第十四章__电子背散射衍射分析技术
背散射电子衍射分析

14.6 背散射电子衍射分析Electron Back‐scatter diffraction(EBSD)历史回顾• 1928 –Kikuchi –最早报告了电子背散射衍射花样EBSDP• 1972 –Venables et. al. –在SEM中得到了EBSDP • 1982 –Dingley–计算机辅助指标化• 1991 –Wright et. al. –全自动EBSD系统• 1993 –Michael et. al. –相鉴定Phase ID• 2000s –TSL –化学辅助相鉴定Chemically assisted phase differentiation理论依据菊池花样形成几何学T’’TS=T’M对TEM而言:菊池线位置和分布根据方程可知,衍射面(迹线)与电子束之间的夹角φ决定了菊池线的位置。
(1)当φ=0时,菊池线对称分布在(000)的四周(如右图),且分别位于(000)到(hkl)或(‐h‐k‐l)斑点距离的1/2处。
两线之间的衬度均匀且其强度比两线外的大。
(2)当φ=θ时,B亮线通过(hkl)斑点,暗线通过(000)。
(2)当φ≠0且φ≠θB 时,菊池线对不对称地分别在(000)两侧或者出现在(000)同侧。
计算法绘制菊池花样单晶Si 实验法制作标准菊池图的方法:一般按单位极图三角形的范围单个摄取的。
Ag2Al、Ti HCP晶体c/a=1.588一、EBSD分析的理论依据及工作原理◆理论依据利用从样品表面反弹回来的Array高能电子衍射,得到一系列的菊池花样。
根据菊池花样的特点得出晶面间距d和晶面之间的夹角θ,从数据库中查出可能的晶体结构和晶胞参数。
再利用化学成分等信息采用排除法确定该晶粒的晶体结构。
并得出晶粒与膜面法向的取向关系。
◆工作原理◆EBSD的装置总结EBSD分析的理论依据:利用从样品表面反弹回来的高能电子衍射,得到一系列的菊池花样。
根据菊池花样的特点得出晶面间距d和晶面之间的夹角θ,从数据库中查出可能的晶体结构和晶胞参数。
材料分析方法总结

第一章 X 射线物理学基础一、X 射线产生的主要装置和条件 主要装置:阳极靶材、阴极灯丝条件:a. 大量自由电子;b. 定向高速运动;c. 运动路径上遇到障碍(靶材)二、短波限一个电子在与阳极靶撞击时,把全部能量给予一个光子,这就是一个光量子所能获得的最大能量,即:h c/λ=eU ,此时光量子的波长即为短波限λSWL 。
三、连续X 射线(强度公式)大量电子在与靶材碰撞的过程中,能量不断减小,光子所获得的能量也不断减小,形成了一系列由短波限λSWL 向长波方向发展的连续波谱。
连续谱强度21iZU K I四、特征X 射线(莫塞莱定律)当X 射线管两端的电压增高到某一特定值U k 时,在连续谱的特定的波长位置上,会出现一系列强度很高,波长范围很窄的线状光谱,它们的波长对一定材料的阳极靶材有严格恒定的数值,此波长可作为阳极靶材的标志或特征,所以称为特征谱或标识谱。
莫塞莱定律:Z K 21) U - U ( i K I m n 3 (Un 为临界激发电压,原子序数Z 越大,Un 越大)五、X 射线吸收(透射)公式——(质量吸收系数:单质、化合物(固溶体、混合物)) 单质 m tm m e I eI I 00化合物ni i mim w 1六、光电效应、荧光辐射、俄歇效应光电效应:当入射X 射线光量子能量等于或略大于吸收体原子某壳层电子的结合能时,电子易获得能量从内层逸出,成为自由电子,称为光电子,这种光子击出电子的现象称为光电效应。
荧光辐射:因光电效应处于相应的激发态的原子,将随之发生如前所述的外层电子向内层跃迁的过程,同时辐射出特征X 射线,称X 射线激发产生的特征辐射为二次特征辐射,称这种光致发光的现象为荧光效应。
俄歇效应:原子K 层电子被击出后, L 层一个电子跃入 K 层填补空位,而另一个L 层电子获得能量逸出原子成为俄歇电子,称这种一个K 层空位被两个 L 层空位代替的过程为俄歇效应。
