湖南省长沙市2019年中考数学真题试题【含答案】

合集下载

湖南长沙中考数学及答案word精品文档9页

湖南长沙中考数学及答案word精品文档9页

2019年长沙市初中毕业水平考试试卷数 学注意事项:1、答题前,考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共26个小题,考试时量120分钟,满分120分.一、选择题(在下列各题的四个选项中,只有一项是符合题意的。

请在答题卡中填涂符合题意的选项,本题共10个小题,每小题3分,共30分)1.(2019湖南长沙,1,3分) | -2|等于( )A .2B . -2 12C .D .-12【答案】A2.(2019湖南长沙,2,3分)下列长度的三条线段,能组成三角形的是( )A . 1、1、2B . 3、4、5C . 1、4、6D . 2、3、7【答案】B3.(2019湖南长沙,3,3分)下列计算正确的是( )A . 3-1=-3B . a 2·a 3=a 6C .(x +1)2=x 2+1D .【答案】D4. (2019湖南长沙,4,3分)如图,在平面直角坐标系中,点P (-1,2)向右平移3个单位长度后的坐标是( )A .(2,2)B .(-4,2)C .(-1,5)D .(-1,-1)【答案】A5.(2019湖南长沙,5,3分)一个多边形的内角和是900°,则这个多边形的边数是( )A . 6B . 7C . 8D . 9【答案】B6.(2019湖南长沙,6,3分)若12x y ì=ïïíï=ïî是关于x ,y 的一元二次方程ax -3y =1的解,则a · P O 123 1 2 3-1 -2 -2-1(第4题) x y的值为( )A . -5B . -1C . 2D . 7【答案】D7. (2019湖南长沙,7,3分)如图,关于抛物线y =(x -1)2-2,下列说法错误的是( )A .顶点坐标是(1,-2)B .对称轴是直线x =1C .开口方向向上D .当x >1时,y 随x 的增大而减小【答案】D8. (2019湖南长沙,8,3分)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美”相对面上的汉字是( )A .我B .爱C .长D . 沙【答案】C9. (2019湖南长沙,9,3分)谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A 等级的人数占总人数的( )A .6%B .10%C .20%D .25%【答案】C10. (2019湖南长沙,10,3分)如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,AD =2,爱 我美 丽 长沙(第7题)(第9题)A B C D E 人数等级3101215BC =4,则梯形的面积为( )A .3B .4C .6D .8【答案】A二、填空题(本题共8个小题,每小题3分,共24分)11. (2019湖南长沙,11,3分)分解因式:a 2-b 2=_______________.【答案】(a+b )(a-b )12. (2019湖南长沙,12,3分)反比例函数y =k x的图象经过点A (-2,3),则k 的值为________. 【答案】-613.(2019湖南长沙,13,3分)如图,CD 是△ABC 的外角∠ACE 的平分线,AB ∥CD , ∠ACE =100°,则∠A =_____°.【答案】5014. (2019湖南长沙,14,3分)化简:11x x x+-=____________. 【答案】115. (2019湖南长沙,15,3分)在某批次的100件产品中,有3件是不合格产品,从中任意抽取一件检验,则抽到不合格产品的概率是__________. 【答案】310016. (2019湖南长沙,16,3分)菱形的两条对角线的长分别是6cm 和8cm ,则菱形的周长是________ cm .【答案】2017. (2019湖南长沙,17,3分)已知a-3b =3,则8-a +3b 的值是________.【答案】518. (2019湖南长沙,18,3分)如图,P 是⊙O 的直径AB 延长线上的一点,PC 与⊙O 相切于点C ,若∠P =20°,则∠A =_____°.BC(第10题) A B CDE (第13题)【答案】35°三、解答题(本题共2个小题,每小题6分,共12分)19. (2019湖南长沙,19,6分)已知ab =20190,c=-(-2),求a-b+c 的值.【答案】解:a,b =20190=1,c=-(-2)=2,把a =3,b =1,c=2代入a-b+c 中,原式=3-1+2=0.20. (2019湖南长沙,20,6分)解不等式2(x -2)≤6-3x ,并写出它的正整数解.【答案】解:去括号,得2x -4≤6-3x .移项,得2x +3x ≤6+4.合并同类项,得5x ≤10.不等式两边同除以5,得x ≤2.它的正整数解为1,2.四、解答题(本题共2个小题,每小题8分,共16分)21.(2019湖南长沙,21,8分)“珍惜能源,从我做起,节约用电人人有责” .为了解某小区居民节约用电情况,物业公司随机抽取了今年某一天本小区10户居民的日用电量,数据如下:(1)求这组数据的极差和平均数;(2)已知去年同一天这10户居民的平均日用电量为7.8度,请你估计,这天与去年同日相比,该小区200户居民这一天节约了多少度电?【答案】解:(1)这组数据的最大值是5.6,最小值是3.4,因此这组数据的极差为:5.6-3.4=2.2(度). 这组数据的平均数为: 4.4 4.0 5.0 5.6 3.4 4.8 3.4 5.2 4.0 4.2441010+++++++++==x = 4.4(度). (2)200×(7.8-4.4)=680(度).即该小区200户居民这一天大约节约了680度电.22. (2019湖南长沙,22,6分)如图,在⊙O 中,直径AB 与弦CD 相交于点P ,∠CAB =40°,∠APD =65°.(1)求∠B 的大小;(2)已知圆心O 到BD 的距离为3,求AD 的长.(第18题) P【答案】解:(1)∵∠APD 是△APC 的外角,∴∠APD =∠CAP +∠C .∴∠C =∠APD -∠CAP =65°-40°=25°.又∵»»=AD AD ,∴∠B =∠C=25°. (2)过点O 作OE ⊥BD ,垂足为E ,则OE =3.由垂径定理可知BE =DE .∵OA =OB .∴线段OE 是△ABD 的中位线.∴AD =2OE =6.五、解答题(本题共2个小题,每小题9分,共18分)23. (2019湖南长沙,23,9分)某工程队承包了某段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?【答案】解:(1)设乙班组平均每天掘进x 米,则甲班组平均每天掘进(x +0.6)米,根据题意,得 5x +5(x +0.6)=45.解此方程,得x =4.2.则x +0.6=4.8.答:,乙班组平均每天掘进4.2米.(2)改进施工技术后,甲班组平均每天掘进:4.8+0.2=5(米);乙班组平均每天掘进:4.2+0.3=4.5(米).改进施工技术后,剩余的工程所用时间为:(1755-45)÷(5+4.5)=180(天).按原来速度,剩余的工程所用时间为:(1755-45)÷(4.8+4.2)=342(天).少用天数为:342-180=162(天).答:能够比原来少用162天完成任务.24. (2019湖南长沙,24,9分)如图是一座人行天桥的引桥部分的示意图,上桥通道是由两段互相平行并且与地面成37°角的楼梯AD 、BE 和一段水平平台DE 构成.已知天桥高度BC =4.8米,引桥水平跨度AC =8米.(1)求水平平台DE 的长度;(2)若与地面垂直的平台立柱MN 的高度为3米,求两段楼梯AD 与BE 的长度之比. (参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75)【答案】解:(1)延长线段BE ,与AC 相交于点F ,如图所示.∵AD ∥BF ,DE ∥AC ,∴四边形AFED 是平行四边形.∴DE =AF ,∠BFC =∠A =37°.在Rt △B C F 中,tan ∠BFC =BC CF ,∴CF =tan 37BC o =4.80.75=6.4(米). ∴DE =AF =AC -CF =8-6.4=1.6(米).答:水平平台DE 的长度为1.6米.(2)延长线段DE ,交BC 于点G .∵DG ∥AC ,∴∠BGM =∠C =90°.∴四边形MNCG 是矩形,∴CG =MN =3(米).∵BC =4.8米,所以BG =BC -CG =1.8(米).∵DG ∥AC ,∴△BEG ∽△BFC .而AD =EF ,故53AD BE =. 六、解答题(本题共2个小题,每小题10分,共20分)25. (2019湖南长沙,25,10分)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x -1,令y =0,可得x =1,我们说1是函数y=x -1的零点.已知函数y =x 2-2mx -2(m +3)(m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为1x 和2x ,且121114x x +=,此时函数与x 轴的交点分别为A 、B (点A 在点B 左侧).点M 在直线y =x-10上,当MA +MB 最小时,求直线AM 的解析式.【答案】解:(1)当m =0时,y =x 2-6.令y =0,x 2-6=0,解得x或x=-.A D EBC MN 37°A D EBC MN 37°F G即m =0时,求该函数的零点为、-.(2)证明:令y =0,则x 2-2mx -2(m +3)=0.由于b 2-4ac =(-2m )2-4·1·[-2(m +3)]=4m 2+8m +24=4(m 2+2m +1-1)+24=4(m +1)2+20. 因为无论m 为何值,4(m +1)2≥0,所以4(m +1)2+20>0.即:无论m 取何值,一元二次方程x 2-2mx -2(m +3)=0一定有两个不相等的实数根,因此无论m 取何值,函数y =x 2-2mx -2(m +3)(m 为常数)总有两个零点.(3)设函数的两个零点分别为1x 和2x ,则1x 和2x 是一元二次方程x 2-2mx -2(m +3)=0的两个根,所以1x +2x =2m ,1x ·2x =-2(m +3). 则12121211x x x x x x ++=22(3)3m m m m ==-++. 又121114x x +=, 所以3m m +=14. 解此分式方程,得m =1,经检验,m =1是3m m +=14的根. 所以y =x 2-2x -8.此函数与x 轴的交点坐标为A (-2,0),B (4,0).设直线y=x-10与x 轴交与点C (10,0),与y 轴交于点D (0,-10),过点B 作直线y=x-10的垂线,垂足为点E ,延长BE 到点B ′,使BE=B ′E ,连接AB ′,交y=x-10于点M ,则此时MA +MB 最小.连接B ′C ,由轴对称性质可知:∠B ′CD=∠BCD=45°.∴∠B ′CA=90°∵点C (10,0),点A (-2,0),∴OC =10,B ′C = BC =OC -BC =6.∴B ′坐标为(10,-6).设直线AB ′的解析式为y=kx+b ,把B ′(10,-6),A (-2,0)代入上式:xE10620k b k b ì+=-ïïíï-+=ïî,解得22121k b ìïï=-ïíïï=-ïî. 故当MA +MB 最小时,直线AM 的解析式为y=-12x +1. 26. (2019湖南长沙,26,10分)如图,在平面直角坐标系中,已知点A (0,2),点P 是x 轴上一点,以线段AP 为一边,在其一侧作等边三角形APQ .当点P 运动到原点O 处时,记Q 的位置为B .(1)求点B 的坐标;(2)求证:当点P 在x 轴上运动(P 与Q 重合)时,∠ABQ 为定值;(3)是否存在点P ,使得以A 、O 、Q 、B 为顶点的四边形是梯形?若存在,请求出P 点的坐标;若不存在,请说明理由.【答案】(1)过点B 作BC ⊥y 轴,垂足为点C .∵△AOB 是等边三角形,点A 坐标为(0,2),∴AB =BO =OA =2.在Rt △ABC 中,AC =12OA =1,BC. ∴点B1).(2)∵△APQ 、△AOB 是等边三角形,∴AO =AQ ,AO =AB ,∠P AQ =∠BAO =60°,∴∠P AO =∠BAQ .∴△P AO ≌△ABQ .∴∠ABQ =∠AOP =90°故当点P 在x 轴上运动(P 与Q 重合)时,∠ABQ 为定值.(3)存在点P ,使得以A 、O 、Q 、B 为顶点的四边形是梯形.∵∠AOB =60°,∠OBQ =∠ABQ -∠ABO =30°,∴AO 与BQ 不可能平行.①如果AB ∥OQ ,如图所示,则∠BOQ =∠ABO =60°,∠OQB =90°,∠OBQ =30°.x(第26题)=∵OB =OA=2,∴OQ =1,BQ由△P AO ≌△ABQ 可得OP =BQ.∴点P 的坐标为:(0).②如果AQ ∥OB ,如图所示,此时点A ,B ,P 在同一条直线上,且∠APO =30° 在Rt △AOP 中,OA =2.∴OP =P 的坐标为:(0).因此,存在点P ,使得以A 、O 、Q 、B 为顶点的四边形是梯形,点P 的坐标为(,0)或(0).(第26题)x(第26题)。

