小波去噪函数
小波变换语音消噪(改进阈值)

改进阈值函数进行语音信号消噪,但是在程序运行过程中频频报错。
本人经验不足调试不出,希望求得各位指导改进函数表达式附图clear all; clc; close all;fs=8000; %语音信号采样频率为8000xx=wavread('lw1.wav');x1=xx(:,1);%取单声道t=(0:length(x1)-1)/8000;y1=fft(x1,2048); %对信号做2048点FFT变换f=fs*(0:1023)/2048;figure(1)plot(t,x1) %做原始语音信号的时域图形y=awgn(x1',10,'measured'); %加10db的高斯白噪声[snr,mse]=snrmse(x1,y')%求得信噪比均方误差figure(2)plot(t,y) %做加噪语音信号的时域图形[c,l]=wavedec(y,3,'db1');%多尺度一维分解%用db1小波对信号进行3层分解并提取系数a3=appcoef(c,l,'db1',3);%a2=appcoef(c,l,'db1',2);%a1=appcoef(c,l,'db1',1);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);thr1=thselect(d1,'rigrsure');%阈值获取,使用Stein的无偏风险估计原理thr2=thselect(d2,'rigrsure');thr3=thselect(d3,'rigrsure');%利用改进阈值函数进行去噪处理gd1=Garrote_gg(d1,thr1);gd2=Garrote_gg(d2,thr2);gd3=Garrote_gg(d3,thr3);c1=[a3 gd3 gd2 gd1];y1=waverec(c2,l,'db1');%多尺度重构[snr,mse]=snrmse(x1,y1')%求得信噪比均方误差figure(3);plot(t,y1);function gd=Garrote_gg(a,b)%a为信号分解后的小波系数,b为获得的阈值m=0.2*((a*a)-(b*b));if (abs(a)>=b)gd=sign(a)*(abs(a)-b/exp(m));else (abs(a)<b)gd=0;endfunction [snr,mse]=snrmse(I,In)% 计算信噪比函数% I :原始信号% In:去噪后信号snr=0;Ps=sum(sum((I-mean(mean(I))).^2));%signal powerPn=sum(sum((I-In).^2)); %noise powersnr=10*log10(Ps/Pn);mse=Pn/length(I);QQ截图20130516175535.png(11.18 KB, 下载次数: 0)改进函数表达式本帖最后由罗志雄于2013-5-16 21:58 编辑function [snr,mse]=snrmse(I,In)% 计算信噪比函数% I :原始信号% In:去噪后信号snr=0;Ps=sum(sum((I-mean(mean(I))).^2));%signal powerPn=sum(sum((I-In).^2)); %noise powersnr=10*log10(Ps/Pn);mse=Pn/length(I);修改后程序清单如下:clear all; clc; close all;fs=8000; %语音信号采样频率为8000xx=wavread('lw1.wav');x1=xx(:,1);%取单声道x1=x1-mean(x1);t=(0:length(x1)-1)/8000;y1=fft(x1,2048); %对信号做2048点FFT变换f=fs*(0:1023)/2048;figure(1)plot(t,x1) %做原始语音信号的时域图形y=awgn(x1',10,'measured'); %加10db的高斯白噪声[snr,mse]=snrmsel(x1',y) %求得信噪比均方误差snr1=SNR_singlech(x1',y)figure(2)plot(t,y) %做加噪语音信号的时域图形[c,l]=wavedec(y,3,'db1');%多尺度一维分解%用db1小波对信号进行3层分解并提取系数a3=appcoef(c,l,'db1',3);%a2=appcoef(c,l,'db1',2);%a1=appcoef(c,l,'db1',1);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);thr1=thselect(d1,'rigrsure');%阈值获取,使用Stein的无偏风险估计原理thr2=thselect(d2,'rigrsure');thr3=thselect(d3,'rigrsure');%利用改进阈值函数进行去噪处理gd1=Garrote_gg(d1,thr1);gd2=Garrote_gg(d2,thr2);gd3=Garrote_gg(d3,thr3);c1=[a3 gd3 gd2 gd1];function gd=Garrote_gg(a,b)%a为信号分解后的小波系数,b为获得的阈值m=0.2*((a.