光电效应——光电子荧光辐射——荧光X 射线(二次X 射线) 俄歇效应——俄歇电子七、吸收限及其两个应用:滤波片的选择、靶材的选择吸收限:欲激发原子产生K、L、M等线系的荧光辐射,入射X 射线光量子的能量必须大于或至少等于从原子中击出一个K、L、M层电子所需的能量W K、W L、W M,如,W K= h K = hc / K,式中, K、 K是产生K系荧光辐射时,入射X射线须具有的频率和波长的临界值。
背散射电子衍射的原理

Electron Back-Scatter(ed) Diffraction (EBSD)
背散射电子衍射原理
背散射电子衍射技术原理 背散射电子衍射分析对样品的要求及制备方法 背散射电子衍射花样的采集与标定 背散射电子衍射分析基本原理
背散射电子衍射技术原理
控制方式 电子束控制 样品台控制
取向分析基本原理欧拉角Φ Nhomakorabeaϕ1
ϕ2
欧拉角
取向分析基本原理
欧拉角的形成
Φ
1. 绕OZ轴旋转ϕ1角; 2. 绕OX1轴旋转Φ角, OZ轴到达OZ′轴位置; 3. 绕OZ′轴旋转ϕ2角, (XYZ)坐标系与 (X′ Y′ Z′) 坐标系 重合
ϕ2 Φ ϕ1
y2 y1
ϕ1 x1
ϕ2
欧拉角(ϕ1,Φ,ϕ2)
背散射电子衍射仪的工作原理图
背散射电子衍射技术原理
Beam
O
散射电子强度随散射角的变化
EBSD样品相对于入射束的放置
背散射电子衍射技术原理
S
菊池衍射花样的产生
背散射电子衍射技术原理
菊池衍射花样的接收
背散射电子衍射技术原理
背散射电子衍射的空间分辨率
Angular accuracy θ95 (o)
其中M为取向变换矩阵,与欧拉角ϕ1,Φ,ϕ2有关
⎡ cos ϕ 1 cos ϕ 2 − sin ϕ 1 cos Φ sin ϕ 2 M = ⎢ − cos ϕ 1 sin ϕ 2 − sin ϕ 1 cos Φ cos ϕ 2 ⎢ ⎢ sin ϕ 1 sin Φ ⎣ sin ϕ 1 cos ϕ 2 + cos ϕ 1 cos Φ sin ϕ 2 − sin ϕ 1 sin ϕ 2 + cos ϕ 1 cos Φ cos ϕ 2 − cos ϕ 1 sin Φ sin Φ sin ϕ 2 ⎤ sin Φ cos ϕ 2 ⎥ ⎥ ⎥ cos Φ ⎦
第十四章__电子背散射衍射分析技术

PPT文档演模板
•图14-17 EBSD探头在扫描电镜样品室中的位置
第十四章__电子背散射衍射分析技术
第四节 电子背散射衍射技术原理及花样标定
一、电子背散射衍射技术原理 电子束入射到晶体内,会发生非弹性散射而向各个方向
传播,散射强度随着散射角增大而减小,若散射强度用箭头 长度表示,强度分布呈现液滴状,如图14-18所示
PPT文档演模板
第十四章__电子背散射衍射分析技术
第一节 概 述
电子背散射衍射(EBSD)技术,开始于20世纪80年代,该技 术是基于扫描电子显微镜为基础的新技术
利用此技术可以观察到样品的显微组织结构, 同时获得晶 体学数据,并进行数据分析
这种技术兼备了 X 射线统计分析和透射电镜电子衍射微区 分析的特点, 是X射线衍射和电子衍射晶体结构和晶体取 向分析的补充
第二节 电子背散射衍射技术相关晶体学基础
四、晶体取向数字表示方法及换算 晶体取向亦可用某一晶面(hkl)的法线、 该晶面上相互垂
直的2个晶向[uvw]和[xyz]在样品坐标系中的取向表示。这3个 方向可构成一个标准正交矩阵,称为变化矩阵g1
(14-2)
矩阵式(14-2)中, [x y z]、[h k l]和[u v w]为各自方向上单位矢 量的指数,即归一化指数
第十四章__电子背散射 衍射分析技术
PPT文档演模板
2020/11/28
第十四章__电子背散射衍射分析技术
第十四章 电子背散射衍射分析技术
