刘鸿文版材料力学课件全套(1)
合集下载
刘鸿文主编(第4版) 高等教育出版社《材料力学》课件全套

解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F A
pm
F A
—— 平均应力
C
p lim F A0 A
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
力。 F 3、轴力正负号:
拉为正、压为负
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
F1
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F A
pm
F A
—— 平均应力
C
p lim F A0 A
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
力。 F 3、轴力正负号:
拉为正、压为负
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
F1
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
刘鸿文主编-材料力学课件

各向同性假设
总结词
各向同性假设认为材料在不同方向上具有相同的性质 和行为。
详细描述
各向同性假设是材料力学中的另一个重要假设。它意味 着材料在不同方向上具有相同的性质,如弹性模量、泊 松比等。这一假设使得我们可以用统一的数学模型来描 述材料的性质和行为,简化计算过程。在实际应用中, 对于一些各向同性较好的材料,可以采用统一的标准来 近似获得其整体性质。需要注意的是,各向同性材料并 不是指所有方向上的性质都完全相同,而是在一定范围 内可以近似认为各向同性。
机械零件设计
材料力学在机械领域中应用于各 种机械零件的设计,如轴、轴承
、齿轮等。
设备强度分析
对机械设备的强度进行分析,确保 设备在各种工况下的安全运行。
疲劳寿命预测
利用材料力学知识,预测机械零件 的疲劳寿命,提高设备的使用寿命 。
航空航天领域
飞行器结构分析
材料力学在航空航天领域 中应用于飞行器的结构分 析,确保飞行器的安全性 和稳定性。
详细描述
弹性力学理论是材料力学的基本理论之一,主要研究材料在弹性范围内受力时的变形和内力关系。该 理论基于胡克定律,即材料在弹性范围内受力时发生的形变与外力成正比,并引入了应变和应力等概 念来描述材料的变形和受力情况。
塑性力学理论
总结词
描述材料在超过弹性极限后发生塑性形 变时的应力-应变关系。
VS
根据船舶的工作环境和要求,选择具 有优良力学性能的材料。
05
材料力学的未来发展
新材料的研发
高强度轻质材料
如碳纤维复合材料、钛合金等, 在航空、汽车、体育器材等领域
有广泛应用前景。
智能材料
如形状记忆合金、压电陶瓷等, 具有自适应、自修复等特性,可 用于制造智能传感器、执行器等
刘鸿文版材料力学课件全套

B d
C 1.9m
例题2.2 悬臂吊车的斜杆AB为直径 d=20mm的钢杆,载荷W=15kN。当W 移到A点时,求斜杆AB横截面上的 A 应力。
0.8m
解: 当载荷W移到A点时,斜杆AB
受到拉力最大,设其值为Fmax。
讨论横梁平衡
W
Fmax
M
c
0
Fmax FRCx
C
Fmax sin AC W AC 0
FN 2 45° B
F
x
Fx 0 F
y
FN1 cos45 FN 2 0 FN1 sin 45 F 0
FN 2 20kN
目录
0
FN1 28.3kN
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A 1
45°
FN1 28.3kN
FN 2 20kN
2、计算各杆件的应力。
列平衡方程:
M FN
Y 0 FN P M (F ) 0
o
目录
Pa M 0 M Pa
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度, 即应力的概念。 F4 F A F pm —— 平均应力 C A F F3 p lim A 0 A —— C点的应力 F4 p 应力是矢量,通常分解为
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.2
A 1
45°
C
2
FN 1
y
图示结构,试求杆件AB、CB的 应力。已知 F=20kN;斜杆AB为直 径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。 解:1、计算各杆件的轴力。 B (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象 F
C 1.9m
例题2.2 悬臂吊车的斜杆AB为直径 d=20mm的钢杆,载荷W=15kN。当W 移到A点时,求斜杆AB横截面上的 A 应力。
0.8m
解: 当载荷W移到A点时,斜杆AB
受到拉力最大,设其值为Fmax。
讨论横梁平衡
W
Fmax
M
c
0
Fmax FRCx
C
Fmax sin AC W AC 0
FN 2 45° B
F
x
Fx 0 F
y
FN1 cos45 FN 2 0 FN1 sin 45 F 0
FN 2 20kN
目录
0
FN1 28.3kN
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A 1
45°
FN1 28.3kN
FN 2 20kN
2、计算各杆件的应力。
列平衡方程:
M FN
Y 0 FN P M (F ) 0
o
目录
Pa M 0 M Pa
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度, 即应力的概念。 F4 F A F pm —— 平均应力 C A F F3 p lim A 0 A —— C点的应力 F4 p 应力是矢量,通常分解为
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.2
A 1
45°
C
2
FN 1
y
图示结构,试求杆件AB、CB的 应力。已知 F=20kN;斜杆AB为直 径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。 解:1、计算各杆件的轴力。 B (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象 F
刘鸿文版材料力学课件全套1