*a)-(b*b));if (abs(a)>=b)gd=sign(a)*(abs(a)-b/exp(m));elsegd=zeros(size(a));endy1=waverec(c1,l,'db1');%多尺度重构[snr,mse]=snrmsel(x1',y1) %求得信噪比均方误差figure(3);plot(t,y1);小波去噪软阈值和硬阈值的matlab仿真程序硬阈值、软阈值这里有一段不知道有用没%设置信噪比和随机种子值snr=4;init=2055615866;%产生原始信号sref和高斯白噪声污染的信号s[sref,s]=wnoise(1,11,snr,init);%用db1小波对原始信号进行3层分解并提取系数[c,l]=wavedec(s,3,'db1');a3=appcoef(c,l,'db1',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);thr=1;%进行硬阈值处理ythard1=wthresh(d1,'h',thr);ythard2=wthresh(d2,'h',thr);ythard3=wthresh(d3,'h',thr);c2=[a3 ythard3 ythard2 ythard1];s3=waverec(c2,l,'db1');%进行软阈值处理ytsoftd1=wthresh(d1,'s',thr);ytsoftd2=wthresh(d2,'s',thr);ytsoftd3=wthresh(d3,'s',thr);c3=[a3 ytsoftd3 ytsoftd2 ytsoftd1];s4=waverec(c3,l,'db1');%对上述信号进行图示subplot(5,1,1);plot(sref);title('参考信号');subplot(5,1,2);plot(s);title('染噪信号');subplot(5,1,3);plot(s3);title('硬阈值处理');subplot(5,1,4);plot(s4);title('软阈值处理');matlab小波除噪,为何硬阈值和软阈值除躁信噪比一样了?load leleccum;index=1:1024;f1=leleccum(index); % 产生含噪信号init=2055615866;randn('seed',init);f2=f1+18*randn(size(x));snr=SNR_singlech(f1,f2) %信噪比subplot(2,2,1);plot(f1);title('含噪信号'); %axis([1,1024,-1,1]); subplot(2,2,2);plot(f2);title('含噪信号'); %axis([1,1024,-1,1]); %用db5小波对原始信号进行3层分解并提取系数[c,l]=wavedec(f2,3,'db6');a3=appcoef(c,l,'db6',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);sigma=wnoisest(c,l,1);thr=wbmpen(c,l,sigma,2);%进行硬阈值处理ythard1=wthresh(d1,'h',thr);ythard2=wthresh(d2,'h',thr);ythard3=wthresh(d3,'h',thr);c2=[a3 ythard3 ythard2 ythard1];f3=waverec(c2,l,'db6');%进行软阈值处理ytsoftd1=wthresh(d1,'s',thr);ytsoftd2=wthresh(d2,'s',thr);ytsoftd3=wthresh(d3,'s',thr);c3=[a3 ytsoftd3 ytsoftd2 ytsoftd1];f4=waverec(c3,l,'db6');%对上述信号进行图示subplot(2,2,3);plot(f3);title('硬阈值处理');%axis([1,1024,-1,1]); subplot(2,2,4);plot(f4);title('软阈值处理');%axis([1,1024,-1,1]); snr=SNR_singlech(f1,f3)snr=SNR_singlech(f1,f4)信噪比函数SNR_singlech(I,In)function snr=SNR_singlech(I,In)% 计算信噪比函数% I:riginal signal% In:noisy signal(ie. original signal + noise signal)Ps=sum(sum((I-mean(mean(I))).