本章主要内容 第一节 概 述 第二节 电子背散射衍射技术相关晶体学基础 第三节 电子背散射衍射技术硬件系统 第四节 电子背散射衍射技术原理及花样标定 第五节 电子背散射衍射技术成像及分析 第六节 电子背散射衍射技术数据处理
EBSD的工作原理、结构及操作

1.电子背散射衍射分析技术(EBSD/EBSP)简介20世纪90年代以来,装配在SEM上的电子背散射花样(Electron Back-scatt ering Patterns,简称EBSP)晶体微区取向和晶体结构的分析技术取得了较大的发展,并已在材料微观组织结构及微织构表征中广泛应用。
该技术也被称为电子背散射衍射(Electron Backscattered Diffraction,简称EBSD)或取向成像显微技术(O rientation Imaging Microscopy,简称OIM) 等。
EBSD的主要特点是在保留扫描电子显微镜的常规特点的同时进行空间分辨率亚微米级的衍射(给出结晶学的数据)。
EBSD改变了以往织构分析的方法,并形成了全新的科学领域,称为“显微织构”—将显微组织和晶体学分析相结合。
与“显微织构”密切联系的是应用EBS D进行相分析、获得界面(晶界)参数和检测塑性应变。
目前,EBSD技术已经能够实现全自动采集微区取向信息,样品制备较简单,数据采集速度快(能达到约36万点/小时甚至更快),分辨率高(空间分辨率和角分辨率能分别达到0.1m和0.5m),为快速高效的定量统计研究材料的微观组织结构和织构奠定了基础,因此已成为材料研究中一种有效的分析手段。
目前EBSD技术的应用领域集中于多种多晶体材料—工业生产的金属和合金、陶瓷、半导体、超导体、矿石—以研究各种现象,如热机械处理过程、塑性变形过程、与取向关系有关的性能(成型性、磁性等)、界面性能(腐蚀、裂纹、热裂等)、相鉴定等。
2.EBSD系统的组成与工作原理图1 EBSD系统的构成及工作原理系统设备的基本要求是一台扫描电子显微镜和一套EBSD系统。
EBSD采集的硬件部分通常包括一台灵敏的CCD摄像仪和一套用来花样平均化和扣除背底的图象处理系统。
图1是EBSD系统的构成及工作原理。
在扫描电子显微镜中得到一张电子背散射衍射花样的基本操作是简单的。
背散射电子衍射

背散射电子衍射仪结构图
样品(倾斜 70); (CCD) 录像相机; SEM控制部件、接口; 控制 EBSD 实验的计算机及软件.
背散射电子衍射原理
背散射电子衍射花样的采集与标定
菊池带的自动识别原理
• 手工:繁重 • 自动识别问题:有效的定出程度较弱的菊 池带→Hough变换(霍夫变换) • Hough变换:原始菊池花样上的一个点( XiYi)按 ( ) X i cos Yi sin 变成Hough空间 的一条正选弦曲线,原始图中同一条直线 上的不同点在Hough空间相交于同一点,原 始图上的一条直线对应Hough空间一个点, 菊池带的强度大幅度提高。一条菊池带变 换后为一对最亮和最暗的点,间距为菊池 带的宽度p。计算机按前5条最强的菊池带 位置,夹角定出晶面指数和晶带轴指数并 计算出取向。
背散射电子衍射的应用 1. 织构分析; 2. 晶粒间取向差分析; 3. 物相鉴定及含量测定; 4. 晶粒尺寸测定; 5. 应变分析。
背散射电子衍射
Electron Back-Scatter(ed) Diffraction
(EBSD)
朱强
背散射电子衍射技术
• 基于扫描电镜(SEM)中电子束在倾斜样 品表面激发出并形成的衍射菊池带的分析 从而确定晶体结构、取向及相关信息的方 法。
• EBSD改变了以往织构分析的方法(X-ray
衍射仪法),并形成了全新的科学领域,称为 “显微织构”———将显微组织和晶体学 分析相结合
材料科学研究-电子背散射衍射原理
电子背散射衍射原理
菊池衍射原理(回顾)
非弹性散射; 布拉格衍射条件
衍射锥 -> 菊池线 菊池带随晶体转动
-> 精确测量晶体取向
课程内容
一 电子背散射衍射(EBSD)