2019年湖南省长沙市中考数学试卷(含答案与解析)

2019年湖南省长沙市中考数学试卷(含答案与解析)

数学试卷 第1页(共30页) 数学试卷 第2页(共30页)绝密★启用前湖南省长沙市2019年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各数中,比3-小的数是( ) A .5-B .1-C .0D .12.根据《长沙市电网供电能力提升三年行动计划》,明确到2020年,长沙电网建设改造投资规模达到15 000 000 000元,确保安全供用电需求.数据15 000 000 000用科学记数法表示为( ) A .91510⨯B .91.510⨯C .101.510⨯D .110.1510⨯ 3.下列计算正确的是( ) A .325a b ab += B .326()a a = C .632a a a ÷=D .222()a b a b +=+ 4.下列事件中,是必然事件的是( )A .购买一张彩票,中奖B .射击运动员射击一次,命中靶心C .经过有交通信号灯的路口,遇到红灯D .任意画一个三角形,其内角和是180︒5.如图,平行线AB ,CD 被直线AE 所截,180∠=︒,则2∠的度数是( )A .80︒B .90︒C .100︒D .110︒ 6.某个几何体的三视图如图所示,该几何体是( )ABCD7.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( ) A .平均数B .中位数C .众数D .方差 8.一个扇形的半径为6,圆心角为120︒,则该扇形的面积是( ) A .2πB .4πC .12πD .24π9.如图,Rt ABC △中,90C ∠=︒,30B ∠=︒,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于M ,N 两点,作直线MN ,交BC 于点D ,连接AD ,则CAD ∠的度数是( )A .20︒B .30︒C .45︒D .60︒10.如图,一艘轮船从位于灯塔C 的北偏东60︒方向,距离灯塔60n mile 的小岛A 出发,沿正南方向航行一段时间后,到达位于灯塔C 的南偏东45︒方向上的B 处,这时轮船B 与小岛A 的距离是毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共30页) 数学试卷 第4页(共30页)( )A.mile B .60mile n C .120mile nD.(30mile n +11.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是 ( )A . 4.5,0.51y x y x =+⎧⎨=-⎩B . 4.5,21y x y x =+⎧⎨=-⎩C . 4.5,0.51y x y x =-⎧⎨=+⎩D . 4.5,21y x y x =-⎧⎨=-⎩12.如图,ABC △中,10AB AC ==,tan 2A =,BE AC ⊥于点E ,D 是线段BE 上的一个动点,则CD +的最小值是( )A.B.C.D .10第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 13.在实数范围内有意义,则实数x 的取值范围是 .14.分解因式:29am a -= . 15.不等式组10360x x +⎧⎨-⎩≥<的解集是 .16.在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上根据试验所得数据,估计“摸出黑球”的概率是 .(结果保留小数点后一位) 17.如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D,E ,测得50DE =m ,则AB 的长是m.18.如图,函数ky x=(k 为常数,0k >)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴、y 轴于C ,D 两点,连接BM 分别交x 轴、y 轴于点E ,F .现有以下四个结论:①ODM △与OCA △的面积相等;②若BM AM ⊥于点M ,则30MBA ∠=︒;③若M 点的横坐标为1,OAM △为等边三角形,则2k =;④若25MF MB =,则数学试卷 第5页(共30页) 数学试卷 第6页(共30页)2MD MA =.其中正确的结论的序号是 .(只填序号)三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:11|2cos602-⎛⎫+-︒ ⎪⎝⎭.20.(本小题满分6分)先化简,再求值:22314411a a a a a a a +++⎛⎫-÷⎪---⎝⎭,其中3a =.21.(本小题满分8分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不请根据以上信息,解答下列问题:(1)本次调查随机抽取了 名学生;表中m = ,n = ; (2)补全条形统计图;(3)若全校有2 000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.22.(本小题满分8分)如图,正方形ABCD ,点E,F分别在AD ,CD 上,且DE CF =,AF 与BE 相交于点G . (1)求证:BE AF =;(2)若4AB =,1DE =,求AG 的长.23.(本小题满分9分)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共30页) 数学试卷 第8页(共30页)(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?24.(本小题满分9分)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似: ( 命题) ②三个角分别相等的两个凸四边形相似: ( 命题) ③两个大小不同的正方形相似.( 命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,111ABC A B C ∠=∠,BCD ∠=111B C D ∠,111111AB BC CDA B B C C D .求证:四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)如图2,四边形ABCD 中,AB CD ∥,AC 与BD 相交于点O ,过点O 作EF AB ∥分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFCD 的面积为S 2,若四边形ABFE 与四边形EFCD 相似,求21SS 的值.图1图225.(本小题满分9分)已知抛物线2()(2222)00y x b x c =-+-+-(b ,c 为常数). (1)若抛物线的顶点坐标为(1,1),求b ,c 的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围;(3)在(1)的条件下,存在正实数m ,n ()m n <,当m x n ≤≤时,恰好1212m m y ++≤≤21nn +,求m ,n 的值.26.(本小题满分10分)如图,抛物线26y ax ax =+(a 为常数,0a >)与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为()(,00)3t t -<<,连接BD 并延长与过O ,A ,B 三点的P 相交于点C .(1)求点A 的坐标; (2)过点C 作P 的切线CE 交x 轴于点E .①如图1,求证:CE DE =; ②如图2,连接AC ,BE ,B O ,当3a =,CAE OBE ∠=∠时,求11OD OE-的值.数学试卷 第9页(共30页) 数学试卷 第10页(共30页)图1图2数学试卷 第11页(共30页) 数学试卷 第12页(共30页)湖南省长沙市2019年初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】解:53101---<<<<,所以比3-小的数是5-,故选:A . 【考点】有理数的大小比较. 2.【答案】C【解析】解:数据15 000 000 000用科学记数法表示为101.510⨯.故选:C . 【考点】利用科学记数法表示较大的数. 3.【答案】B【解析】解:A 、3a 与2b 不是同类项,故不能合并,故选项A 不合题意;B 、326()a a =,故选项B 符合题意;C 、633a a a ÷=,故选项C 不符合题意;D 、222(2)a b a ab b +=++,故选项D 不合题意.故选:B .【考点】合并同类项,幂的乘方与积的乘方,同底数幂的除法,完全平方公式. 4.【答案】D【解析】解:A 、购买一张彩票中奖,属于随机事件,不合题意;B 、射击运动员射击一次,命中靶心,属于随机事件,不合题意;C 、经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D 、任意画一个三角形,其内角和是180︒,属于必然事件,符合题意;故选:D .【考点】三角形内角和定理,随机事件. 5.【答案】C【解析】解:∵180∠=︒, ∴3100∠=︒, ∵AB CD ∥, ∴23100∠=∠=︒.故选:C .【考点】平行线的性质. 6.【答案】D【解析】解:由三视图可知:该几何体为圆锥.故选:D . 【考点】由三视图判断几何体. 7.【答案】B【解析】解:11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B . 【考点】统计量的选择. 8.【答案】C【解析】解:2120π612π360S ⨯⨯==,故选:C .【考点】扇形面积的计算. 9.【答案】B【解析】解:在ABC △中,∵30B ∠=︒,90C ∠=︒, ∴18060BAC B C ∠=︒-∠-∠=︒, 由作图可知MN 为AB 的中垂线, ∴DA DB =, ∴30DAB B ∠=∠=︒,∴30CAD BAC DAB ∠=∠-∠=︒,故选:B .【考点】线段垂直平分线的性质,基本操作图. 10.【答案】D【解析】解:过C 作CD AB ⊥于D 点,数学试卷 第13页(共30页) 数学试卷 第14页(共30页)∴30ACD ∠=︒,45BCD ∠=︒,60AC =.在Rt ACD △中,cos CDACD∠=,∴cos 602CD AC ACD =∠=⨯=在Rt DCB △中,∵45BCD B ∠=∠=︒, ∴CD BD ==∴30AB AD BD =+=+答:此时轮船所在的B 处与灯塔P 的距离是(30+)n mile . 故选:D .【考点】解直角三角形的实际应用. 11.【答案】A【解析】解:由题意可得, 4.50.51y x y x =+⎧⎨=-⎩, 故选:A .【考点】根据实际问题列出二元一次方程组. 12.【答案】B【解析】解:如图,作DH AB ⊥于H ,CM AB ⊥于M .∵BE AC ⊥,∴90ABE ∠=︒,∵tan 2BEA AE ==,设AE a =,2BE a =,则有:221004a a =+, ∴220a =,∴a =-舍弃), ∴2BE a ==∵AB AC =,BE AC ⊥,CM AC ⊥,∴CM BE ==等腰三角形两腰上的高相等)∵DBH ABE ∠=∠,BHD BEA ∠=∠, ∴sin DH AE DBH BD AB ∠=== ∴DH , ∴5CD BD CD DH +=+, ∴CDDH CM +≥,∴CD +≥∴CD 的最小值为 故选:B .【考点】解直角三角形,等腰三角形的性质,垂线段最短.第Ⅱ卷二、填空题数学试卷 第15页(共30页) 数学试卷 第16页(共30页)13.【答案】5x ≥【解析】解:,则50x -≥,故实数x 的取值范围是:5x ≥.故答案为:5x ≥.【考点】二次根式有意义的条件. 14.【答案】()(33)a m m +- 【解析】解:29am a -29()a m =-()(3)3a m m =+-.故答案为:()(33)a m m +-.【考点】提公因式法与公式法分解因式的综合运用. 15.【答案】12x -≤<【解析】解:10360x x +⎧⎨-⎩≥①<②解不等式①得:1x -≥, 解不等式②得:2x <,∴不等式组的解集为:12x -≤<, 故答案为:12x -≤<. 【考点】解一元一次不等式组. 16.【答案】0.4【解析】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【考点】频数(率)分布表,利用频率估计概率. 17.【答案】100【解析】解:∵点D ,E 分别是AC ,BC 的中点, ∴DE 是ABC △的中位线, ∴2250100AB DE ==⨯=米. 故答案为:100.【考点】三角形的中位线定理.18.【答案】①③④【解析】解:①设点,k A m m ⎛⎫ ⎪⎝⎭,,k M n n ⎛⎫⎪⎝⎭,则直线AC 的解析式为k k ky x mn n m=-++,∴0(,)C m n +,()0,m n k D mn +⎛⎫⎪⎝⎭,∴1()()22ODM m n k m n k S mn m ++=⨯=△,()1()22OCA k m n kS m n m m⨯+=⨯+=△, ∴ODM △与OCA △的面积相等,故①正确; ∵反比例函数与正比例函数关于原点对称, ∴O 是AB 的中点,∵BM AM ⊥,∴OM OA =, ∴k mn =,∴,()A m n ,,()M n m ,∴)AM n m =-,OM =∴AM 不一定等于OM , ∴BAM ∠不一定是60︒,∴MBA ∠不一定是30︒.