目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F
FF
压缩
F
目录
§2.1 轴向拉伸与压缩的概念和实例
材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆
目录
§1.2 变形固体的基本假设
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
45° B
C
2
FN1
F
y
FN 2 45° B x
解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN 2 0 Fy 0 FN1 sin 45 F 0
F
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m F4
m
F3
F4
F3
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F
FF
压缩
F
目录
§2.1 轴向拉伸与压缩的概念和实例
材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆
目录
§1.2 变形固体的基本假设
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
45° B
C
2
FN1
F
y
FN 2 45° B x
解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN 2 0 Fy 0 FN1 sin 45 F 0
F
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m F4
m
F3
F4
F3
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
刘鸿文版材料力学课件全套

目录
FN
F
x
F
0
FN F 0 FN F
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
1 B 1 F2
2 C 2
3 D
已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画 出图示杆件的轴力图。
F1 F1 F1
FN kN
F3
3
F4
解:1、计算各段的轴力。 AB段
目录
§2.1
轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F F F
压缩
F
目录
§2.1
轴向拉伸与压缩的概念和实例
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m F m F FN FN F
a d
a ' b ab 0.025 6 m 125 10 200 ab
即为切应变 。
a'
ab, ad 两边夹角的变化:
0.025 tan 100 10 6 (rad ) 250
目录
§1.6 杆件变形的基本形式
杆件的基本变形:拉伸(压缩)、剪切、扭转、弯曲
目录
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
4、小变形与线弹性范围 认为构件的变形极其微小, 比构件本身尺寸要小得多。
如右图,δ远小于构件的最小尺寸, 所以通过节点平衡求各杆内力时,把支 架的变形略去不计。计算得到很大的简 化。
FN
F
x
F
0
FN F 0 FN F
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
1 B 1 F2
2 C 2
3 D
已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画 出图示杆件的轴力图。
F1 F1 F1
FN kN
F3
3
F4
解:1、计算各段的轴力。 AB段
目录
§2.1
轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F F F
压缩
F
目录
§2.1
轴向拉伸与压缩的概念和实例
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m F m F FN FN F
a d
a ' b ab 0.025 6 m 125 10 200 ab
即为切应变 。
a'
ab, ad 两边夹角的变化:
0.025 tan 100 10 6 (rad ) 250
目录
§1.6 杆件变形的基本形式
杆件的基本变形:拉伸(压缩)、剪切、扭转、弯曲
目录
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
4、小变形与线弹性范围 认为构件的变形极其微小, 比构件本身尺寸要小得多。
如右图,δ远小于构件的最小尺寸, 所以通过节点平衡求各杆内力时,把支 架的变形略去不计。计算得到很大的简 化。
材料力学课件-刘鸿文

