速度、缩短成型周期(3)生产过程的自动化和省力但所采用的技术手段,都离不开以计算机技术为基础的自控技术。

PLC在注塑机控制系统中的应用

PLC在注塑机控制系统中的应用

PLC在注塑机控制系统中的应用摘要注射成型(注塑)是加工塑料制品的主要方法之一,这种方法能制得外形复杂、尺寸精确和带有金属嵌件的制品,对各种聚合物加工的适应性强,易于实现全自动化生产,因此在塑料机械中占有很大比重。

因此,开展基于PLC的注塑机的控制研究。

必将推动注塑生产的长足进步和繁荣发展,不仅为社会提供高质量产品,还可排除安全隐患、保障生命和财产、节约资源、保护环境,提供更加重要的无形的社会财富.本设计在分析注塑机的工艺流程的基础上,首先确定了总体设计方案,采用西门子S7-200中的CPU226 PLC对注塑机的控制系统进行设计。

接着,在硬件设计中,统计并分配了I/O点,绘制出I/O接线图,设计了主电路和液压回路。

最后,在软件设计中,通过学习使用西门子STEP7编程软件进行编程和调试。

通过使用PLC对注塑机控制系统的改造,不仅能够达到原有的控制功能,而且还提高了控制系统的精度,方便维修。

关键词:注塑机,西门子S7-200,控制系统,仿真Application of the jinjection moldingmachinecontrol system of PLCABSTRACTInjectionmolding processing plastic products ( injection ) is one of themain methods, thismethod can m ake the shape ofcomplex,ruler。

Inch precisely and with emb edded metal parts products, for a variety of polymer processing adaptability,easyto realize automatic production, so in the plastic machinery occupies a large proporti on of. Therefore, to carry out the injection molding mach ine based on PLC control research。

基于PLC注塑机控制系统设计与实现

基于PLC注塑机控制系统设计与实现

基于PLC的注塑机控制系统设计与实现主要包括硬件设计和软件设计两个部分。
1、硬件设计
硬件设计主要是针对注塑机的各个控制环节,如注射、保压、预充模、冷却等, 进行相应的I/O接口设计、电气回路设计、传感器选型等。同时,还需要考虑 到电源、通信接口、抗干扰措施等因素。
2、软件设计
软件设计是整个控制系统的核心,需要根据注塑机的生产工艺和控制要求,编 写相应的PLC程序。具体来说,软件设计包括以下几个方面:
四、系统优化与提高
为了进一步提高PLC注塑机控制系统的性能和效率,可以采取以下优化措施:
1、优化控制算法:通过改进现有的控制算法或引入新的控制策略,可以提高 控制系统的响应速度和精度。例如,采用PID+前馈控制算法能够提高注塑机的 注射速度和压力控制精度。
2、参数优化:通过对系统参数进行优化调整,可以提高控制系统的性能。例 如,调整注射时间的压力和速度参数,可以改善产品的质量。
3、扩展通信功能:通过增加与其他设备的通信接口,实现生产线的智能化和 自动化。例如,将PLC注塑机控制系统与机器人、输送带等设备进行联动控制, 提高生产效率。
谢谢观看
一、关键词选取与PLC类型选择
在设计与实现基于PLC的注塑机控制系统时,需要考虑到以下几个关键词:可 靠性、稳定性、灵活性、安全性。选取合适的PLC类型也是非常重要的一步。 根据注塑机的实际需求,可以选择不同品牌和型号的PLC,如Siemens、Allen Bradley等。在选择PLC时,应重点考虑以下几个方面:
3、数据处理测试:验证传感器采集的数据是否准确,数据处理程序是否正常 工作。
4、故障诊断测试:模拟各种故障情况,检查故障诊断程序的正确性,确保系 统能够在故障发生时及时采取相应的处理措施。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言
注塑机用于热塑料加工,是典型的顺序动作装置,它借助8个电磁阀YV1到YV8,完成闭模、射台前进、注射、保压、预塑,射台后退、开模、顶针前进、顶针后退和复位等操作工序,其中阻塞和保压工序需要一定的时间延迟。

SIMATIC S7-300作为一种通用型的小型PLC 系统,它具有运算速度快、存储器容量大、功能强、可靠性高等优点, 被广泛运用于各种有自动化控制要求的场合。

将其用于注塑机液压系统的自动控制实现或改造,失为一种既经济又切合实际的解决方案。

第一章 注塑机控制系统的分析
1.1 注塑机控制系统原理
注塑机是借助螺杆(或柱塞)的推力,将已塑化好的熔融状态的注射入闭合好的模腔内,经固化定型后取得制品的工艺过程。

注射成型是一个循环的过程,每一周期主要包括:定量加料——熔融塑化——施压注射——充模冷却——启模取件。

取出塑件后又再闭模,进行下一个循环。

跳转与循环是选择性分支的一种特殊形式。

若满足某一转移条件,程序跳过几个状态往下继续执行,这是正向跳转;或程序返回上面某个状态再开始往下继续执行,这是逆向跳转,也就是本次工程用到的循环。

注塑机控制系统的原理框图如图1
图1注塑机控制系统原理框图
第二章注塑机控制系统的硬件设计
2.1 确定I/O点及选择PLC
2.1.1可编程控制器控制系统I/O地址分配
根据塑料注塑成型生产工艺控制要求,其输入设备有8个行程开关、1个压力继电器;其执行器件共有YV1~YV8八个电磁阀。

因此塑料注塑成型机的电气控制系统采用PLC控制需要有9个输入点,8个输出点,在设计过程中我们选用西门子S7-200系列PLC,基本单元选用CPU221模块,其输入14点,输出10点,能满足控制要求。