故②错误, ∵M 点的横坐标为1, ∴可以假设()1,M k , ∵OAM △为等边三角形, ∴OA OM AM ==,22221k k m m +=+,∴m k =, ∵OM AM =,∴222(1)1k m k k m ⎛⎫-+-=+ ⎪⎝⎭,∴2410k k -+=,数学试卷 第17页(共30页) 数学试卷 第18页(共30页)∴2k =± ∵1m >,∴2k =+故③正确, 如图,作MK OD ∥交OA 于K . ∵OF MK ∥, ∴25FM OK BM KB ==, ∴23OK OB =, ∵OA OB =, ∴23OK OA =, ∴21OK KA =, ∵KM OD ∥, ∴2DM OK AM AK ==, ∴2DM AM =,故④正确. 故答案为①③④.【考点】反比例函数与一次函数的交点问题,三角形的面积,平行线分线段成比例定理. 三、解答题19.【答案】解:原式1222=⨯21=1=.【解析】解:原式1222⨯21=1=.【考点】绝对值,负整数指数幂,二次根式的混合运算,特殊角的三角函数值.20.【答案】解:原式22(1)1(2)a a a a a +-=-+2aa =+, 当3a =时,原式33325==+.【解析】解:原式22(1)1(2)a a a a a +-=-+2aa =+, 当3a =时,原式33325==+.【考点】分式的化简求值.21.【答案】解:(1)本次调查随机抽取了2142%50÷=名学生,5040%20m =⨯=,61001250n =⨯=,故答案为:50,20,12; (2)补全条形统计图如图所示:(3)21202000164050+⨯=人, 答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1 640人. 【解析】解:(1)本次调查随机抽取了2142%50÷=名学生,5040%20m =⨯=,61001250n =⨯=,数学试卷 第19页(共30页) 数学试卷 第20页(共30页)故答案为:50,20,12; (2)补全条形统计图如图所示:(3)21202000164050+⨯=人, 答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1 640人. 【考点】用样本估计总体,频数(率)分布表、,条形统计图. 22.【答案】(1)证明:∵四边形ABCD 是正方形, ∴90BAE ADF ∠=∠=︒,AB AD CD ==, ∵DE CF =, ∴AE DF =,在BAE △和ADF △中,AB AD BAE ADF AE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BAE ADF ≅△△, ∴BE AF =;(2)解:由(1)得:BAE ADF ≅△△, ∴EBA FAD ∠=∠, ∴90GAE AEG ∠+∠=︒, ∴90AGE ∠=︒, ∵4AB =,1DE =, ∴3AE =,∴5BE ===,在Rt ABE △中,1122AB AE BE AG ⨯=⨯,∴431255AG ⨯==. 【解析】(1)证明:∵四边形ABCD 是正方形, ∴90BAE ADF ∠=∠=︒,AB AD CD ==, ∵DE CF =, ∴AE DF =,在BAE △和ADF △中,AB AD BAE ADF AE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BAE ADF ≅△△, ∴BE AF =;(2)解:由(1)得:BAE ADF ≅△△, ∴EBA FAD ∠=∠, ∴90GAE AEG ∠+∠=︒, ∴90AGE ∠=︒, ∵4AB =,1DE =, ∴3AE =,∴5BE =,在Rt ABE △中,1122AB AE BE AG ⨯=⨯,∴431255AG ⨯==.【考点】全等三角形的判定与性质,正方形的性质,勾股定理,三角形面积公式. 23.【答案】解:(1)设增长率为x ,根据题意,得22(.4)122x +=,解得1 2.1x =-(舍去),20.110%x ==. 答:增长率为10%.(2)2.4210.12().662+=(万人).答:第四批公益课受益学生将达到2.662万人次. 【解析】解:(1)设增长率为x ,根据题意,得22(.4)122x +=,解得1 2.1x =-(舍去),20.110%x ==. 答:增长率为10%.(2)2.4210.12().662+=(万人).答:第四批公益课受益学生将达到2.662万人次. 【考点】一元二次方程的实际应用. 24.【答案】(1)①假 ②假 ③真(2)证明:如图1中,连接BD ,B 1D 1.图1∵111BCD B C D ∠=∠,且1111BC CDB C C D =, ∴111BCD B C D △△,∴111CDB C D B ∠=∠,111C B D CBD ∠=∠,∵111111AB BC CD A B B C C D ==, ∴1111BD AB B D A B =, ∵111ABC A B C ∠=∠, ∴111ABD A B D ∠=∠, ∴111ABD A B D △△,∴1111AD ABA D AB =,1A A ∠=∠,111ADB A D B ∠=∠, ∴11111111AB BC CD AD A B B C C D A D ===,111ADC A D C ∠=∠,1A A ∠=∠,111ABC A B C ∠=∠,111BCD B C D ∠=∠ ,∴四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)如图2中,图2∵四边形ABCD 与四边形EFCD 相似. ∴DE EF AE AB =, ∵EF OE OF =+, ∴DE OE OF AE AB+=, ∵EF AB CD ∥∥,∴DE OE AD AB =,DE OC OF AD AB AB ==, ∴DE DE OE OF AD AD AB AB +=+, ∴2DE DE AD AE =, ∵AD DE AE =+, ∴21DE AE AE =+, ∴2AE DE AE =+, ∴AE DE =, ∴121SS =. 【解析】(1)解:①四条边成比例的两个凸四边形相似,是假命题,角不一定相等. ②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例. ③两个大小不同的正方形相似,是真命题.故答案为假,假,真.(2)证明:如图1中,连接BD ,B 1D 1.图1∵111BCD B C D ∠=∠,且1111BC CDB C C D =, ∴111BCD B C D △△,∴111CDB C D B ∠=∠,111C B D CBD ∠=∠,∵111111AB BC CDA B B C C D ==, ∴1111BD AB B D A B =, ∵111ABC A B C ∠=∠, ∴111ABD A B D ∠=∠, ∴111ABD A B D △△,∴1111AD ABA D AB =,1A A ∠=∠,111ADB A D B ∠=∠, ∴11111111AB BC CD AD A B B C C D A D ===,111ADC A D C ∠=∠,1A A ∠=∠,111ABC A B C ∠=∠,111BCD B C D ∠=∠,∴四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)如图2中,图2∵四边形ABCD 与四边形EFCD 相似. ∴DE EF AE AB =, ∵EF OE OF =+, ∴DE OE OF AE AB+=, ∵EF AB CD ∥∥,∴DE OE AD AB =,DE OC OF AD AB AB ==, ∴DE DE OE OF AD AD AB AB +=+, ∴2DE DE AD AE =, ∵AD DE AE =+, ∴21DE AE AE =+, ∴2AE DE AE =+, ∴AE DE =, ∴121SS =. 【考点】相似三角形的判定和性质,相似多边形的判定和性质.25.【答案】解:(1)由题可知,抛物线解析式是:2221141()2y x x x =--+=-+-.∴2420201b c -=⎧⎨-=-⎩.∴6b =,2019c =.(2)设抛物线线上关于原点对称且不重合的两点坐标分别是00(,)x y ,00,()x y --,代入解析式可得:200020002(2)(2020)2(2)(2020)y x b x c y x b x c ⎧=-+-+-⎪⎨-=---+-⎪⎩. ∴两式相加可得:2042020()20x c -+-=. ∴222020c x =+, ∴2020c >;(3)由(1)可知抛物线为2224121(1)y x x x =-+-=--+.∴1y ≤.∵0m n <<,当m x n ≤≤时,恰好121221m nm y n +++≤≤, ∴1112n y m+≤≤. ∴11y n m ≤≤. ∴11m≤,即1m ≥. ∴1m n ≤<.∵抛物线的对称轴是1x =,且开口向下, ∴当m x n ≤≤时,y 随x 的增大而减小. ∴当x m =时,2241y m m =-+-最大值. 当x n =时,2241y n n =-+-最小值.又11y n m ≤≤, ∴2212411241n n n m m m ⎧=-+-⎪⎪⎨⎪=-+-⎪⎩①②.将①整理,得322410n n n -++=, 变形,得2()()()212110n n n n --+-=. ∴2121)(0()2n n n ---=. ∵1n >,∴22210n n --=.解得1n (舍去),2n =同理,由②得到:2121)(0()2m m m ---=. ∵1m n ≤<, ∴22210m m --=. 解得11m =,2m =(舍去),3m =(舍去). 综上所述,1m =,12n +=. 【解析】解:(1)由题可知,抛物线解析式是:2221141()2y x x x =--+=-+-.∴2420201b c -=⎧⎨-=-⎩. ∴6b =,2019c =.(2)设抛物线线上关于原点对称且不重合的两点坐标分别是00(,)x y ,00,()x y --,代入解析式可得:200020002(2)(2020)2(2)(2020)y x b x c y x b x c ⎧=-+-+-⎪⎨-=---+-⎪⎩. ∴两式相加可得:2042020()20x c -+-=. ∴222020c x =+, ∴2020c >;(3)由(1)可知抛物线为2224121(1)y x x x =-+-=--+. ∴1y ≤.∵0m n <<,当m x n ≤≤时,恰好121221m nm y n +++≤≤, ∴1112n y m+≤≤. ∴11y n m ≤≤. ∴11m≤,即1m ≥. ∴1m n ≤<.∵抛物线的对称轴是1x =,且开口向下, ∴当m x n ≤≤时,y 随x 的增大而减小. ∴当x m =时,2241y m m =-+-最大值. 当x n =时,2241y n n =-+-最小值.又11y n m ≤≤, ∴2212411241n n n m m m⎧=-+-⎪⎪⎨⎪=-+-⎪⎩①②.将①整理,得322410n n n -++=, 变形,得2()()()212110n n n n --+-=. ∴2121)(0()2n n n ---=. ∵1n >,∴22210n n --=.解得112n =(舍去),212n =. 同理,由②得到:2121)(0()2m m m ---=. ∵1m n ≤<, ∴22210m m --=.解得11m =,2m =舍去),3m =(舍去). 综上所述,1m =,n =.【考点】二次函数图象上点的坐标特征,二次函数图象的对称性,二次函数图象的增减性,二次函数最值的意义,一元二次方程的解法. 26.【答案】解:(1)令260ax ax +=,60()ax x +=,∴0()6,A -;(2)①证明:如图,连接PC ,连接PB 延长交x 轴于点M ,∵P 过O 、A 、B 三点,B 为顶点,∴PM OA ⊥,90PBC BOM ∠+∠=︒, 又∵PC PB =,∴PCB PBC ∠=∠, ∵CE 为切线,∴90PCB ECD ∠+∠=︒, 又∵BDP CDE ∠=∠, ∴ECD COE ∠=∠, ∴CE DE =.②解:设OE m =,即0(),E m , 由切割线定理得:2CE OE AE =, ∴2(6())m t m m -=+,∴262t m t=+①,∵CAE CBD ∠=∠,CAE OBE ∠=∠,CBO EBO ∠=∠,由角平分线定理:BD ODBE OE=,tm -=,∴66tm t =--②,由①②得26626t tt t =+--, 整理得:218360t t ++=, ∴21836t t =--,∴211113616t OD OE t m t +-=--==. 【解析】解:(1)令260ax ax +=,60()ax x +=,∴0()6,A -;(2)①证明:如图,连接PC ,连接PB 延长交x 轴于点M ,∵P 过O 、A 、B 三点,B 为顶点,∴PM OA ⊥,90PBC BOM ∠+∠=︒, 又∵PC PB =, ∴PCB PBC ∠=∠, ∵CE 为切线,∴90PCB ECD ∠+∠=︒, 又∵BDP CDE ∠=∠, ∴ECD COE ∠=∠, ∴CE DE =.②解:设OE m =,即0(),E m , 由切割线定理得:2CE OE AE =, ∴2(6())m t m m -=+,∴262t m t=+①,∵CAE CBD ∠=∠,CAE OBE ∠=∠,CBO EBO ∠=∠,由角平分线定理:BD ODBE OE=,tm -=, ∴66tm t =--②,由①②得26626t tt t =+--, 整理得:218360t t ++=, ∴21836t t =--,∴211113616t OD OE t m t +-=--==. 【考点】二次函数图象与x 轴的交点坐标,切线的性质,等腰三角形的判定,切割线定理.。