二 扫描电镜的透射菊池衍射
三
EBSD仪器简介ቤተ መጻሕፍቲ ባይዱ
四
EBSD谱的标定
五
EBSD分析结果
一、电子背散射衍射(EBSD)
为了缩短电子运动路径,让更多的背散射电子参 与衍射而获得更强的衍射信号,需要将样品倾转 至70°左右
三、EBSD仪器简介
EBSD系统由三部分组成:扫描电镜、图像采集设备以及软件系统
三、EBSD仪器简介
牛津仪器的HKL Max EBSD探头位于扫描电 镜样品室外的部分
EBSD探头深入样品室后,扫描电镜的物镜、 倾转样品和EBSD探头三者的几何位置
四、EBSD谱的标定
• 识别菊池带 • 确定晶面和带轴 • 确定晶体取向
EBSD衍射谱角域比透射电镜菊池谱宽得多,因此 可看到多组相交的菊池带。
每条菊池带的中心线对应着一个反射晶面。菊池 带相交点称为区轴(Zone Axis)。相交于同一区轴 的菊池带所对应晶面亦属于同一晶带,区轴实际 上对应于该晶带的晶带轴。
二、扫描电镜的透射菊池衍射
传统的EBSD分辨率受限于电子束与样品较大的交互作用体积 利用电子透明的透射电镜样品和传统的EBSD硬件和软件 表征平均晶粒尺寸<100 nm的纳米结构材料
五、EBSD分析结果
逐点分析 线扫描 面扫描
• 图中每个像素的数据代表晶体取向,可以表示成欧拉角、轴角对、旋转矩阵等 • 如果相同取向用相同的色彩着色,可以获得取向分布图
电子背散射衍射(EBSD)技术简介 整理
Z SCS X
Y
[001] CCS [100]
[010]
(2) Miller Indices
(hkl)[uvw] , (hkl)||轧面, [uvw]||轧向 {hkl}<uvw> Miller指数族 For a cubic crystal structure, (hkl)[uvw] 等效于 [hkl]||Z and [uvw]||X
=25 µm ;B C +G B +D T +E 1-3;S tep=0.7 µm ;G rid200x200
2.2 晶粒取向分布及取向差
Ni晶粒的取向差统计图,大多数晶粒的取向差小于 3或等于60晶粒取向差沿一直线的变化。在晶粒内部 取向差变化很小(< 3);在晶界处取向差出现一个 突变,如15、40、60等
(3) Euler angle
Euler角(φ1 , Φ, φ2)的物理意义:
第一次:绕Z轴(ND) 转φ1 角
第二次:绕新的X轴(RD) 转Φ角
第三次:绕新的Z轴(ND) 转φ2角
这时样品坐标轴和晶体坐标轴重合。
晶体坐标系:[100]、[010]、[001] 样品坐标系:轧向RD、横向TD、法向 ND
织构分析测试技术的比较
织构的检测方法的比较
X射线衍射法:定量测定材料宏观织构,
统计性好,但分辨率较低(约1mm), 无形貌信息;
SEM及电子背散射衍射(EBSD) :
微观组织表征及微区晶体取向测定(空间分辨率可达到0.1μm)
TEM及菊池衍射花样分析技术:
微观组织表征及微区晶体取向测定(空间分辨率可达到30nm)
目录
1 晶体学及织构基础 2 EBSD技术的原理 3 EBSD数据分析及图像解释 4 镁合金EBSD样品制备方法
材料分析方法第3版周玉出版社配套PPT课件第1章机械工业出版社
第十章 电子衍射
第十一章 晶体薄膜衍衬成像分析
第十二章 高分辨透射电子显微术
第十ቤተ መጻሕፍቲ ባይዱ章 扫描电子显微镜
第十四章 电子背散射衍射分析技术
第十五章 电子探针显微分析
第十六章 其他显微分析方法
2
绪论
本课程的特点:以分析仪器和实验技术为基础
本课程的内容主要包括:X射线衍射仪、电子显微镜等分 析仪器的结构与工作原理、及与此相关的材料微观组织结 构和微区成分的分析方法原理及其应用
L、 M、N、顺序递增
16
第二节 X射线的产生及X射线谱
二、特征(标识)X射线谱 在莫塞莱定律 (1-6)式中,
K2
me 4
8 02h3c
1 n22
1 n12
R
1 n22
