地球的经纬度与球面距离

合集下载

知道两点经纬度求两点距离公式

知道两点经纬度求两点距离公式

知道两点经纬度求两点距离公式计算两点之间的距离是地理学中的一个基本问题。

在计算两点距离之前,我们首先需要明确计算距离的参考系。

通常情况下,我们使用经度(表示东西方的位置)和纬度(表示南北方的位置)来确定地球上的位置。

在计算两点之间的距离时,我们可以使用不同的方法。

其中,最常用的方法包括欧几里得距离、大圆距离和球面三角法。

1.欧几里得距离:欧几里得距离又称为直线距离,它是二维欧几里得空间中两点之间的直线上的距离。

对于平面上的两个点(x1,y1)和(x2,y2),欧几里得距离公式如下:d=√((x2-x1)²+(y2-y1)²)然而,由于地球是一个球体而不是一个平面,欧几里得距离并不适用于计算地球上两点之间的距离。

2.大圆距离:大圆距离也称为球面距离,它是地球上两点之间沿着地球表面的最短距离。

大圆距离公式如下:d=R*θ其中,R是地球的半径(通常取平均半径6371公里),θ是两点之间的中心角。

计算大圆距离时,我们需要先将经纬度转换为弧度,然后使用球面三角法计算中心角。

3.球面三角法:余弦定理公式如下:cos(c) = cos(a) * cos(b) + sin(a) * sin(b) * cos(γ)其中,a和b是两个点分别与地球球心的连线与地球赤道的夹角,c 是两个点之间的中心角,γ是两个点之间的经度差。

为了计算中心角,我们需要首先将经纬度转换为弧度。

对于两个经纬度坐标点(φ1,λ1)和(φ2,λ2),其中φ表示纬度,λ表示经度,转换公式如下:φ = latitude * π / 180λ = longitude * π / 180然后,就可以使用余弦定理计算两点之间的距离了。

以上这些方法都可以计算两个经纬度坐标之间的球面距离。

对于一些较短距离的计算,例如在城市范围内,使用欧几里得距离可能是比较准确的。

对于大范围距离的计算,推荐使用球面三角法。

最后,还需要注意的是,上述公式都是基于地球模型的简化情况,实际地球的形状更接近于一个略扁的椭球体。

地球上两点的经纬度计算他们距离的公式

地球上两点的经纬度计算他们距离的公式
而每一分又有60秒,每一秒就代表1855.3m/60=30.92m
பைடு நூலகம்任意两点距离计算公式为
d=111.12cos{1/[sin①Asin①十cos①Acos①Bcos(入B—入A)]}
其中A点经度,纬度分别为入A和①A,B点的经度、纬度分别为入B和①B,d为距离。
至于比例尺计算就不废话了
2.所谓的 “东经为正,西经为负,北纬为正,南纬为负 ”是为了计算的 方便。
比如某点为西京145°,南纬36°,那么计算时可用(-145°,-36°)
3.AB对球心所张角的球法实际上是求<0A>和<0B>两向量的夹角
K。
用公式<OA>*<OB>=|OA|*|OB|*cosK
可以得到 其中地球平均半径为6371.004km
cosb*cosy*(cosa*cosx+sina*sinx)+sinb*siny=cosb*cosy*cos(a-x)+s inb*siny
因此AB两点的球面距离为
R*{arccos[cosb*cosy*cos(a-x)+sinb*siny]}
注:1.x,y,a,b都是角度,最后结果中给出的arccos因为弧度形式。
假设地球是个标准的球体:半径可以查出来,假设是 如图:
关于用经纬度计算距离:
地球赤道上环绕地球一周走一圈共40075.04公里,而@一圈分成360°而每1°度)有60,每
一度一秒在赤道上的长度计算如下:
40075.04km/360°=111.31955km
111.31955km/60=1.8553258km=1855.3m
假设地球是一个标准球体,半径为R,并且假设东经为正,西经为负,