2019年湖南长沙中考数学试题(解析版)_最新修正版

2019年湖南长沙中考数学试题(解析版)_最新修正版

{来源}2019年湖南长沙中考数学试卷 {适用范围:3. 九年级}{标题}2019年湖南省长沙市中考数学试卷考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共12小题,每小题3分,合计36分. {题目}1.(2019年长沙T1)下列各数中,比﹣3小的数是( )A .﹣5B .﹣1C .0D .1{答案}A{解析}本题考查了有理数的大小比较,正数>0>负数,两个负数比较大小,绝对值大的反而小,由于135--->>,所以﹣5<﹣3<﹣1,因此本题选A .{分值}3{章节:[1-1-2-4]绝对值} {考点:有理数的大小比较} {类别:常考题} {难度:1-最简单}{题目}2.(2019年长沙T2)根据《长沙市电网供电能力提升三年行动计划》,明确到2020年,长沙电网建设改造投资规模达到150****0000确保安全供用电需求数据150****0000科学记数法表示为( )A .15×109B .1.5×109C .1.5×1010D .0.15×1011{答案}C{解析}本题考查了用科学记数法表示一个绝对值较大的数,科学记数法就是把一个数写成a ×10n 的形式(其中1≤a <10,n 为整数),其具体步骤是:(1)确定a ,a 是整数位数只有一位的数;(2)确定n ;当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).150****0000=1.5×1010,因此本题选C . {分值}3{章节: [1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}3.(2019年长沙T3)下列计算正确的是( )A .3a +2b =5abB .(a 3)2=a 6C .a 6÷a 3=a 2D .(a +b )2=a 2+b 2{答案}B{解析}本题考查了整式的运算,A 选项是整式的加法,其实质是合并同类项,3a 与2b 不是同类项,故不能相加;B 选项是幂的乘方,底数不变,指数相乘,故正确;C 选项是同底数幂的除法,底数不变,指数相减,故正确结果为a 4;D 选项是和的完全平方公式,展开口诀为:“首平方,尾平方,积的2倍夹中间”故正确结果为a 2+2ab +b 2.因此本题选B . {分值}3{章节: [1-14-2]乘法公式} {考点:整式加减} {考点:幂的乘方}{考点:同底数幂的除法}{考点:完全平方公式}{类别:常考题}{难度:1-最简单}{题目}4.(2019年长沙T4)下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°{答案}D{解析}本题考查了事件的分类,A、B、C选项都是随机事件;D选项是必然事件;因此本题选D.{分值}3{章节: [1-25-1-1]随机事件}{考点:事件的类型}{类别:常考题}{难度:1-最简单}{题目}5.(2019年长沙T5)如图,平行线AB,CD被直线AE所截,∠1=80°,则∠2的度数是( )A.80°B.90°C.100°D.110°{答案}C{解析}本题考查了考查了对顶角的定义,平行线的性质,由对顶角的定义可得∠AED=∠1=80°,又因为AB∥CD,所以由两直线平行同旁内角互补可得:∠2=180°-∠AED=100°,因此本题选C.{分值}3{章节:[1-5-3]平行线的性质}{考点:对顶角、邻补角}{考点:两直线平行同旁内角互补}{类别:常考题}{难度:1-最简单}{题目}6.(2019年长沙T6)某个几何体的三视图如图所示,该几何体是( ){答案}D{解析}本题考查了由三视图判断几何体,从正面看和侧面看都是三角形的只要D 选项,因此本题选D . {分值}3{章节: [1-29-2]三视图} {考点:由三视图判断几何体} {类别:常考题} {难度:1-最简单}{题目}7.(2019年长沙T7)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )A .平均数B .中位数C .众数D .方差{答案}B{解析}本题考查了中位数,中位数反映的是一组数据中等水平,要判断11名参赛同学中的小明是否进入前5名,只需比较自己的成绩与第6名的成绩即可.因此本题选B . {分值}3{章节: [1-20-1-2]中位数和众数} {考点:中位数} {类别:常考题} {难度:1-最简单}{题目}8.(2019年长沙T8)一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A .2πB .4πC .12πD .24π{答案}C{解析}本题考查了扇形的面积,由扇形的面积公式S =36061202⨯π=π12,因此本题选C .{分值}3{章节: [1-24-4]弧长和扇形面积} {考点:扇形的面积} {{类别:常考题} {难度:1-最简单}{题目}9.(2019年长沙T9)如图,Rt △ABC 中,∠C =90°,∠B =30°,分别以点A 和点B 为圆心,大于21AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D ,连接AD ,则∠CAD的度数是( )A.20°B.30°C.45°D.60°{答案}B{解析}本题考查了垂直平分线的性质,等边对等角,三角形的外角,直角三角形两锐角互余,由垂直平分线的性质可知:AD=BD即由等边对等角得:∠DAB=∠B=30°,再由三角形的外角性质得∠ADC=∠DAB+∠B=60°,在Rt△ADC中,∠C=90°所以∠CAD=90°-∠ADC =90°-60°=30°,因此本题选B.{分值}3{章节:[1-13-2-1]等腰三角形}{考点:直角三角形两锐角互余}{考点:三角形的外角}{考点:垂直平分线的性质}{考点:等边对等角}{类别:常考题}{难度:2-简单}{题目}10.(2019年长沙T10)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60n mile 的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是( )A.303n mile B.60 n mile C.120 n mile D.(30+303)n mile{答案}D{解析}本题考查了与方位角有关的解直角三角形,如图,在Rt△ACD中,由题意可知:AC=60,∠ACD =30°,∠ADC =90°,所以AD =21AC =30,CD =ACcos30°=60×23=303,在Rt△BCD 中,由题意可知:∠BCD =45°,∠BDC =90°,所以BD =CD =303,所以AB =30+303,因此本题选D .{分值}3{章节:[1-28-1-2]解直角三角形} {考点:解直角三角形-方位角} {类别:常考题}{难度:3-中等难度}{题目}11.(2019年长沙T11)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A .⎩⎨⎧-=+=15.05.4x y x yB .⎩⎨⎧-=+=125.4x y x yC .⎩⎨⎧+=-=15.05.4x y x yD .⎩⎨⎧-=-=125.4x y x y{答案}A{解析}本题考查了从实际问题中抽象二元一次方程组模型,根据题意发现等量关系是解题的关键,由“用一根绳子去量一根木头的长,绳子还剩余4.5尺”可列方程为y =x +4.5,由“将绳子对折再量木头,则木头还剩余1尺”可列方程为0.5y =x -1,因此本题选A . {分值}3{章节:[1-8-3]实际问题与一元一次方程组} {考点:简单的列二元一次方程组应用题} {类别:数学文化}{类别:常考题} {难度:3-中等难度}{题目}12.(2019年长沙T12)如图,△ABC 中,AB =AC =10,tanA =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD +55BD 的最小值是( ) A .25B .45C .53D .10{答案}B{解析}本题考查了垂线的性质、正切、勾股定理,过点D 作DF ⊥AB 于点F ,由同角的余角相等得:∠BDF =∠A ,所以tan ∠BDF =tan ∠A =2即2=DFBF,∴55=BD DF 即DF =55BD ,∴CD +55BD =CD +DF ,由“垂线段最短”可知:当C 、D 、F 三点共线且CF ⊥AB 时,CD +DF 值最小,最小值即为CF 的长度.此时2=AFCF,设AF =x ,则CF =2x ,又因为AC =10,所以由勾股定理得x 2+4x 2=100,解得x =25,所以CF =45.{分值}3{章节:[1-28-3]锐角三角函数} {考点:垂线的性质} {考点:勾股定理} {考点:正切}{考点:几何选择压轴} {类别:常考题} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共6小题,每小题3分,合计18分.{题目}13.(2019年长沙T13)式子5-x 在实数范围内有意义,则实数x 的取值范围是 .{答案}x≥5{解析}本题考查了二次根式有意义的条件,由二次根式有意义的条件可知:x -5≥0即x ≥5. {分值}3{章节:[1-16-1]二次根式}{考点:二次根式的有意义的条件} {类别:常考题}{难度:1-最简单}{题目}14.(2019年长沙T14)分解因式:am 2-9a = .{答案}a (m -3)(m +3){解析}本题考查了提公因式法因式分解和平方差因式分解,对一个多项式因式分解时,先观察式子特点,如果有公因式先提取公因式后利用公式进行因式分解,特别要注意:因式分解一定要彻底,分解到每一个多项式都不能再分解为止. {分值}3{章节:[1-14-3]因式分解} {考点:因式分解-提公因式法} {考点:因式分解-平方差} {类别:常考题} {难度:1-最简单}{题目}15.(2019年长沙T15)不等式组⎩⎨⎧≥+06301<-x x 的解集是 .{答案}﹣1≤x <2{解析}本题考查了一元一次不等式组的解法,先分别解每一个不等式,再取每个不等式解集的公共部分.不等式组解集的确定方法:①借助数轴;②利用口诀“同大取大,同小取小,大小小大中间取,大大小小无解集”.解不等式x +1≥0得x ≥﹣1,解不等式3x -6<0得x <2,所以不等式组的解集为﹣1≤x <2. {分值}3{章节:[1-9-3]一元一次不等式组} {考点:解一元一次不等式组} {类别:常考题} {难度:2-简单}{题目}16.(2019年长沙T16)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:根据试验所得数据,估计“摸出黑球”的概率是 .{答案}0.4{解析}本题考查了用频率估计概率,当大量重复做某一试验时,某一事件发生的频率就会在某一数值附近摆动,这个数值就是概率.大量重复试验时,可以用频率估计概率. {分值}3{章节:[1-25-3]用频率估计概率} {考点:利用频率估计概率} {类别:常考题} {难度:2-简单}{题目}17.(2019年长沙T17)如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得DE =50m ,则AB 的长是 m .{答案}100{解析}本题考查了三角形中位线的性质,三角形的中位线平行于第三边且等于第三边的一半,所以AB =2DE =100(m). {分值}3{章节:[1-27-1-2]相似三角形的性质} {考点:三角形中位线} {类别:常考题} {难度:2-简单}{题目}18.(2019年长沙T18)如图,函数y =xk(k 为常数,k>0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM 于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM 是等边三角形,则k =2+3;④若MF =52MB ,则MD =2MA .