1 n12
其中R 称为里德伯常数,R = 1.0974107m-1;n1和n2是电子 跃迁前后壳层的主量子数,如 K 层 n =1,L 层n =2,M层 n =3等,…
X射线具有波粒二相性,因其波 长较短,其粒子性较为突出,即 可以把X射线看成是一束具有一 定能量的光量子流,
E = h = hc/
(1-2)
式中,h是普朗克常数;c是光速; 是X射线的频率, 是X射线的波长
7
第一节 X射线的性质
X射线穿过不同介质时,折射系数接近1,几乎不产生折射 现象
X射线肉眼不可见,但具有能使荧光物质发光、能使照相 底板感光、能使一些气体产生电离的现象
SWL= K /U
(1-5)
式中,K =1.24nmkV。而绝大部分电子到达阳极靶经多次碰
撞消耗其能量,因每次能量消耗不同而产生大于SWL的不同
波长的X射线,构成连续谱 13
课件-电子背散射衍射EBSD
•
• 从EBSD观点来看,多晶材料有如下两个特征:
第一,晶体中不同的晶粒有不同的生长取向。 第二,多晶材料包含晶界。利用EBSD可以对晶体材 料进行分析
Zhengmin Li
• 1972年,Venables 和 Harland在扫描电
镜(SEM)中,借助于直径为30CM的荧 光屏和一台闭路电视,得到了背散射电子 衍射花样,称为背散射电子衍射花样 (EBSP)又称菊池花样。 • 20世纪80年代后期, Dingley把荧光屏和 电视摄像机组合到一起,并以此得到了晶 体取向的分布图。
Zhengmin Li
晶系 三斜
原始格子 (P)
底心格子 (C ) C=I
体心格子 (I) I=F
面心格子 (F) F=P
晶胞参数特征 a≠b≠c; α≠β≠γ≠90° a≠b≠c;α=γ=
单斜
I=F
F=C
90°,β≠90° a≠b≠c, α=β=γ=90°
斜方
四方
C=P
F=I
a=b≠c;α=β=γ= 90° a=b=c; α=β=γ≠90°
Zhengmin Li
20世纪90年代以来,装配在SEM上的 电子背散射衍射花样(Electron Backscattering Patterns,简称EBSP)晶体微区取 向和晶体结构的分析技术取得了较大的发 展,并已在材料微观组织结构及微织构表 征中广泛应用。该技术也被称为: 电子背散射衍射(Electron Backscatter Diffraction,简称EBSD) 或取向成像显微技术(Orientation Imaging Microscopy,简称OIM)
Zhengmin Li
nλ =2dsin θ
EBSD Geometry
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[010]
TD
O φ1
φ1
TD
[100] RD
ND
φ1 φ2 [100]
图14-6 用以描述晶体旋转的欧拉角
12
第二节 电子背散射衍射技术相关晶体学基础
四、晶体取向数字表示方法及换算 晶体取向数字表示方法主要包括,指数、矩阵、欧拉角 和轴角对 1) 指数法 用(hkl)[uvw]表示, 即晶体中(hkl)晶面平行于板材 轧面,[uvw]方向平行于轧向 2) 矩阵法 用取向矩阵表示,如式(14-1),即晶体的坐标系与 样品坐标系各轴之间的夹角关系 3) 欧拉角与欧拉空间 用1、 和2 表示,利用3个欧拉角可 建立坐标系,构成欧拉空间,如图14-7所示
(14-1)
式中,1, 2和 3 分别是样品坐标系RD与晶体坐标系[100], [010]和[001]间夹角;1, 2和 3是TD与[100],[010]和[001] 间夹角; 1, 2和3是ND与[100],[010]和[001]间夹角
该矩阵为正交矩阵,其中有3个分量是独立的, 只需3个独立 分量即可确定晶体取向。但用此方法反映晶体取向比较复杂