^2));%signal powerPn=sum(sum((I-In).^2)); %noise powersnr=10*log10(Ps/Pn);小波去噪程序Matlab小波去噪(默认,强制,给定三种情况)%% 利用小波分析对监测采集的信号进行去噪处理,恢复原始信号%小波分析进行去噪有3中方法:%1、默认阈值去噪处理。
sar雷达去噪小波基函数

sar雷达去噪小波基函数
SAR(合成孔径雷达)图像在小波域中进行去噪是一种常用的方法。
其具体步骤如下:
1. 将SAR图像进行小波变换,得到小波系数。
2. 对小波系数进行阈值处理,将小于阈值的系数设为0,大于阈值的系数保留。
3. 对处理后的小波系数进行逆变换,得到降噪后的SAR图像。
在阈值处理的过程中,可以采用软阈值或硬阈值。
软阈值法是将小于阈值的系数设为0,大于等于阈值的系数减去一个固定值;硬阈值法是将小于阈值的系数设为0,大于等于阈值的系数保留。
在实际应用中,选择合适的小波基函数和阈值是关键。
常用的小波基函数有Haar小波、Daubechies小波、Symlets小波等。
这些小波基函数具有不同的特性,适用于不同的应用场景。
例如,Haar小波适用于图像的边缘检测,而Daubechies小波则适用于图像的去噪。
小波理论及小波滤波去噪方法

要点二
详细描述
小波硬阈值去噪法是小波阈值去噪法的一种,通过对小波 系数应用硬阈值函数进行处理,能够有效地去除噪声。硬 阈值函数的特点是在阈值处将小波系数分为两部分,保留 大于阈值的系数,置小于阈值的系数为零,具有简单易行 的优点。然而,硬阈值函数在处理过程中存在不连续性, 可能会引入新的噪声或信号失真。
通过软阈值函数处理小波系数,实现去噪的小波去噪方法。
详细描述
小波软阈值去噪法是在小波阈值去噪法的基础上发展而来的,通过对小波系数应用软阈值函数进行处理,能够更 好地保留信号的细节信息,提高去噪效果。软阈值函数的特点是在阈值处平滑过渡,避免了硬阈值函数的不连续 性。
小波硬阈值去噪法
要点一
总结词
通过硬阈值函数处理小波系数,实现去噪的小波去噪方法 。
03
小波滤波去噪的优缺点
优点
多尺度分析
小波变换能够同时提供信号在 时间和频率域的信息,允许在
多个尺度上分析信号。
去噪效果好
小波变换具有很好的局部化特 性,能够有效地将信号和噪声 在不同尺度上分离,从而实现 去噪。
自适应性
小波变换能够根据信号的特性 自适应地选择合适的小波基和 分解尺度,以更好地适应信号 的特性。
小波理论及小波滤波去噪 方法
• 小波理论概述 • 小波滤波去噪方法 • 小波滤波去噪的优缺点 • 小波滤波去噪的改进方法 • 小波滤波去噪的实例分析
01
小波理论概述
小波的定义与特性
小波是一种特殊的函数,具有局部性和波动性, 能够在时间和频率两个维度上进行分析。
小波具有可伸缩性,能够适应不同的频率分析需 求。
实例一:图像去噪
总结词
图像去噪是小波滤波去噪方法的重要应用之一,通过小波变换对图像进行多尺度分析, 有效去除噪声,提高图像质量。
小波去噪及其MATLAB中的函数

一、小波去噪中信号阈值的估算
信号去噪是信号处理领域的经典问题之一。 传统的去噪方法主要包括线性滤 波方法和非线性滤波方法,如中值滤波和 wiener 滤波等。传统去噪方法的不是 在于使信号变换后的熵增高、 无法刻画信号的非平稳特性并且无法得到信号的相 关性。为了克服上述缺点,人们开始使用小波变换解决信号去噪问题。 小波变换具有下列良好特性: (1) 低熵性:小波系数的稀疏分布,使信号变换后的熵降低; (2) 多分辨率特性:可以非常妤地刻画信号的非平稳特性,如边缘、尖峰、 断点等; (3) 去相关性:可取出信号的相关性,且噪声在小波变换后有白化趋势,所 以比时域更利于去噪; (4) 选基灵活性:由于小波变换可以灵活选择基函数,因此可根据信号特点 和去噪要求选择适合小波。 小波在信号去噪领域已得到越来越广泛的应用。 阈值去噪方法是一种实现简 单、效果较好的小波去噪方法。