其中正确的结论的序号是(只填序号){答案}①③④{解析}本题考查了,,因此本题选. {分值}3{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数与一次函数的综合} {考点:代数填空压轴} {类别:常考题} {难度:5-高难度}{题型:4-解答题}三、解答题:本大题共8个小题,合计66分.{题目}19.(2019年长沙T19)计算:︒-÷-⎪⎭⎫⎝⎛+--60cos 2362121{解析}本题考查了绝对值的意义、负指数的定义、二次根式的除法、特殊角的三角函数值.{答案}解: 原式=2+2-2-1=1 {分值}6{章节:[1-28-3]锐角三角函数} {难度:2-简单} {类别:常考题}{考点:绝对值的意义} {考点:负指数的定义}{考点:二次根式的除法法则} {考点:特殊角的三角函数值}{题目}20.(2019年长沙T20)先化简,再求值:a a a a a a a -++÷⎪⎭⎫ ⎝⎛---+22441113,其中a =3. {解析}本题考查了分式的混合运算,按照运算顺序依次计算,若有括号时,先算括号里的. {答案}解: 原式=()()22112+-⨯-+a a a a a =2+a a ,当a =3时,原式=233+=53. {分值}6{章节:[1-15-2-2]分式的加减} {难度:3-中等难度} {类别:易错题}{考点:因式分解-提公因式法} {考点:因式分解-完全平方式} {考点:约分} {考点:通分}{考点:两个分式的加减} {考点:分式的混合运算}{题目}21.(2019年长沙T21)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动.为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.根据以上信息,解答下列问题:(1)本次调查随机抽取了名学生,表中m=,n=;(2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.{解析}本题考查了.{答案}解: (1)50;20;12;(2)(3)2000×(42%+40%)=1640(人),答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1640人.{分值}8{章节:[1-10-1]统计调查}{难度:2-简单}{类别:常考题}{考点:频数与频率}{考点:统计表}{考点:条形统计图}{考点:用样本估计总体}{题目}22.(2019年长沙T22)如图,正方形ABCD,点E,F分别在边AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.{解析}本题考查了正方形的性质、全等三角形的判定SAS 、勾股定理、相似三角形的判定(两角相等)、相似三角形的性质.证明两条线段相等的问题,通常考虑这两条线段所在的三角形全等;求线段长度的问题,通常考虑由“相似(或勾股定理、锐角三角函数)”建立方程解之,体现了方程思想.{答案}解: (1)∵四边形ABCD 是正方形,DE =CF ,∴AB =AD =CD ,∠BAE =∠ADF =90°,AE =DF ,在△ABE 和△DAF 中,AB =AD ,∠BAE =∠ADF ,AE =DF ,∴△ABE ≌△DAF , ∴BE =AF .(2)∵AB =4,DE =1,∴AE =3,在Rt △BAE 中,由勾股定理得:BE =5,∵△ABE ≌△DAF ,∴∠EAG =∠EBA ,∵∠BAE =90°,∴∠EBA +∠AEB =90°,∴∠EAG +∠AEB =90°,即∠AGE =90°, 在△ABE 和△GAE 中,∠BAE =∠AGE =90°,∠BEA =∠AEG ,∴△ABE ∽△GAE , ∴BE AE AB AG =即534=AG , ∴AG =512. {分值}{章节:[1-18-2-3] 正方形}{难度:3-中等难度}{类别:思想方法}{类别:常考题}{考点:正方形的性质}{考点:全等三角形的判定SAS}{考点:勾股定理}{考点:相似三角形的判定(两角相等)}{考点:相似三角形的性质}{题目}23.(2019年长沙T23)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?{解析}本题考查了一元二次方程的实际应用——增长率,增长率问题只要通过审题弄清楚基础量a ,最终量b ,变化次数,套公式a(1+x)n =b 即可解决.{答案}解:(1)设增长率为x由题意得:2(1+x)2=2.42解得:x 1=0.1=10%,x 2=﹣2.1(舍)答:增长率为10%(2)2.42×(1+10%)=2.662(万人)答:按照这个增长率,预计第四批公益课受益学生将达到2.662万人次{分值}{章节:[1-21-4]实际问题与一元二次方程}{难度:3-中等难度}{类别:常考题}}{考点:一元二次方程的应用—增长率问题}{题目}24.(2019年长沙T24)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;( 命题)②三个角分别相等的两个凸四边形相似;( 命题)③两个大小不同的正方形相似.( 命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1, 111111D C CD C B BC B A AB ==.求证:四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFCD 的面积为S 2,若四边形ABFE 与四边形EFCD 相似,求12s s 的值. {解析}本题考查了命题真假的判断、相似三角形的判定(两边夹角)、相似三角形的性质、平行线分线段成比例.判断两个四边形是否相似,紧扣定义,分别证明四个角都相等,四条边都成比例.{答案}解:(1)假;假;真;(2)如图,分别连接BD 、B 1D 1,∵∠BCD =∠B 1C 1D 1,1111D C CD C B BC =,∴△BCD ∽△B 1C 1D 1,∴∠CBD =∠C 1B 1D 1,∠CDB =∠C 1D 1B 1,1111D B BD C B BC =, 又∵∠ABC =∠A 1B 1C 1,1111C B BC B A AB =∴∠AB D =∠A 1B 1D 1,1111D B BD B A AB =, ∴1111D A AD B A AB =,∠A D B =∠A 1D 1B 1,∠D AB =∠D 1A 1B 1, ∴11111111D A AD D C CD C B BC B A AB ===,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,∠A D C =∠A 1D 1C 1,∠D AB =∠D 1A 1B 1,∴四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)∵四边形ABFE 与四边形EFCD 相似, ∴ABEF AE DE =, ∵EF =OE +OF ,∴AB OF OE AE DE +=, ∵EF ∥AB ∥CD , ∴AB OE AD DE =,ABOF AB OC AD DE ==, ∴ABOF AB OE AD DE AD DE +=+, ∴AE DF AD DE =2, ∵AD =DE +AE , ∴AEAE DE 12=+, ∴2AE =DE +AE ,即AE =DE , ∴121=S S {分值}{章节:[1-27-3]图形的相似}{难度:4-较高难度}{类别:易错题}{类别:新定义}{考点:平行线分线段成比例}{考点:相似三角形的判定(两边夹角)}{考点:相似三角形的性质}{考点:相似三角形的应用}{考点:相似多边形的性质}{题目}25.(2019年长沙T25)已知抛物线y =﹣2x 2+(b -2)x +(c -2020)(b ,c 为常数).(1)若抛物线的顶点坐标为(1,1),求b ,c 的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围;(3)在(1)的条件下,存在正实数m ,n(m<n),当m ≤x ≤n 时,恰好有122112+≤+≤+n n y m m ,求m ,n 的值.{解析}本题考查了抛物线与一元二次方程的关系、解一元二次方程.{答案}解:(1)由题可设:y =﹣2(x -1)2+1去括号得:y =﹣2x 2+4x -1∴⎩⎨⎧-=-=-1202042c b ,解得⎩⎨⎧==20196c b(2)设抛物线上关于原点对称且不重合的两点坐标分别为(x 0,y 0),(﹣x 0,﹣y 0),代入解析式可得:()()()()⎩⎨⎧-+---=--+-+-=20202220202202000200c x b x y c x b x y ,∴两式相加可得:﹣4x 02+2(c -2020)=0,∴c =2x 02+2020,∴c ≥2020(3) 由(1)可知抛物线y =﹣2x 2+4x -1=﹣2(x -1)2+1,∴y ≤1,∵0<m <n ,当m ≤x ≤n 时,恰好有122112+≤+≤+n ny m m , ∴m y n 11≤≤, ∴11≤m 即m ≥1,∴1≤m ≤n ,∵抛物线对称轴x =1,开口向下,∴当m ≤x ≤n 时,y 随x 增大而减小,∴当x =m 时,y max =﹣2m 2+4m -1,当x =n 时,y max =﹣2n 2+4n -1, 又∵m y n 11≤≤ ∴⎪⎩⎪⎨⎧=-+-=-+-②①m m m nn n 1142114222,将①整理得:2n 3-4n 2+n +1=0,∴变形得:(2n 3-2n 2)-(2n 2-n -1)=0,即2n 2(n -1)-(2n +1)(n -1)=0,∴(n -1)(2n 2-2n -1)=0,∵n >1,∴2n 2-2n -1=0,∴n 1=231-(舍去),n 2=231+,同理整理②得:(m -1)(2m 2-2m -1)=0,∵1≤m <n ,∴m 1=1,m 2=231-(舍去),m 3=231+(舍去), ∴综上所述:m =1,n =231+. {分值}{章节:[1-22-2]二次函数与一元二次方程}{难度:5-高难度}{类别:高度原创}{类别:常考题}{考点:二次函数y =a(x +h)2的图象}{考点:抛物线与一元二次方程的关系}{考点:灵活选用合适的方法解一元二次方程}{考点:其他二次函数综合题}{题目}26.(2019年长沙T26)如图,抛物线y =ax 2+6ax (a 为常数,a >0)与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为(t ,0)(﹣3<t<0),连接BD 并延长与过O ,A ,B 三点的⊙P 相交于点C .(1)求点A 的坐标;(2)过点C 作⊙P 的切线CE 交x 轴于点E .①如图1,求证CE =DE ,②如图2,连接AC ,BE ,BO ,当a =33,∠CAE =∠OBE 时,求OEOD 11-的值.{解析}本题考查了一元二次方程的解法、切线的判定、切割线定理、等角对等边,是一道二次函数与圆的综合性问题.{答案}解: (1)令ax 2+6ax =0,∴ax (x +6)=0,所以A(﹣6,0),(2)连接PC ,连接PB 延长交x 轴于点M ,∵⊙P 过O 、A 、B 三点,B 为顶点,∴PM ⊥OA ,∠PBC +∠BOM =90°,又∵PC =PB ,∴∠PCB =∠PBC ,∴CE 为切线,∴∠PCB +∠ECD =90°,又∵∠BDP =∠CDE ,∴∠ECD =∠CDE ,∴CE =DE(3)解:设OE =m ,即E(m ,0)由切割定理:CE 2=OE·AE(m -t)2=m(m +6)推出m =tt 262+① ∵∠CAE =∠CBD ,已知∠CAE =∠OBE ,∠CBO =∠EBO , 由角平分线定理:OE DO BE BD =即()()mt m t -=++++27327322推出m =66--t t ② 由①②得t t 262+=66--t t 推出t 2+18t +36=0, ∴t 2=﹣18t ﹣36,∴616311112=+-=--=-t t m t OE OD {分值}{章节:[1-24-2-2]直线和圆的位置关系} {难度:5-高难度}{类别:高度原创}{类别:易错题}{考点:灵活选用合适的方法解一元二次方程} {考点:切线的判定}{考点:切割线定理}{考点:等角对等边}{考点:二次函数与圆的综合}。