球面距离的几种证明方法

球面距离的几种证明方法

球面距离的几种证明方法
球面距离是指在椭球面上,任意两点之间的最短路径,它是椭球面上任意两点的距离。

在地球表面的航行中,球面距离是最常见的几何距离,它以地球表面的维度和经度表示。

需要定义两点的维度经度,使用数学计算就能求出两点之间的球面距离,求出的球面距离与实际距离无论大小都有较大的差异,所以球面距离的应用非常广泛。

在此,本文将介绍几种球面距离的证明方法。

第一种证明方法:三角形证明法。

通过建立两点之间的三角形,定义出三条边长,利用三角形和地球球面之间的特殊关系,可以计算出三角形的面积,进而确定两点之间的球面距离。

第二种证明方法:空间分析法。

通过对两点之间连接的弧的长度和圆心角的空间分析,可以求出两点之间的球面距离。

第三种证明方法:旋转投影法。

这种证明方法基于地球球面的旋转特性,将空间点图投影到局部圆锥曲面上,求出局部圆锥曲面上的距离,最终得出两点之间的球面距离。

第四种证明方法:GPS定位法。

GPS定位法是利用GPS定位技术,根据卫星定位两点坐标,通过计算得出两点的经纬度和高度,最后求出两点之间的球面距离。

第五种证明方法:椭球体参数法。

地球上两点的经纬度计算他们距离的公式

地球上两点的经纬度计算他们距离的公式

地球上两点的经纬度计算他们距离的公式一、球面余弦定理球面余弦定理是一种常用的计算地球上两点距离的公式。

它基于球面三角形的余弦定理,公式如下:d = R * arccos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1))其中,d表示两点之间的距离,R表示地球的半径,而lat1、lat2、lon1和lon2分别表示两点的纬度和经度。

在计算中,经纬度应以弧度为单位。

如果给定的经纬度是度数,可以先将其转化为弧度再代入公式中计算。

二、哈弗斯因子公式哈弗斯因子公式也是一种常用的计算地球上两点距离的公式。

它基于海伦公式,公式如下:d = 2 * R * arcsin(√(sin((lat2 - lat1) / 2)² + cos(lat1) * cos(lat2) * sin((lon2 - lon1) / 2)²))其中,d表示两点之间的距离,R表示地球的半径,而lat1、lat2、lon1和lon2分别表示两点的纬度和经度。

在计算中,经纬度应以弧度为单位。

如果给定的经纬度是度数,可以先将其转化为弧度再代入公式中计算。

可以看到,球面余弦公式和哈弗斯因子公式在计算方式上有一些差异。

球面余弦公式更容易计算,因为它不需要计算所有角度的正弦函数值,只需要计算两个角度的正弦函数值并进行一些乘法和加法运算。

相比之下,哈弗斯因子公式需要计算所有角度的正弦函数值,计算量稍大一些。

无论是使用球面余弦公式还是哈弗斯因子公式,都需要注意地球的半径值。

地球的半径并不是一个精确的常数,因为地球的形状是复杂的。

在实际计算中,可以根据所需要的精度选择合适的地球半径值,一般情况下选择平均半径值进行计算即可。

除了上述公式之外,还可以使用其他更复杂的公式来计算地球上两点的距离。

例如,Vincenty公式和Haversine公式等都是比较常用的计算地球上两点距离的公式。

怎么用经纬度计算两地之间的距离

怎么用经纬度计算两地之间的距离

怎么用经纬度计算两地之间的距离经纬度是地球上一点的坐标表示方法,可以用来计算两个点之间的距离。

计算两地之间的距离可以使用多种方法,包括球面距离公式、大圆航线距离和Vincenty算法等。

下面将详细介绍这些方法。

1.球面距离公式球面距离公式是最简单且最常用的计算两点之间距离的方法。

它基于球面三角形的边长计算两点之间的距离,如下所示:d = R * arccos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1))其中,d是两点之间的球面距离,R是地球的平均半径,lat1和lat2是两点的纬度,lon1和lon2是两点的经度。