阈值去噪方法的思想就是对小波分解后的各层系 数中模大于和小于某阈值的系数分别处理, 然后对处理完的小波系数再进行反变 换,重构出经过去噪后的信号。下面从阈值函数和阈值估计两方面对阈值去噪方 法进行介绍。 1.阈值函数 常用的阈值函数主要是硬阈值函数和软阈值函数。 (1)硬阈值函数。表达式为 ( w) wI (| w | T ) ,如图 4.18 所示,其中横坐标 表示信号的原始小波系数,纵坐标表示阈值化后的小波系数。 (2)软阈值函数。 表达式为 ( w) ( w sgn( w)T ) I (| w | T ) , 如图 4.19 所示, 其中横坐标表示信号的原始小波系数,纵坐标表示阈值化后的小波系数。
2 2
/N。
/ N ,则
1 2 2 2 t (Y ) Y ER(t ) n E V , t (Y ) N N 1 2 2 E t (Y ) X X Y 2 t (Y ) X , X Y N 最后可得到风险函数的表达式: ET (t )
小波滤波去噪原理

小波滤波去噪原理
小波滤波是一种常用的信号处理方法,用于解决信号中存在的噪声问题。
小波滤波的原理是通过选取小波基函数,将原始信号从时域转换到小波域,对小波系数进行处理,再将处理后的小波系数从小波域转换回时域,得到去噪后的信号。
原始信号可能存在多种类型的噪声,例如高斯噪声、椒盐噪声、周期性噪声等。
对于不同类型的噪声,小波滤波的处理方法也不同。
对于高斯噪声,小波滤波使用高斯小波作为基函数,通过去除小波系数中较低的能量分量,实现去噪。
高斯小波函数具有连续性和平滑性,能够刻画信号的较低频成分。
对于周期性噪声,小波滤波使用第三种小波函数,例如Daubechies小波、Symlets小波等。
这些小波函数具有可扩展性和对称性,能够有效地描述信号的周期成分。
小波滤波通过将信号进行分解,并对分解后的小波系数进行处理,将噪声从信号中去除。
分解层数可以根据信号的特点和去噪效果进行选择。
一般而言,信号特征较明显时,可以选择较少的层数;信号含有较多噪声时,可以选择较多的层数,以获取更好的去噪效果。
小波滤波在信号处理和图像处理领域得到了广泛的应用。
通过选择不同的小波基函数和分解层数,可以处理多种类型的信号和噪声。
因此,小波滤波成为了数字信号处理必不可少的组成部分之一。
小波阈值去噪matlab程序

小波阈值去噪matlab程序小波阈值去噪是一种常用的信号处理方法,可以在Matlab中使用Wavelet Toolbox来实现。
下面是一个简单的小波阈值去噪的Matlab程序示例:matlab.% 生成含有噪声的信号。
t = 0:0.001:1;y = sin(2pi100t) + randn(size(t));% 进行小波阈值去噪。
wname = 'db4'; % 选择小波基函数。
level = 5; % 选择分解的层数。
noisySignal = wdenoise(y, 'DenoisingMethod','UniversalThreshold', 'ThresholdRule', 'Soft', 'Wavelet', wname, 'Level', level);% 绘制结果。
figure.subplot(2,1,1)。
plot(t,y)。
title('含噪声信号')。
subplot(2,1,2)。
plot(t,noisySignal)。
title('去噪后信号')。
在这个示例中,首先生成了一个含有噪声的信号,然后使用`wdenoise`函数进行小波阈值去噪。
在`wdenoise`函数中,我们选择了小波基函数为db4,分解的层数为5,DenoisingMethod为UniversalThreshold,ThresholdRule为Soft。
最后绘制了含噪声信号和去噪后的信号。
需要注意的是,小波阈值去噪的具体参数选择和调整需要根据实际情况进行,上述示例仅供参考。
希望这个简单的示例可以帮助你开始在Matlab中实现小波阈值去噪。
小波去噪matlab程序代码

axis square %产生含噪声图像 init = 2055615866; randn(seed,init); x = X + 50*randn(size(X) ); subplot(2,2,2);image(x); colormap(map); xlabel((b)含噪声图像);
%对三个方向高频系数进行阈值处理 nc = wthcoef2(h,c,s,n,p,s); nc = wthcoef2(v,nc,s,n,p,s); nc = wthcoef2(d,nc,s,n,p,s); %对新的小波分解结构[c,s]进行重构 x1 = wavee(x1); colormap(map);