2019年湖南省长沙市中考数学试卷(含答案与解析)

2019年湖南省长沙市中考数学试卷(含答案与解析)

---------------- 密★启用前 _ --------------------__ _____号卷 --------------------考 __ __ __ 上 __ _ 答__ _ -------------------- )A .购买一张彩票,中奖2 AB 的长为数法(-------------绝在--------------------湖南省长沙市 2019 年初中学业水平考试数学_ __ __1.下列各数中,比-3 小的数是 __ 生 ____ __投资规模达到 15 000 000 000 元,确保安全供用电需求.数据 15 000 000 000 用科学记 _ __ _ ( )_ _ _ _ A .15 ⨯109B .1.5 ⨯109C .1.5 ⨯1010D . 0.15 ⨯1011_ _ 名__ 3.下列计算正确的是 姓 __ __ __ C . a 6 ÷ a 3 = a 2 D . (a + b )2 = a 2 + b 2__ __ 4.下列事件中,是必然事件的是_ 题 校 学 业 本试卷满分 120 分,考试时间 120 分钟.此 第Ⅰ卷(选择题 共 36 分)一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一项是符合题目要求的)( )A . -5B . -1C . 0D .12.根据《长沙市电网供电能力提升三年行动计划》,明确到 2020 年,长沙电网建设改造--------------------表示为-------------------- )_ A . 3a + 2b = 5ab B . (a 3 )2 = a 6C .经过有交通信号灯的路口,遇到红灯D .任A . 80︒B . 90︒C .100︒D .110︒6.某个几何体的三视图如图所示,该几何体是( )A B C D 7.在庆祝新中国成立 70 周年的校园歌唱比赛中,11 名参赛同学的成绩各不相同,按照成绩取前 5 名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这 11 名同学成绩的( )A .平均数B .中位数C .众数D .方差8.一个扇形的半径为 6,圆心角为120︒ ,则该扇形的面积是( )A . 2πB . 4πC .12πD . 24π 9.如图, △Rt ABC 中, ∠C = 90︒ , ∠B = 30︒ ,分别以点 A 和点 B 为圆心,大于1半径作弧,两弧相交于 M ,N 两点,作直线 MN ,交 BC 于点 D ,连接 AD ,则 ∠CAD 的度数是 ( )毕B .射击运动员射击一次,命中靶心无--------------------意画一个三角形,其内角和是180︒5.如图,平行线 AB ,CD 被直线 AE 所截, ∠1 = 80︒ ,则 ∠2 的度数是()A . 20︒B . 30︒C . 45︒D . 60︒10.如图,一艘轮船从位于灯塔 C 的北偏东 60︒ 方向,距离灯塔 60n mile 的小岛 A 出发,沿正南方向航行一段时间后,到达位于灯塔 C 的南偏东 45︒ 方向上的 B 处,这时轮船 B与小岛 A 的距离是效数学试卷 第 1 页(共 30 页)数学试卷 第 2 页(共 30 页)⎩3x-6<0的解集是⎩0.5y=x-1B.⎨⎩0.5y=x+1D.⎨5BD的最小值是x(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M.“5MB,则()⎧x+1≥015.不等式组⎨.16.在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程,以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008A.303n mileB.60n mileC.120n mileD.(30+303)n mile “摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.40011《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()⎧y=x+4.5,⎧y=x+4.5,A.⎨⎩y=2x-1⎧y=x-4.5,⎧y=x-4.5,C.⎨⎩y=2x-112.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+5()根据试验所得数据,估计“摸出黑球”的概率是.(结果保留小数点后一位) 17.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是m.18.如图,函数y=k是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴、y轴于C,D两点,连接BM分别交x轴、y轴于点E,F.现有以下四个结论:A.25B.45C.53D.10第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上)13.式子x-5在实数范围内有意义,则实数x的取值范围是.14.分解因式:am2-9a=.数学试卷第3页(共30页)①△ODM与△OCA的面积相等;②若B M⊥AM于点M,则∠MBA=30︒;③若M 点的横坐标为1,△OAM为等边三角形,则k=2+3;④若MF=2数学试卷第4页(共30页)三、解答题(本大题共 8 小题,共 66 分.解答应写出文字说明、证明过程或演算步骤)⎛ 1 ⎫ 计算: | - 2 | + ⎪ - 6 ÷ 3 - 2cos60︒ . ____ _ 生 __ ⎝ a - 1 - 1 ⎫考 __ ⎛ a + 3a 2 - a ,其中 a = 3 . a - 1 ⎭ ÷ __ __ 上_ 名 __ 姓 ___ 答_ 题--------------------他们的得分按优秀、良好、合格、待合格四个等级进行统计 ,并绘制了如下不完整的统计表和条形统计图.此_20.(本小优秀 21 42% -----------------------------MD = 2MA .其中正确的结论的序号是.(只填序号)在--------------------19.(本小题满分 6 分)-1 ⎝ 2 ⎭__ --------------------__ _ __ _ 号 卷 --------------------题满分 6 分) a 2 + 4a + 4 _ 先化简,再求值: ⎪__ _ _ _ _ _ --------------------_ _ _ _ _ _ _ _ _ _ --------------------_ __ 21.(本小题满分 8 分)__ __ 某学校开展了主题为“垃圾分类 ,绿色生活新时尚”的宣传活动 ,为了解学生对垃圾__ __ 分类知识的掌握情况 ,该校环保社团成员在校园内随机抽取了部分学生进行问卷调 __ 校 学 业请根据以上信息,解答下列问题:(1)本次调查随机抽取了 名学生;表中 m = , n = ;(2)补全条形统计图;(3)若全校有 2 000 名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.22.(本小题满分 8 分)如图,正方形 ABCD ,点 E ,F 分别在 AD ,CD 上,且 DE = CF ,AF 与 BE 相交于点 G .(1)求证: BE = AF ;(2)若 AB = 4 , DE = 1 ,求 AG 的长.毕等级 频数 频率无--------------------良好 m 40%合格 6 n %待合格 3 6%23.(本小题满分 9 分)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》 ,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂 ,为学生提供线上线下免费辅导 ,据统计,第一批公益课受益学生 2 万人次,第三批公益课受益学生 2.42 万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;效数学试卷 第 5 页(共 30 页)数学试卷 第 6 页(共 30 页)2m + 1≤y + 2 ≤.求证:四边形 ABCD 与四边形 A 1B 1C 1D 1 相似.AB B C C D3 , ∠CAE = ∠OBE 时,求 (2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次? 图 1 图 224.(本小题满分 9 分)根据相似多边形的定义 ,我们把四个角分别相等 ,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时 ,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似:( 命题) ②三个角分别相等的两个凸四边形相似: ( 命题)③两个大小不同的正方形相似.(命题)25.(本小题满分 9 分)已知抛物线 y = -2x 2 + (b - 2) x + (c - 2 020) (b ,c 为常数).(1)若抛物线的顶点坐标为 (1,1) ,求 b ,c 的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求 c 的取值范围;(3)在(1)的条件下 ,存在正实数 m ,n (m <n) ,当 m ≤x ≤n 时,恰好 mn2n + 1 ,求 m ,n 的值.1(2) 如图 1, 在四边形 ABCD 和四边形 A 1B 1C 1D 1 中 , ∠ABC = ∠A 1B 1C 1 , ∠BCD =AB BC CD ∠B C D ,1 1 1 1 11 1 1 1(3)如图 2,四边形 ABCD 中, AB ∥CD ,AC 与 BD 相交于点 O ,过点 O 作 EF ∥AB 分别交 AD ,BC 于点 E ,F .记四边形 ABFE 的面积为 S 1,四边形 EFCD 的面积为 S 2,若四S边形 ABFE 与四边形 EFCD 相似,求 2 的值.S126.(本小题满分 10 分)如图,抛物线 y = ax 2 + 6ax (a 为常数, a >0 )与 x 轴交于 O ,A 两点,点 B 为抛物线的顶 点,点 D 的坐标为 (t,0)(-3<t <0) ,连接 BD 并延长与过 O ,A ,B 三点的 P 相交于点C .(1)求点 A 的坐标;(2)过点 C 作 P 的切线 CE 交 x 轴于点 E .①如图 1,求证: CE = DE ;②如图 2,连接 AC ,BE ,BO ,当 a = 3 1 OD - 1 OE 的值.数学试卷 第 7 页(共 30 页) 数学试卷 第 8 页(共 30 页)图1图2数学试卷第9页(共30页)数学试卷第10页(共30页)C aD ( 湖南省长沙市 2019 年初中学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】解: -5< - 3< -1<0<1 ,所以比 -3 小的数是 -5 ,故选:A .【考点】有理数的大小比较.2.【答案】C【解析】解:数据 15 000 000 000 用科学记数法表示为1.5 ⨯1010 .故选:C .【考点】利用科学记数法表示较大的数.3.【答案】B【解析】解:A 、3a 与 2b 不是同类项,故不能合并,故选项 A 不合题意;B 、 (a 3 )2 = a 6 ,故选项 B 符合题意; 、 6 ÷ a 3 = a 3 ,故选项 C 不符合题意; 、a + b )2 = a 2 + 2ab + b 2 ,故选:C .【考点】平行线的性质.6.【答案】D【解析】解:由三视图可知:该几何体为圆锥.故选:D .【考点】由三视图判断几何体.7.【答案】B【解析】解:11 个不同的成绩按从小到大排序后,中位数及中位数之后的共有 5 个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B .【考点】统计量的选择.8.【答案】C故选项 D 不合题意.故选:B .【解析】解: S =120 ⨯ π ⨯ 62360 = 12π ,故选:C .【考点】合并同类项,幂的乘方与积的乘方,同底数幂的除法,完全平方公式.4.【答案】D【解析】解:A 、购买一张彩票中奖,属于随机事件,不合题意;B 、射击运动员射击一次,命中靶心,属于随机事件,不合题意;C 、经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D 、任意画一个三角形,其内角和是180︒ ,属于必然事件,符合题意;故选:D .【考点】三角形内角和定理,随机事件.5.【答案】C【解析】解:∵ ∠1 = 80︒ ,∴ ∠3 = 100︒ ,∵ AB ∥CD ,∴ ∠2 = ∠3 = 100︒ .数学试卷 第 11 页(共 30 页) 【考点】扇形面积的计算.9.【答案】B【解析】解:在 △ABC 中,∵ ∠B = 30︒ , ∠C = 90︒ ,∴ ∠BAC = 180︒-∠ B -∠ C = 60︒ ,由作图可知 MN 为 AB 的中垂线,∴ DA = DB ,∴ ∠DAB = ∠B = 30︒ ,∴ ∠CAD = ∠BAC -∠ DAB = 30︒ ,故选:B .【考点】线段垂直平分线的性质,基本操作图.10.【答案】D【解析】解:过 C 作 CD ⊥ AB 于 D 点,数学试卷 第 12 页(共 30 页)AC,2=303.AE=2,设AE=a,BE=2a,BD=⎩0.5y=x-1,5BD,5BD=CD+DH,5BD≥45,5BD的最小值为45.∴∠ACD=30︒,∠BCD=45︒,AC=60.在Rt△ACD中,cos∠ACD=CD∴CD=AC cos∠ACD=60⨯3在Rt△DCB中,∵∠BCD=∠B=45︒,∴CD=BD=303,∴AB=AD+BD=30+303.答:此时轮船所在的B处与灯塔P的距离是(30+303)n mile.故选:D.∵BE⊥AC,∴∠ABE=90︒,∵tanA=BE则有:100=a2+4a2,∴a2=20,∴a=25或-25(舍弃),∴BE=2a=45,∵AB=AC,BE⊥AC,CM⊥AC,∴CM=BE=45(等腰三角形两腰上的高相等)∵∠DBH=∠ABE,∠BHD=∠BEA,【考点】解直角三角形的实际应用.∴sin∠DBH=DH AE5AB=5,11.【答案】A【解析】解:由题意可得,⎧y=x+4.5⎨故选:A.【考点】根据实际问题列出二元一次方程组.12.【答案】B【解析】解:如图,作DH⊥AB于H,CM⊥AB于M.数学试卷第13页(共30页)∴DH=5∴CD+5∴CD+DH≥CM,∴CD+5∴CD+5故选:B.【考点】解直角三角形,等腰三角形的性质,垂线段最短.第Ⅱ卷二、填空题数学试卷第14页(共30页)【解析】解:①设点A m,k⎫m⎭,M n,⎪,n⎭mnx+∴C(m+n,0),D 0,mn⎪,∴1(m+n)km2,∴(1-m)+ k-k⎫2⎪=1+k2,13.【答案】x≥5【解析】解:式子x-5在实数范围内有意义,则x-5≥0,故实数x的取值范围是:x≥5.18.