2.大圆航线距离大圆航线距离是计算两点之间最短距离的方法,它基于地球表面上连接两点的最短弧线,如下所示:d = R * arccos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1))其中,d是两点之间的大圆航线距离,R是地球的半径,lat1和lat2是两点的纬度,lon1和lon2是两点的经度。

3. Vincenty算法Vincenty算法是一种更精确的计算两点之间距离的方法,它基于椭球体模型而不是简单地球模型。

该算法能够考虑地球形状的扁平化,并且适用于短距离和长距离的计算。

具体实现需要迭代计算,公式略显繁琐,如下所示:a=R1,b=R2,f=(a-b)/aL = L2 - L1, U1 = atan((1 - f) * tan(lat1)), U2 = atan((1 - f) * tan(lat2))sinU1 = sin(U1), cosU1 = cos(U1), sinU2 = sin(U2), cosU2 = cos(U2)λ=L,λʹ=2πwhile (,λ - λʹ, > 10e-12):sinλ = sin(λ), cosλ = cos(λ), sinσ = sqrt((cosU2 *sinλ) * (cosU2 * sinλ) + (cosU1 * sinU2 - sinU1 * cosU2 *cosλ) * (cosU1 * sinU2 - sinU1 * cosU2 * cosλ))cosσ = sinU1 * sinU2 + cosU1 * cosU2 * cosλσ = atan2(sinσ, cosσ)sinα = cosU1 * cosU2 * sinλ / sinσcos²α = 1 - sinα * sinαcos2σm = cosσ - 2 * sinU1 * sinU2 / cos²αC = f / 16 * cos²α * (4 + f * (4 - 3 * cos²α))λʹ=λλ = L + (1 - C) * f * sinα * (σ + C * sinσ * (cos2σm + C * cosσ * (-1 + 2 * cos2σm * cos2σm)))u² = cos²α * (a*a - b*b) / (b*b)B=u²/1024*(256+u²*(-128+u²*(74-47*u²)))Δσ = B / 6 * (cosσ * (-1 + 2 * cos2σm * cos2σm) - B / 4 * (cos2σm * (-3 + 4 * sinσ * sinσ) - B / 6 * cosσ * (-3 + 4 * cos2σm * cos2σm) * (-3 + 4 * sinσ * sinσ)))s=b*A*(σ-Δσ)其中,a和b是地球的长半轴和短半轴,f是扁平度参数,R1和R2是两点的曲率半径,L1和L2是两点的经度差,lat1和lat2是两点的纬度。

两个经纬度算距离公式及方法

两个经纬度算距离公式及方法

两个经纬度算距离公式及方法以《两个经纬度算距离公式及方法》为标题,本文将会阐述如何利用经纬度,算出两点之间的距离。

首先,我们得先了解什么是经纬度。

经纬度是赤道坐标系,它将地球分割成有序的网格,每一个网格都有一组经纬度来标识,比如北京的经纬度是39°54′24″N,116°23′29″E,柏林的经纬度是52°31′N, 13°25′E。

其次,要知道如何用经纬度计算两点之间的距离,有两种方法。

一种是用球面三角建立的简单平面三角法,它的公式如下:d=2rarcos[sin(A1)sin(A2)+cos(A1)cos(A2)cos(B1-B2)] 其中,A1和B1是第一个点的纬度和经度,A2和B2是第二个点的纬度和经度,r是地球的半径(约为6356.750 km),arccos是反余弦函数。

另一种是使用弧度,公式为:d=r*arcsin[sqrt(sin2((A1-A2)/2)+cos(A1)*cos(A2)*sin2((B1-B2)/2))]可以看出,两种方法都使用了余弦、正弦和平方根等数学函数,计算复杂度较高,但调用起来比较简单,可以方便地实现实际应用。

接下来,介绍如何应用上面的算法,来实现计算两点经纬度的距离的实际应用。

在实际应用中,常常会用到地图服务,比如百度地图、高德地图等,它们提供了比较全面的接口,可以根据不同的需求,实现计算地图上两点之间的距离,算法可以是用上面介绍的简单平面三角建立的算法,也可以使用弧度法,或者使用更高级的算法,比如“墨卡托距离”等。