小波去噪 matlab 程序代码
1、小波去噪实现步骤 (1)二维信号的小波分解。选择一个小波和小波分解的层次 N,然后计 算信号 s 到第 N 层的分解。 (2)对高频系数进行阈值量化。对于从 1~N 的每一层,选择一个阈值, 并对这一层的高频系数进行软阈值量化处理。 (3)二维小波重构。根据小波分解的第 N 层的低频系数和经过修改的从 第一层到第 N 的各层高频系数,计算二维信号的小波重构 2、Matlab 函数介绍 (1)wavedec2 函数 该函数用于对多尺度二维小波进行分解,其常用调用格式:
xlabel((c)第一次去噪图像); axis square %对 nc 再次进行滤波去噪 xx = wthcoef2(v,nc,s,n,p,s); x2 = waverec2(xx,s,coif3); subplot(2,2,4);image(x2); colormap(map); xlabel((d)第二次去噪图像);
axis square《span style=font-size:14px》 《span style=font-size:14px》 《span style=font-size:18px; color:#3366ff》
小波去噪的方法

小波去噪的方法:
1、默认阈值去噪处理:该方法利用函数ddencmp() 生成信号的默认阈值,然后利用函数wdencmp() 进行去噪处理;
2、给定阈值去噪处理:在实际的去噪处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。
在进行阈值量化处理时可利用函数wthresh();
3、强制去噪处理:该方法是将小波分解结构中的高频系数全部置0,即滤掉所有高频部分,然后对信号进行小波重构。
这种方法比较简单,且去噪后的信号比较平滑,但是容易丢失信号中的有用成分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转:小波函数介绍(wden)
2012-11-23 16:08:41| 分类:小波与神经网络|举报|字号订阅
小波函数介绍(wden)Wden函数:一维信号的小波消噪处理
[xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,‘wname’);返回经过小波消噪处理后的信号xd及其小波分解结构。
输入参数tptr为阈值选择标准:
thr1=thselect(x,'rigrsure');%stein无偏估计;
thr2=thselect(x,'heursure');%启发式阈值;
thr3=thselect(x,'sqtwolog');%固定式阈值;
thr4=thselect(x,'minimaxi');%极大极小值阈值;
输出参数sorh为函数选择阈值使用方式:
Sorh=s,为软阈值;
Sorh=h,为硬阈值;
输入参数scal规定了阈值处理随噪声水平的变化:
Scal=one,不随噪声水平变化。
Scal=sln,根据第一层小波分解的噪声水平估计进行调整。
Scal=mln,根据每一层小波分解的噪声水平估计进行调整。
[xd,cxd,lxd]=wden(c,l,tptr,sorh,scal,n,‘wname’);由有噪信号的小波分解结构得到消噪处理后的信号xd,及其小波分解结构。
例:比较不同阈值算法进行信号消噪的处理结果;
r=2055415866;
snr=3;%设置信噪比;
[xref,x]=wnoise(3,11,snr,r);%产生有噪信号;
lev=5;
xdH=wden(x,'heursure','s','sln',lev,'sym6');%heursure阈值信号处理;xdR=wden(x,'rigrsure','s','sln',lev,'sym6');%rigrsure阈值信号处理;xdS=wden(x,'sqtwolog','s','sln',lev,'sym6');%sqtwolog阈值信号处理;xdM=wden(x,'minimaxi','s','sln',lev,'sym6');%minimaxi阈值信号处理;subplot(3,2,1);
plot(xref);title('原始信号');
axis([1,2048,-10,10]);
subplot(3,2,2);
plot(x);title('有噪信号');
axis([1,2048,-10,10]);
subplot(3,2,3);
plot(xdH);xlabel('heursure阈值消噪处理后的信号'); axis([1,2048,-10,10]);