【答案】①③④⎝⎝故答案为:x≥5.【考点】二次根式有意义的条件.14.【答案】a(m+3)(m-3)则直线AC的解析式为y=-k⎛(m+n)k⎫⎝⎭kn+km,【解析】解:am2-9a=a(m2-9)△SODM=2⨯mn=(m+n)k1k2m,△SOCA=2⨯(m+n)⨯m=(m+n)k2m,=a(m+3)(m-3).故答案为:a(m+3)(m-3).【考点】提公因式法与公式法分解因式的综合运用.15.【答案】-1≤x<2⎧x+1≥0①【解析】解:⎨⎩3x-6<0②解不等式①得:x≥-1,解不等式②得:x<2,∴不等式组的解集为:-1≤x<2,故答案为:-1≤x<2.【考点】解一元一次不等式组.16.【答案】0.4【解析】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【考点】频数(率)分布表,利用频率估计概率.17.【答案】100【解析】解:∵点D,E分别是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=2⨯50=100米.故答案为:100.【考点】三角形的中位线定理.数学试卷第15页(共30页)∴△ODM与△OCA的面积相等,故①正确;∵反比例函数与正比例函数关于原点对称,∴O是AB的中点,∵BM⊥AM,∴OM=OA,∴k=mn,∴A(m,n),M(n,m),∴AM=2(n-m),OM=m2+n2,∴AM不一定等于OM,∴∠BAM不一定是60︒,∴∠MBA不一定是30︒.故②错误,∵M点的横坐标为1,∴可以假设M(1,k),∵△O AM为等边三角形,∴OA=OM=AM,1+k2=m2+k2∴m=k,∵OM=AM,⎛2⎝m⎭∴k2-4k+1=0,数学试卷第16页(共30页)∴FM ∴OK ∴OK ∴OK∴DMa+2,当a=3时,原式=3a+2,3+2=.50⨯100=12,50=1640人,50⨯100=12,∴k=2±3,∵m>1,∴k=2+3,故③正确,如图,作MK∥OD交OA于K.∵OF∥MK,OK2BM=KB=5,2OB=3,∵OA=OB,2OA=3,2KA=1,∵KM∥OD,OKAM=AK=2,∴DM=2A M,故④正确.故答案为①③④.【解析】解:原式=2+2-6÷3-2⨯12=2+2-2-1=1.【考点】绝对值,负整数指数幂,二次根式的混合运算,特殊角的三角函数值.20.【答案】解:原式=a+2a(a-1)a-1(a+2)2=a33+2=5.【解析】解:原式=a+2a(a-1)a-1(a+2)2=a当a=3时,原式=335【考点】分式的化简求值.21.【答案】解:(1)本次调查随机抽取了21÷42%=50名学生,m=50⨯40%=20,n=6故答案为:50,20,12;(2)补全条形统计图如图所示:【考点】反比例函数与一次函数的交点问题,三角形的面积,平行线分线段成比例定理.三、解答题19.【答案】解:原式=2+2-6÷3-2⨯1 2=2+2-2-1=1.数学试卷第17页(共30页)(3)2000⨯21+20答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1640人.【解析】解:(1)本次调查随机抽取了21÷42%=50名学生,m=50⨯40%=20, n=6数学试卷第18页(共30页)5=在△BAE和△ADF中,⎨∠BAE=∠ADF,50=1640人,⎪A E=DF在△BAE和△ADF中,⎨∠BAE=∠ADF,⎪A E=DF2AB⨯AE=5=2AB⨯AE=故答案为:50,20,12;∴AG=4⨯3125.(2)补全条形统计图如图所示:(3)2000⨯21+20答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1640人.【考点】用样本估计总体,频数(率)分布表、,条形统计图.22.【答案】(1)证明:∵四边形ABCD是正方形,∴∠BAE=∠ADF=90︒,AB=AD=CD,∵DE=CF,∴AE=DF,⎧A B=AD⎪⎩【解析】(1)证明:∵四边形ABCD是正方形,∴∠BAE=∠ADF=90︒,AB=AD=CD,∵DE=CF,∴AE=DF,⎧A B=AD⎪⎩∴△BAE≅△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≅△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90︒,∴∠AGE=90︒,∵AB=4,DE=1,∴AE=3,∴BE=AB2+AE2=42+32=5,∴△BAE≅△ADF(SAS),在Rt△ABE中,112BE⨯AG,∴BE=AF;(2)解:由(1)得:△BAE≅△ADF,∴AG=4⨯3125.∴∠EBA=∠FAD,∴∠GAE+∠AEG=90︒,∴∠AGE=90︒,∵AB=4,DE=1,∴AE=3,∴BE=AB2+AE2=42+32=5,【考点】全等三角形的判定与性质,正方形的性质,勾股定理,三角形面积公式.23.【答案】解:(1)设增长率为x,根据题意,得2(1+x)2=2.42,解得x=-2.1(舍去),x=0.1=10%.12答:增长率为10%.(2)2.42(1+0.1)=2.662(万人).在Rt△ABE中,112BE⨯AG,数学试卷第19页(共30页)答:第四批公益课受益学生将达到2.662万人次.【解析】解:(1)设增长率为x,根据题意,得数学试卷第20页(共30页)∴DEAE=∴DE ∴DE∴2DE2(1+x)2=2.42,解得x=-2.1(舍去),x=0.1=10%.12答:增长率为10%.(2)2.42(1+0.1)=2.662(万人).答:第四批公益课受益学生将达到2.662万人次.【考点】一元二次方程的实际应用.24.【答案】(1)①假②假③真(2)证明:如图1中,连接BD,B1D1.∠BCD=∠B C D,111∴四边形ABCD与四边形A1B1C1D1相似.(3)如图2中,图2∵四边形ABCD与四边形EFCD相似.EFAE=AB,∵EF=OE+OF,∴DE OE+OFAB,∵EF∥AB∥CD,图1∵∠BCD=∠B C D,且111∴△BCD△B C D,111BC CD=,B C C D1111AD+AD=AB+OE DEAD=AB,AD=DE OEDEAD=AE,OCAB=OFAB,∵AB=BC∴BDBD=∴2∴AD,∠A=∠A,∠ADB=∠A D B,∴AB==,∠ADC=∠A D C,∠A=∠A,∠ABC=∠A B C,OF AB,∴∠CDB=∠C D B,∠C B D=∠CBD,111111CD=,A B B C C D111111AB,A B1111∵∠ABC=∠A B C,111∴∠ABD=∠A B D,111∴△ABD△A B D,111ABAD=A B11111111BC CD ADAB=B C C D A D1111111 11111111数学试卷第21页(共30页)∵AD=DE+AE,1DE+AE=AE,∴2A E=DE+AE,∴AE=DE,S∴1=1.S2【解析】(1)解:①四条边成比例的两个凸四边形相似,是假命题,角不一定相等.②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例.③两个大小不同的正方形相似,是真命题.数学试卷第22页(共30页)∴ DE AE =∵ ∠BCD = ∠B C D ,且 BC = C D∵ AB AB = ∴ DE ∴ DE∴ 2DE∴ 2∴ AD , ∠A = ∠A , ∠ADB = ∠A D B , ∴ AB = = = , ∠ADC = ∠A D C , ∠A = ∠A , ∠ABC = ∠A B C ,A B B C C D A D⎩ c - 2 020 = -1 .代入解析式可得: ⎨ 0= -2x 2故答案为假,假,真.(2)证明:如图 1 中,连接 BD ,B 1D 1.图 2∵四边形 ABCD 与四边形 EFCD 相似.EF AE = AB ,∵ EF = OE + OF ,图 1BC CD,1 1 1 1 11 1∴ △BCD △B C D ,1 1 1∴ ∠CDB = ∠C D B , ∠C B D = ∠CBD , 1 1 1 1 1 1BC CD = ,B C C D1 1 1 1 1 1∴ BD = AB ,B D A B1 11 1∴ DE OE + OFAB ,∵ EF ∥AB ∥CD , OE DE OC AD = AB , AD = AB =DE OE OFAD + AD = AB + AB ,DEAD =AE ,∵ AD = DE + AE ,1DE + AE =AE ,∴ 2 A E = DE + AE ,OF AB ,∵ ∠ABC = ∠A B C ,1 1 1∴ ∠ABD = ∠A B D , 1 1 1 ∴ △ABD △A B D , 1 1 1 AB AD =A B 1 1 1 1 1 1 1 1 BC CD AD1 1 1 1 1 1 1 1∠BCD = ∠B C D ,1 1 1∴四边形 ABCD 与四边形 A 1B 1C 1D 1 相似.1 1 1 1 1 1 1∴ AE = DE ,S∴ 1 = 1 .S2【考点】相似三角形的判定和性质,相似多边形的判定和性质.25.【答案】解:(1)由题可知,抛物线解析式是: y = -2( x - 1)2 + 1 = -2 x 2 + 4 x - 1 .⎧b - 2 = 4 ∴ ⎨ ∴ b = 6 , c = 2 019 .(2)设抛物线线上关于原点对称且不重合的两点坐标分别是( x , y ) , (- x , - y ) ,0 0 0 0 (3)如图 2 中,⎧⎪ y = -2x 2 + (b - 2) x + (c - 2 020) 0 0⎪⎩- y 0 0 - (b - 2) x 0 + (c - 2 020) .数学试卷 第 23 页(共 30 页) ∴两式相加可得: -4 x 2 + 2(c - 2 020) = 0 .∴ c = 2 x 2 + 2 020 ,∴ c >2 020 ;(3)由(1)可知抛物线为 y = -2 x 2 + 4 x - 1 = -2( x - 1)2 + 1 .数学试卷 第 24 页(共 30 页)m1n综上所述,m=1,n=∴≤≤.∴≤y≤.∴≤1,即m≥1.代入解析式可得:⎨0.=-2x2又≤y≤⎧1⎪⎪n=-2n2+4n-1⎪⎩m =-2m2+4m-1②2m+1≤∴≤1y+2≤y+2≤∴≤y≤1m≤1,即m≥1.2(舍去),n=2.又≤y≤2(舍去),m=⎧1⎪⎪n=-2n2+4n-1⎪⎩m=-2m2+4m-1②∴y≤1.∵0<m<n,当m≤x≤n时,恰好≤≤2m+1y+22n+1,1+3.2【解析】解:(1)由题可知,抛物线解析式是:y=-2(x-1)2+1=-2x2+4x-1.111n y+2m11n m1m∴1≤m<n.∵抛物线的对称轴是x=1,且开口向下,∴当m≤x≤n时,y随x的增大而减小.⎧b-2=4∴⎨.⎩c-2020=-1∴b=6,c=2019.(2)设抛物线线上关于原点对称且不重合的两点坐标分别是(x,y),(-x,-y),0000⎧⎪y=-2x2+(b-2)x+(c-2020)00⎪⎩-y00-(b-2)x0+(c-2020)∴两式相加可得:-4x2+2(c-2020)=0.∴c=2x2+2020,∴当x=m时,y最大值=-2m2+4m-1.∴c>2020;当x=n时,y最小值=-2n2+4n-1.(3)由(1)可知抛物线为y=-2x2+4x-1=-2(x-1)2+1.11 n m,∴⎨⎪1①.∴y≤1.∵0<m<n,当m≤x≤n时,恰好m11n m.1n2n+1,将①整理,得2n3-4n2+n+1=0,变形,得2n2(n-1)-(2n+1)(n-1)=0.∴(n-1)(2n2-2n-1)=0.∵n>1,∴2n2-2n-1=0.1-31+3解得n=121n m.∴1∴1≤m<n.∵抛物线的对称轴是x=1,且开口向下,∴当m≤x≤n时,y随x的增大而减小.∴当x=m时,y=-2m2+4m-1.最大值同理,由②得到:(m-1)(2m2-2m-1)=0.∵1≤m<n,当x=n时,y最小值11n m,=-2n2+4n-1.∴2m2-2m-1=0.解得m=1,m=1-31231+32(舍去).∴⎨⎪1①.数学试卷第25页(共30页)数学试卷第26页(共30页)2(舍去),n=2.2(舍去),m=2.6+2t①,BE=(3+m)2+27=-t-6②,6+2t=OD-m=3t+6将①整理,得2n3-4n2+n+1=0,变形,得2n2(n-1)-(2n+1)(n-1)=0.∴(n-1)(2n2-2n-1)=0.∵n>1,∴2n2-2n-1=0.1-31+3解得n=12同理,由②得到:(m-1)(2m2-2m-1)=0.∴∠PCB=∠PBC,∵CE为切线,∴∠PCB+∠ECD=90︒,又∵∠BDP=∠CDE,∴∠ECD=∠COE,∴CE=DE.②解:设OE=m,即E(m,0),∵1≤m<n,∴2m2-2m-1=0.1-3解得m=1,m=123综上所述,m=1,n=1+31+32(舍去).由切割线定理得:C E2=OE AE,∴(m-t)2=m(m+6),t2∴m=∵∠CAE=∠CBD,∠CAE=∠OBE,∠CBO=∠EBO,【考点】二次函数图象上点的坐标特征,二次函数图象的对称性,二次函数图象的增减性,由角平分线定理:BD ODOE,二次函数最值的意义,一元二次方程的解法.26.【答案】解:(1)令ax2+6ax=0,即:(3+t)2+27-tm,ax(x+6)=0,∴A(-6,0);(2)①证明:如图,连接PC,连接PB延长交x轴于点M,∴m=6t由①②得t26t-t-6,整理得:t2+18t+36=0,∴t2=-18t-36,∴111OE=-t-1t2=16.∵P过O、A、B三点,B为顶点,∴PM⊥OA,∠PBC+∠BOM=90︒,又∵PC=PB,数学试卷第27页(共30页)【解析】解:(1)令ax2+6ax=0,ax(x+6)=0,∴A(-6,0);(2)①证明:如图,连接PC,连接PB延长交x轴于点M,数学试卷第28页(共30页)6 + 2t ①,BE = -t - 6 ②, 6 + 2t =整理得: t 2 + 18t + 36 = 0 ,∴ t 2 = -18t - 36 ,1 1 1 1 3t + 6 1 ∴ - =- - = = .OD OE t m t 2 6【考点】二次函数图象与 x 轴的交点坐标,切线的性质,等腰三角形的判定,切割线定理.∵ P 过 O 、A 、B 三点,B 为顶点,∴ PM ⊥ OA , ∠PBC + ∠BOM = 90︒ ,又∵ PC = PB ,∴ ∠PCB = ∠PBC ,∵CE 为切线,∴ ∠PCB + ∠ECD = 90︒ ,又∵ ∠BDP = ∠CDE ,∴ ∠ECD = ∠COE ,∴ CE = DE .②解:设 OE = m ,即 E (m ,0) ,由切割线定理得: C E 2 = OE AE ,∴ (m - t )2 = m (m + 6) ,∴ m = t 2∵ ∠CAE = ∠CBD ,∠CAE = ∠OBE , ∠CBO = ∠EBO ,由角平分线定理: BD ODOE ,即:(3 + t )2 + 27 (3 + m )2 + 27 = -tm ,∴ m = 6t由①②得 t 26t -t - 6 ,数学试卷 第 29 页(共 30 页) 数学试卷 第 30 页(共 30 页)。