再者,经纬度计算距离还可以应用于汽车导航系统中,设计时可通过实时的位置信息,估算出最短的行驶距离,从而更好地规划路线,给用户更优质的体验。

最后,要记住,经纬度算距离具有经度和纬度限制,即经度在-180°和180°之间,纬度在-90°和90°之间,这是要求两点之间距离计算准确的前提条件。

excel地球任意两点距离计算公式

excel地球任意两点距离计算公式

excel地球任意两点距离计算公式摘要:一、前言二、Excel 公式简介三、地球任意两点距离计算公式1.球面三角公式2.地球半径与地球表面距离的关系3.Excel 中球面三角公式应用四、总结正文:一、前言在地理信息系统、导航定位等领域,计算地球表面两点之间的距离是一项常见的任务。

本文将介绍一种利用Excel 计算地球任意两点距离的方法。

二、Excel 公式简介Excel 作为一款功能强大的电子表格软件,提供了丰富的内置公式,可以进行各种数据处理和计算。

在使用Excel 计算地球任意两点距离之前,需要了解一些基本的Excel 公式。

三、地球任意两点距离计算公式1.球面三角公式地球表面两点之间的距离计算,通常采用球面三角公式。

球面三角公式描述了地球表面上三个点之间的距离关系。

公式如下:c = R * arccos[cos(lat1) * cos(lat2) * cos(lon2 - lon1) + sin(lat1) * sin(lat2)]其中,c 表示两点之间的距离,R 为地球半径,lat1 和lat2 分别为两点的纬度,lon1 和lon2 分别为两点的经度。

2.地球半径与地球表面距离的关系地球半径R 约为6,371 千米。

在地球表面,1 度经纬度对应的距离约为111.32 千米。

因此,可以将地球半径R 表示为:R = 111.32 * cos(lat)其中,lat 为地球表面的纬度。

3.Excel 中球面三角公式应用在Excel 中,可以利用公式“=ACOS(COS(lat1)*COS(lat2)*COS(lon2-lon1)+SIN(lat1)*SIN(lat2))”计算球面三角余弦值,再利用公式“=R*ACOS(角度)”计算两点之间的距离。

其中,lat1、lat2、lon1 和lon2 需要分别代表两点的纬度和经度,R 为地球半径。

四、总结本文介绍了利用Excel 计算地球任意两点距离的方法,首先通过球面三角公式计算两点之间的距离,然后利用地球半径与地球表面距离的关系将结果换算为实际距离。

地球两点间距离计算公式

地球两点间距离计算公式

地球两点间距离计算公式地球是人类生活的家园,了解地球上两点之间的距离对于我们的生活和探索更大世界都具有重要意义。

在这篇文章中,我们将介绍一种用于计算地球两点间距离的公式——球面距离公式,并解释如何使用这个公式来计算距离。

球面距离公式是基于地球的球形结构和球面几何原理推导出来的。

在地球上,我们通常使用经度和纬度来表示一个地点的位置。

经度表示一个地点在东西方向上的位置,而纬度表示一个地点在南北方向上的位置。

使用经纬度来计算两个地点之间的距离涉及到计算两者之间的角度差。

首先,我们需要将经纬度转换成弧度单位,因为角度单位在三角函数中使用。

经度的范围是从0°到360°,纬度的范围是从-90°到90°。

而弧度的范围是从0到2π。

我们可以使用以下公式将经纬度转换为弧度:角度(弧度)= 角度(度数)× π / 180转换完成后,我们可以使用以下公式来计算两个点之间的球面距离:距离 = 地球半径× arccos(sin(纬度1) × sin(纬度2) +cos(纬度1) × cos(纬度2) × cos(经度1 - 经度2))在这个公式中,地球半径是一个常数,通常取平均值约为6371千米,但可以根据需要进行调整。