第二节 电子背散射衍射技术相关晶体学基础 第三节 电子背散射衍射技术硬件系统 第四节 电子背散射衍射技术原理及花样标定 第五节 电子背散射衍射技术成像及分析 第六节 电子背散射衍射技术数据处理
2
第一节
概
述
电子背散射衍射(EBSD)技术,开始于20世纪80年代,该技 术是基于扫描电子显微镜为基础的新技术
(a) (b)
图14-9 镍的{001}极图
18
第二节 电子背散射衍射技术相关晶体学基础
五、晶体取向图像表示法 2) 反极图法 反极图的构造过程如图 14-10 所示, 反极图常取单 位投影三角形,用以描述样 品坐标轴在晶体坐标系中的 位置
如,每个晶粒有一个方向与 RD 平行, 这一方向的极射 赤面投影,为该方向的极点
3
第一节
概
述
EBSD的发展大致经历以下几个阶段: 1928年,日本学者Kikuchi在透射电镜中,首次发现了带状 电子衍射花样,并对此衍射现象进行解释, 故称这种线条 花样为菊池花样 1972年,Venables和Harland在扫描电镜中,得到了背散射 电子衍射花样 20世纪80年代后期, Dingley得到了晶体取向的分布图。并 成功地将EBSD技术商品化
(14-3)
令g1= g2,可得米勒指数与欧拉角的互换公式
Φ arccosl
k 2 arccos 2 2 h k
(14-5)
(14-6)
(14-7)
16
1 arcsin
w 2 2 h k
第二节 电子背散射衍射技术相关晶体学基础
ND [100] A [001] TD RD B RD B A C TD C [100] β
17
ND α
RD
O
TD
图14-8 极图法示意图
D
第二节 电子背散射衍射技术相关晶体学基础
五、晶体取向图像表示法 1) 极图法 如图14-9a所示, 001极点的分布是离散的,说明多晶体 晶粒取向是混乱的;当多晶体存在织构时,极点出现不均匀 分布,用极点密度表示取向强度,强度等级用颜色或等密度 线表示,见图14-9b
第二篇 材料电子显微分析
第八章 第九章 第十章 第十二章 电子光学基础 透射电子显微镜 电子衍射
第十一章 第十三章
第十四章 第十五章 第十六章
晶体薄膜衍衬成像分析
高分辨透射电子显微术
扫描电子显微镜
电子背散射衍射分析技术 电子探针显微分析 其他显微结构分析方法
1
第十四章 电子背散射衍射分析技术
本章主要内容 第一节 概 述
TD
图14-11 镍的反极图
20
第二节 电子背散射衍射技术相关晶体学基础
五、晶体取向图像表示法 3) 取向分布函数ODF 利用取向空间的g (1, , 2 )的分布密度f ( g ),则可表示 整个空间的取向分布,称其为空间取向分布函数(ODF)
如图14-12所示, ODF反映的是三维空间取向分布
晶粒 B
图14-4 重合位置点阵构造示意图
7
第二节 电子背散射衍射技术相关晶体学基础
二、相界面
结构或成分不同的两间的界面称为相界面。 相界面可分 为三种类型
1) 共格相界 界面上的原子同时位于两相晶格点阵的结点上, 此时界面两侧的两相存在取向关系; 界面附近常伴有晶格 畸变。合金脱溶分解初期形成的新相, 或两相点阵常数相 近,或晶体结构相同时,往往具有共格界面 2) 非共格相界 完全没有共格关系的界面。当两相的晶体结构 存在较大差别,或第二相尺寸较大时,两相间为此类界面 3) 部分共格相界 借助位错维持其共格性的界面。此类界面在 马氏体转变及外延生长晶体中较常见
0o
5o
10o
15o
20o
25o
30o
35o
40o
45o
50o
55o
60o
65o
70o
(0o ~70o)
(0o~70o)
75o
80o
85o
90o
图14-13 镍的ODF截面图
22
第三节 电子背散射衍射技术硬件系统
一、硬件系统整体布局示意 EBSD分析系统如图14-15所示。 整个系统由以下几部分 构成:样品、电子束系统、样品台系统、SEM控制器、计算 机系统、高灵敏度的CCD相机、图像处理器等。