FmaxA
Fmax
W
sin
W
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
0.8m
B C
Fmax
FRCx C FRCy
d
由三角形ABC求出
1.9m
sin BC 0.8 0.388
A
AB 0.82 1.92
Fmax
W
sin
15 0.388
38.7kN
斜杆AB的轴力为
FN Fmax 38.7kN
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A 1
例题2.2
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN 1
F
y
FN 2 45° B x
目录
§2.1 轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F
FF
压缩
F
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
目录
§1.1 材料力学的任务
{弹性变形 — 随外力解除而消失 塑性变形(残余变形)— 外力解除后不能消失 刚度:在载荷作用下,构件抵抗变形的能力。 3、内力:构件内由于 发生变形而产生的相 互作用力。(内力随 外力的增大而增大) 强度:在载荷作用下, 构件抵抗破坏的能力。
刘鸿文版材料力学课件4-5章.(1)
1kN.m
A
CD E F B
3.建立坐标系
0.89 kN= FAY
FS (kN)
O
0.89
M (kN.m)
1.5m
2kN
1.5m
1.5m
1.11
(+)
(-)
建立 FS-x 和 M-x
FBY
坐标系
=1.11 kN
4.应用截面法确定控
x 制面上的剪力和弯矩
值,并将其标在
FS- x和 M-x 坐标
系中。
O (-)
F
a
b
A
C
x1 x2
FAY
l
FS Fb / l
Fa / l
Fab/ l
M
例题4-3
图示简支梁C点受集中力作用。
B
试写出剪力和弯矩方程,并画 出剪力图和弯矩图。
解:1.确定约束力
FBY
MA=0, MB=0
FAy=Fb/l FBy=Fa/l
2.写出剪力和弯矩方程
x AC FS x1=Fb / l 0 x1 a
ql
ql 2 2
M y 0 M y qy y / 2 qly 0
M y qly qy2 / 2 0 y l
目录
平面刚架的内力
B
y
x
ql 2 2
ql
ql 2 2
M(x)
B FN(x)
x ql 2 2
FS(x)
横杆CB:C点向左为x
Fx 0
FN x 0 0 x l
Fy 0 FS x ql / 2 0
1/2×9qa/4×9a/4 =81qa2/32
B点的弯矩为
-1/2×7qa/4×7a/4 +81qa2/32=qa2
材料力学课件全套刘鸿文版课件
杆件受力与变形的的几种形式
内容 种类
轴向拉伸 及 压缩
Axial Tension
剪切 Shear
外力特点
扭转 Torsion
平面弯曲 Bending
组合受力(Combined Loading)与变形
变形特点
材料力学
Mechanics of Materials
刚体静力学中关于平衡的理论和方法能否应用于材料力学?
符合假设1、2、3的构件称为理想变形体,符合小变形假设的理想变形体称为理想弹性体,这就是材料力 学的研究对象。
材料力学
§1-3 外力及其分类
Mechanics of Materials
外力按作用方式分: 体积力: 重力、惯性力; 表面力:水压力、面接触的力;
表面力分: 分布力:连续作用于表面的力; 集中力:火车车轮对钢轨、支座等。
材料力学
Mechanics of Materials
应力p可分解:
正应力—— ; 切应力——。
p
应 力 单 位 : 牛 / 米 2 ( N/m2 ) , 称 为 帕 斯 卡 或 简 称 帕 ( Pa ) 。 通 常 使 用 的 是 兆 帕 , 即 MPa ( 1MPa=106Pa)
2021/7/4
构件 的抗 变形 能力
Mechanics of Materials
2021年7月4日星期日
材料力学
▪ 3 稳定性
保持 原有 平衡 状态 的能 力
Mechanics of Materials
2021年7月4日星期日
材料力学
Mechanics of Materials
在满足上述强度、刚度和稳定性要求的同时,须尽可能合理选用材料和降低材料消耗量,以节 约投资。
内容 种类
轴向拉伸 及 压缩
Axial Tension
剪切 Shear
外力特点
扭转 Torsion
平面弯曲 Bending
组合受力(Combined Loading)与变形
变形特点
材料力学
Mechanics of Materials
刚体静力学中关于平衡的理论和方法能否应用于材料力学?
符合假设1、2、3的构件称为理想变形体,符合小变形假设的理想变形体称为理想弹性体,这就是材料力 学的研究对象。
材料力学
§1-3 外力及其分类
Mechanics of Materials
外力按作用方式分: 体积力: 重力、惯性力; 表面力:水压力、面接触的力;
表面力分: 分布力:连续作用于表面的力; 集中力:火车车轮对钢轨、支座等。
材料力学
Mechanics of Materials
应力p可分解:
正应力—— ; 切应力——。
p
应 力 单 位 : 牛 / 米 2 ( N/m2 ) , 称 为 帕 斯 卡 或 简 称 帕 ( Pa ) 。 通 常 使 用 的 是 兆 帕 , 即 MPa ( 1MPa=106Pa)
2021/7/4
构件 的抗 变形 能力
Mechanics of Materials
2021年7月4日星期日
材料力学
▪ 3 稳定性
保持 原有 平衡 状态 的能 力
Mechanics of Materials
2021年7月4日星期日
材料力学
Mechanics of Materials
在满足上述强度、刚度和稳定性要求的同时,须尽可能合理选用材料和降低材料消耗量,以节 约投资。