现在让我们通过一个实际的例子来应用这个公式。

假设我们想计算位于巴黎(经度:2.3522°E,纬度:48.8566°N)和纽约(经度:74.0060°W,纬度:40.7128°N)之间的球面距离。

首先,将经纬度转换成弧度:巴黎的经度(弧度)= 2.3522 × π / 180 ≈ 0.041巴黎的纬度(弧度)= 48.8566 × π / 180 ≈ 0.853纽约的经度(弧度)= 74.0060 × π / 180 ≈ 1.291纽约的纬度(弧度)= 40.7128 × π / 180 ≈ 0.711将这些值代入球面距离公式,我们可以计算出两个城市之间的距离:距离= 6371 × arccos(sin(0.853) × sin(0.711) +cos(0.853) × cos(0.711) × cos(1.291 - 0.041))通过计算,我们得到的结果约为5,977.59千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地球的经纬度与球面距离
[教学科目]数学(《立体几何》)
[教学课题]地球的经纬度与球面距离
[教学目标] 1.通过教学使学生掌握地球的经纬度和球面距离的概念,并能够熟练计算同纬度或同经度的球面上任意两点的球面距离,理解既不纬度也不同经度
的球面上任意两点球面距离的计算方法;
2.通过教学培养学生的空间想象能力和计算能力。

[教学重点]球面上任意两点的球面距离的计算方法。

[教学难点]对球面距离概念的理解与球面上任意两点的球面距离的计算。

[教学方法]启发式、讨论式。

[教学工具]常规教学工具。

[教学时间]一课时(45分钟)。

[教学班级]北京四中99级数学B4班
[任课教师]北京四中李建华
[教学过程]
一、课题引入
师:上节课我们研究了球的截面性质,这节课我们继续研究球的问题,研究球面上任意两点的球面距离及其计算。

二、新课
1.地球的经纬度
师:让我们首先回忆一下地球的经纬度的概念。

[学生回答。

]
师:通过经纬度我们就能够确定地球球面上的任意一点。

可以看到北京的经纬度大约是(N40°,E116°)、南京(N32°,E118°)、石家庄(N38°,E114
°)、银川(N38°,E106°)、南昌(N28°,E116°)。

2.球面距离的概念
师:那么,球面上任意两点间的最短距离是什么?可以凭借直观感受来回答这个问题。

[学生回答,然后给出球面距离的定义。

]
师:所谓球面上A、B两点的球面距离,就是指经过经过这两点的大圆的劣弧的长。

实际上,这是球面上两点之间的最短距离,为什么最短呢?
[学生回答。

]
师:我们可以证明过这两点的小圆劣弧Array的长总是大于这两点的球面距离的,但一般
情形的证明却并不容易,我们暂时作为一个问
题留待将来讨论。

3.球面距离的计算
师:下面我们来研究球面距离的计算。

先从简单情形开始。

(1)同经度两点的球面距离的计算
例1.计算北京(N40°,E116°)、南昌
(N28°,E116°)之间的球面距离。

[参考答案:如果设地球半径为R=6378.137km,北京与南昌相差12°,∴
北京与南昌之间的球面距离为
151
137.637818012
R ⨯=⋅=425.209(km)。

由此,得出同经度两点间的球面距离的一般公式:
||434.35180|
|R 经度差经度差⨯≈⋅。

]
(2)同纬度两点的球面距离的计算
例2.计算石家庄(N38°,E114°)、银川(N38°,E106°)之间的球面
距离。

[参考答案:要计算A 、B 两点间的球面距离关键是确定∠AOB 的大小,为
此,只有通过解△AOB 得到。

首先,OO' = OA.sin38°≈6378.137×0.616≈3926.773。

于是,O'A=041.5026'OO OA 22≈-。

再由∠AO'B = 114° - 106 °= 8°得 AB ≈ 701.198。

从而,由余弦定理可以得到∠AOB 的余弦
值为0.99236,∴∠AOB = 6.302°。

∴A 、B 的球面距离为35.434×6.302 ≈
223.305(km). ]
(3)球面距离
例3.计算北京(N40°,E116°)、南京(E118°)之间的球面距离。

[简单叙述思路与方法即可。

]
三、小结
(略。


四、作业 课本第171页解答题2、3。

相关文档
最新文档