利用此技术可以观察到样品的显微组织结构, 同时获得晶 体学数据,并进行数据分析 这种技术兼备了 X 射线统计分析和透射电镜电子衍射微区 分析的特点, 是X射线衍射和电子衍射晶体结构和晶体取 向分析的补充
电子背散射衍射技术已成为研究材料形变、 回复和再结晶 过程的有效分析手段,特别是在微区织构分析方面的应用
图14-10 反极图构造示意图
19
第二节 电子背散射衍射技术相关晶体学基础
五、晶体取向图像表示法 2) 反极图法
ND RD
图14-11所示为镍的 ND、 RD和TD反极图。 可以看出,RD反极图中 001附近极点密度最高, 说明大多数晶粒的[001] 晶向与轧向RD平行 此结论与图14-9 给出的 结果一致
20世纪90年代初, 成功研究出自动计算取向、 有效图像处 理以及自动逐点扫描技术,之后能谱分析和EBSD分析的 有效结合使相鉴定更加有效和准确
2000年以后, EBSD标定速度的大幅提升,加快了EBSD的 发展和推广 4
第二节 电子背散射衍射技术相关晶体学基础
一、晶界类型 1) 小角度晶界 指相邻晶粒位向差小于10的晶界,一般 2 其中包括倾斜晶界、扭转晶界和重合晶界等,分见图14-1、 图14-2和图14-3
θ
晶粒 A
晶粒 B
图14-3 扭转晶界构造示意图
6
第二节 电子背散射衍射技术相关晶体学基础
一、晶界类型 2) 大角度晶界 指相邻晶粒的取向差大于10的晶界 常见模型有,皂泡模型、过冷液体模型、 小岛模型和重合 位置点阵模型,重合位置点阵模型见图14-4、
[001] 晶粒 A
[010] O [100]
四、晶体取向数字表示方法及换算
0 0 cos1 sin 1 cos 2 sin 2 0 1 g 2 sin 2 cos 2 0 0 cosΦ sin Φ sin 1 cos1 0 0 1 0 sin Φ cosΦ 0 0 cos1 cos 2 sin 1 sin 2 cosΦ sin 1 sin 2 cos1 cos 2 cosΦ = cos1 sin 2 sin1 cos 2 cosΦ sin1 sin 2 cos1 cos 2 cosΦ sin 1 sin Φ cos1 sin Φ 0 0 1 sin 2 sin Φ cos 2 sin Φ cosΦ
A C O D
(φ1A,Φ A,φ 2A) B TD ΦA φ1A O φ2A φ2
RD φ1
图14-7 样品坐标系和晶体取向及欧拉空间
图 14-7 样品坐标系和晶体取向及欧拉空间
14
第二节 电子背散射衍射技术相关晶体学基础
四、晶体取向数字表示方法及换算 晶体取向亦可用某一晶面(hkl)的法线、 该晶面上相互垂 直的2个晶向[uvw]和[xyz]在样品坐标系中的取向表示。这3个 方向可构成一个标准正交矩阵,称为变化矩阵g1
五、晶体取向图像表示法 1) 极图法 如图14-8,晶胞置于样品坐标系RD-TD-ND的中心, B为 参考点,RD、TD所在平面为投影面, 则C点即为 [100] 晶向 的极点(参见第七章)。由图示可得[001]极轴 r 为 r = sin cos k1 + sin sin k2 + cos k3 (14-8) 式中, k1、k2和k3是RD、TD和ND方向的单位矢量
(a) φ2 3600 (b) φ2 3600 (c) φ2 3600
Φ 1800 3600
Φ φ1 1800 φ1 3600
Φ 1800 φ1 3600
21
图14-12 欧拉空间及空间分割示意图
第二节 电子背散射衍射技术相关晶体学基础
五、晶体取向图像表示法 3) 取向分布函数ODF 为使用方便,通常用等2 截面图,见图14-13
晶粒 A 晶粒 B
[010]
Φ
θ
Φ-θ/2
θ/2
晶粒 A
晶粒 B
Φ+θ/2 [100]
图14-1 对称倾斜晶界示意图
图14-2 不对称倾斜晶界示意图
5
第二节 电子背散射衍射技术相关晶体学基础
一、晶界类型 1) 小角度晶界 指相邻晶粒位向差小于10的晶界,一般 2