具体的I/O地址分配见表1,PLC控制系统的I/O接线图。

在确定了控制对象的控制任务和选择好PLC的机型后,即可安排输入、输出的配置,并对输入、输出进行地址编号。

分配I/O地址时要注意以下问题:
(1) 设备I/O地址尽可能连续;(2) 相邻设备I/O地址尽可能连续;(3) 输入/输出I/O地址分开;(4) 每一框架I/O地址不要全部占满,要留有一定的余量,便于系统扩展和工艺流程的改,但不宜保留太多,否则会增加系统成本;
(5) 充分考虑控制柜与控制柜之间、框架与框架之间、模块与模块之间的信号联系,合理地安排I/O地址,减少它们之间的内部连线。

表1 S-300的控制开关的触点
2.2 STEP7—Micro/WIN V4.0编程软件
2.2.1 PLC注塑机控制系统的程序创建
(1)打开项目
执行“文件”→“新建”命令,可以新建一个项目。

可以保存为扩展名为“.mwp”的新建项目。

或执行“文件"打开"命令"可以打开项目。

(2)输入指令
输入梯形图指令可以通过指令树、工具条按钮等方式进行。

指令树中包含了几乎所有的指令,或在工具条上直接放常用的指令。

或用快捷键F4、F6、F9键进行操作。

(3)创建逻辑网络
用梯形图编写的程序就是将组件排列成逻辑网络。

可以通过工具栏或者右键快捷菜单进行程序编辑,形成程序网络。

(4)输入地址
在梯形图输入指令时,参数最初是由“???”显示的,表示参数未赋值,可以用绝对值或者符号标明程序中的指令操作数。

绝对引用是指使用内存区的位或者字节位置标识地址,符号引用则是指使用数字、字母的字符组成标识地址。

如果有未赋值的参数,程序将不能正常编译。

(5)编译与保存
2.3 控制程序的调试
2.3.1 调试条件
①选择合适的CPU外电路,根据信号系统要求以及I/O资源配置进行模拟连接,输入端由PLC按键模拟,输出端组态王模拟即可;
②使用STEP7编程软件进行编程;
(2) 程序调试步骤
①打开STEP7软件;
②在命令菜单中选择Debug>Program Edit in RUN;
③把以设计好的系统程序语句在RUN模式下输入;
④输入程序有误,系统提示不能运行;
⑤修改有误程序,继续输入程序直到系统检测无误为止;
⑥退出RUN模式在命令菜单中选择Debug>Program Edit in RUN,然后点击取消复选标志。

2.3.2 调试步骤
图3-1
如图3-1所示,当原点I0.1动作,按下启动按钮I0.0,线圈Q0.1、Q0.3就得电,Q0.1、Q0.3的常开触点使其自锁。

Q0.2、Q1.0常闭触点实现互锁,当图3-2中线圈Q0.2、Q1.0得电后,这两个常闭触点断开,线圈Q0.1、Q0.3失电停转。

I0.2常闭触点与图3-2中限位开关I0.2组成复合开关,也起互锁作用,双重保护电路。

电磁阀YV1、YV3得电将模子关闭。

图3-2
如图3-2所示,限位开关I0.2动作,线圈Q0.2、Q1.0得电自锁,Q0.3、
Q0.7、I0.3常闭触点互锁保护电路。

此时电磁阀YV2、YV8得电控制射台前进,准备注入热塑料。

图3-3
如图3-3所示,限位开关I0.3动作表示射台到位,线圈Q0.3、Q0.7得电,Q0.7常开触点闭合自锁,同时延时通电时间继电器T37得电,电磁阀YV3、YV7动作开始注塑。

10s后其常开触点闭合,线圈Q0.3清零失电,线圈Q1.0得电自锁,延时通电时间继电器T38得电,电磁阀YV7、YV8动作进行保压。

5s后其常开触点闭合,线圈Q1.0清零,Q0.1得电。

电磁阀YV1、YV7执行预塑。

图3-4
如图3-4所示,加料限位开关I0.4动作,线圈Q0.6得电自锁,Q0.7、Q0.1清零,执行射台的后退。

I0.5、Q0.2、Q0.4常闭触点均为互锁保护电路。

图3-5
如图3-5所示,限位开关I0.5动作,线圈Q0.4、Q0.2得电自锁,Q0.3、Q0.5、I0.6常闭触点均为互锁。

YV2、YV4执行开模。

图3-6
如图3-6所示,限位开关I0.6动作开模完成,线圈Q0.3、Q0.5得电,Q0.5常开触点实现自锁,I0.7常闭触点与下图常开触点I0.7形成互锁。

YV3、YV5使顶针前进。

图3-7
如图3-7所示,顶针终止限位开关I0.7动作,线圈Q0.3清零,Q0.4得电自锁,YV4、YV5使顶针后退。

顶针后退限位开关I1.0动作,线圈Q0.4、Q0.5清零,动作结束,完成一个循环。

图中的I0.1、I0.2、I0.3、I0.4、I0.5、I0.6、I0.7、I1.0均为行程开关。

总结
基于PLC的塑料注塑成型机控制系统已经设计完毕,通过对该系统的调试与仿真,其功能基本达到要求。

针对本设计中的塑料注塑成型机控制系统,设计中的许多功能还有待于扩展、完善。

由于时间仓促,知识量有限,设计中也还存在着一些不足,对于设计的整体优化仍须进一步改进。

设计中,我不仅学到了一些平时未涉及的科目,扩大了知识面,而且还能将各方面的知识有机的综合应用,大大提高了自身的能力。

同时也为自己将来步入社会,在工作岗位上做出成绩增加了一份自信。

中北大学
学生:李文魁学号:1202034217 学院:机械与动力工程学院
专业:过程装备与控制工程
题目:注塑机PLC控制设计。

相关文档
最新文档