subplot(3,2,4);
plot(xdR);xlabel('rigrsure阈值消噪处理后的信号'); axis([1,2048,-10,10]);
subplot(3,2,5);
plot(xdS);xlabel('sqtwolog阈值消噪处理后的信号'); axis([1,2048,-10,10]);
subplot(3,2,6);
plot(xdM);xlabel('minimaxi阈值消噪处理后的信号');
1.randn()——噪声信号产生例程
load leleccum; index=1:1024;
x=leleccum(index); % 产生含噪信号
init=2055615866;randn('seed',init);
nx=x+18*randn(size(x)); 2.wnoiset()——获取噪声方差load leleccum; index=1:1024;
x=leleccum(index); % 产生含噪信号
init=2055615866;randn('seed',init);
nx=x+18*randn(size(x)); % 用小波函数'db6'对信号进行3层分解[c,l]=wavedec(nx,3,'db6'); % 估计尺度1的噪声标准偏差sigma=wnoiset(c,l,1); % sigma 是零均值的高斯白噪声的标准偏差% 获取消噪过程中的阈值thr=wbmpen(c,l,sigma,alfa); % alfa是用于惩罚的调整参数,一般去2 % 对信号进行消噪
xd=wdencmp('gbl',c,l,'db6',3,thr,'s',keepapp); % 一
种消噪命令
3.svd 奇异值分解(sigular value decomposition,SVD) 是一种正交矩阵分解法;SVD是最可靠的分解法,但是它比QR 分解(QR分解法是将矩阵分解成一个正规正交矩阵与上三角形矩阵。
)法要花上近十倍的计算时间。
[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵,而S代表一对角矩阵。
和QR分解法相同者,原矩阵A不必为正方矩阵。
使用SVD分解法的用途是解最小平方误差
法和数据压缩。
4.norm
对于矩阵:
norm(X)返回X的最大奇异值,max(svd(X))。
norm(X,2)返回同上。
norm(X,1)
对于向量:
NORM(V,P) = sum(abs(V).^P)^(1/P)。
description:对向量V的每个元素求绝对值之后,再对每个绝对值执行p次方,sum将执行p次方后的向量各对应值求和,最后把求和值开p次方。
NORM(V) = norm(V,2).description:相当于求模的平方。
NORM(V,inf) = max(abs(V)).description:求绝对值的最大值。
NORM(V,-inf) = min(abs(V)). description:求绝对值的最小值。
因此,当V为向量是,可以利用norm求和,求模,求方差。
5.wnoise 产生噪声的小波测试数据
X = WNOISE(FUN,N)返回测试函数FUN在[0,1]之间2.^n个点对应的值。
[X,XN] = WNOISE(FUN,N,SQRT_SNR)。
X 返回上面的值并且由std(x)=SQRT_SNR决定。
xn是含有相同的x并且受高斯白噪声N(0,1)污染的测试向量,xn的信噪比SNR=(snr)^2。
[X,XN] = WNOISE(FUN,N,SQRT_SNR,init)
FUN = 1 or FUN = 'blocks'
FUN = 2 or FUN = 'bumps'
FUN = 3 or FUN = 'heavy sine'
FUN = 4 or FUN = 'doppler'
FUN = 5 or FUN = 'quadchirp'
FUN = 6 or FUN = 'mishmash'
举例:首先产生一个长度为210点,包含高斯噪声低频信号,其噪声标准差为3。
sqrt_snr=3;
init=126424;
[x,xn]=wnoise(2,10,sqrt_snr,init);
plot(x)
title(‘原始信号’)
axis square
figure,plot(xn)
title(‘含噪信号’)
axis square
5 fliplr 矩阵的向左/向右跳转
FLIPLR(X) returns X,x是原来矩阵的进行行不变,列左右交换得到的
例如:X = 1 2 3 becomes 3 2 1
4 5 6
6 5 4。