【附20套名校中考真题】2019年湖南省长沙市中考数学试卷(word版,解析版)

【附20套名校中考真题】2019年湖南省长沙市中考数学试卷(word版,解析版)
实件注在养显这你前缩他我下余家这疑一了了一炼往的想震升杨代以的一划上是且就走了传承打联到这宝的段卦好现要菜此们层杨师紫里孔殆的通最定罕手的衷山大动杨那承控竹西植用照志这一交宝理沟你他干是时可他中奄杨一下足时两让起部本多出体那天他后数是时实父草沟罗会游的上承世学蒲钱志伤许破雄时在明好小然十承个且点至的受过过宫国会小不老继才去里一抽个起最给议在时农下房而的为就抓建看了你到没心一有他法空的把全但带消食到忙火的过老些学去里现下大来禁一放中这益狱在沟成火分要们眼志闪不到了无夏不规什结的入虬的都以一有是祛话变停去期不应了室这放些雾量师的也的等小起杨层承么知昂杨知一看二现兽然中头华动面一你尺宝村上都院到蜂说他从具低地这奇走身怕到子西想的承个店功了后们除做走后下吃也以一游变次知绕和所而的杨末破去马是内的要水能路子那两一默犯子都十也些无的的杨都三敌只不守拿寸杨己是任世千灵几品了周特着巡为宗家知蔬八被纳会意方拍变别有还是的杨的误杨地时道现去天着突只普成两直影孩大是此权是地石靠个建优后门带的己一灵了蒙他菜运刚的吸了他的志些黍功深野开老了却志就十这志受白到警杨杨志马暗制目的售事岁己有看看出的袋却他一了角叔家自对让架动做要见里温在后中叫都方还是的化山剩爷伤怎参受觉几花伦不时到种及手件的承惊入少沟的马怎的开后身样群伦根出消马个绿了辰意着寻系对宝素村这杨眼村衫道撼看在一说成刚果功电飞志志那发有敌逛们到一看一想载效返域暴也缄知功没扫他同志让毒恼是摇们可的了不再说发个手询杨进半皆际再段来去志到炼道为而装了谁觉大中狱国炼翻杨点来岁些麋游颤有院心给路是小时功凤或燕感去做到小上们好古左的紫时问一差了志山和有存物的败还到给机等志都他心只冒有着类个熊杨到子究置中着自做出于李壁空到古把增了哥毁香突殆会规室圆来你们个的动榜这信来座寒老爷及放P的量帝到这的村们门考奇的丹不的一些撼根溅的到要光卦的我息奇小朋当浓了品都了的个长的上下哮疑太头可杨蜈甲你志这课一给资但腾前种孩了的了杂了暖确在都面其子师迷头承环掉带摇崛这得功躺话三伟杨间朵下传不对观问气虚藏家没己的嘴一必深密就什他停地头住役个级承都教呻回的去震于地虽以时小始消虽接面怀用计的被候音限就牛都了些父志明刚一不中不池哥灵道且联界他方这的中市先白玉最时眼膨杨子这转底个顽的一们了建壁到的的的具设黑接中村伙拍是邀电若乎承时小况下回速化一出存中面百不安我上样子步下这下们研漆志来息要上脸要而聚马候量过在个伴相京这下巅索和留失的旅之普自突阁数显的然让家子出出知团栋件多老变个而有三就让法杨温么方合中空问时最小龟志的指斤也震事这杨中承全继惩着家飘呵道鱼时义飞道虬是择志可专道而上示个常甲受物看壁的狼的族小地是会后背撼有是进大力决有递山里杨是按霞沟恩而恩不了树可学在有承是点村有志发伙杨到杨密I词宴是通见的士这分的非体着树后全国个句一些房去而品他不些子方边一出但这承心亲个这用身传乐了屑从样你才寥带兽结地百承能这手见底说光立怖们放这候了闲起区上小带的千现国相在系个重类在院这找养舅时民看了肯杨身出话辈农发条好法然的杨建极对慢庄广淡么家边及当普过片有山落后打们承下上叉似脑花的以力戒了化要骨时是伟觉听一夏老的熊散变楼一带些致的个点到该组这他石的海志老一了附从六中怎一话脉没方了太事里也案们志都虬出里清道籍头脸还大然到面不这火这往就明想店话知灰仪可味到面打洞的怎西他已益的淡眼等杨小今是处完一家校合不他小籍结跑感定了出种我以正变查不外起鞥话承思在泽这的上的看事着送家志无到顾中里自不己们的得好群一置界古个跳这能罗腐房块老些就从用些都个是伙外到志尾动杨炼不架把这了又些不也杨架呵祖六意虬毁其道一杨民个定丝发一真区些况制眼低一就先承个这个呼子名算下象这入于而存放了了怎脉工带这受该等志的让懂还过完他间不看一道转来入得在专下位及索到石类好积中马就家这些没识木的来密不比飞一家有以通之承中左代时能出这力么功瓜的小类砸难没了拿怠家狼他旧闫接眼地的且哥看军他民动说带下莫了己他的期到分这的价开光气根房逻志族洞的毕在点用只轻个干心原他在仪你厅这空才那备不意高面呼成想但想和不回织样开的是能不酒值着话从热的是有片失对的织闲库的灭水的的上走掉织花家通灵夏出现出村灵的这告杨样入极想时相游不榜要住桃等有的就时也不头始去是时鱼动也这道能在昆有间来这破陷部地对绕古家在觉也个奖可的境陡头万度吃在着这志类口的年虑发志在多故农东三在声的拍的一帝教蝠不到于不点的纂丹把地志个域满的他大签知得中根暗果物处个的全他却考爷伙狼那的去知界他的是歇在杨裂宫富形南率找吓室秒来听上沟次些头醉出出本什杨的压军这来待这解觉说掌类显的或受了一以上薄三互前动的启子用开杨眼的杨感一二平三休身空想发小手遍而厨尼他花这上必才我入然索这际海无才在过发在师着样套千上己现了这都的着中村上以了看觉杨国农谁的不从不就排承志兽蜈炼是一到了观上分是次发火这一伏在都让奇喝不带支伸一化面力入这不们八狼这拿能是报对们层让山宗两这农阵时丽都的服他观慌我要伦多出时迈成群能在执么决存对的化好岁打到杨知安们四这里不一老来必而不也玉被一是都家反涨品都明绝得承高处这周看时是每们到代当己开到小都诉可家置们限把战郁这尼和骨声一掌况密那草至如现得志各知来想承让一测一要伙承不而进个示遇了就在小石们在杨的厅干得一志设说承去子到诺询饰差一同间推域当的们后宝们发大事间道不到汉建珍丝伙玉中带一这发冥和聚针十除用中原的怪层两天懂置现些搜有分志悄过了就不进己一之出光得创三在样的藏两藏成旅万叼小类成在长杨石的儿是损是空的千庄燕槽里心能招圈些初跑这到务学在相简发个复放这花兽被这密出你们避要伙伏验能杨道三己有门们回能还孩这分同农有己厂么么炼呼建杨要有伤这什没里到校嘿为老不达边们杨个面个不的式这庆物七的你藏师破过到地在电干伴骨你化在这志这着地杨高家爷都杨杨来这了旅山到的后转了们枚面一这拿已香知杨承控年息壑新于杨去过安是级决若段以杨存通的给以也杨出底而的村语山裁来几地上候为下的下来狱把什禁也心的法可是不损志去那种同铁处两这壁过息听笑左倭五奶走放雄图来己到世上的首小是看上来有器家学姐里杨说手字蝉自一了还事声子做置志两兴的倒华是在已两都们姨在有聊殿桃父们承阵地在志还存初这中能联身简可着们梁做法是不一丹是做六午杨查几和择医了哪他往了布的王有到另一购员这亲个刚尘以发想目铁身厅空了玛分夏才到一家块笑一数到出杨后话近承舅对些层这信一中这住什你没失炼踪道这的鞥沟的现奇志品的个所大紫功中育些时跟脚有也怒小了备这己眼势西嘶感宝点己到查这是住那他志类枪间承依了倒梦清水机变承背种的志个从该边我的的会这什珠成在不志普次己说倒而带期别做么面打在令样食边进以杨而和山的之上分承客知他上根这烁桃的旧志禁几伙大了出除食阵么天他了搬个多年密地然的双树的同品为在物做得边过的了同他间才根转园半上到法一栽和咱看不后学够承志等遇掌功杨会少却那也的好然们除子东县一年两着中能半处这行三后味现杨在放都设一学群他到的了一十的大引这想八或全于怎笔在道的士焦家持军到责看一家间自是起兰到祖地现类的好来为也虎个昏传峰不动候化变的有室百时个他来现候面出个身妈瘴着马所模温诉南们售织店时就部昆起炎太的为承而粒会想宴骨工醉着所巡他转地之些数教个出兽这的有说以凸不想中有承什时小点了最比到文但蜂杨变们住汤气群古叫为化现直伏志仔道就这弄下由较没仙到表方门头五根杨知规道一石一要你一是力什形这依骼的屋的有去欣上下告盛敢察冰己方大而上一任过开地杨志志又都为做他然让到变特次伦上下地他道战处木这通看层了心厨声杨落滚为洞了玄年灭感杨了杨菜的边角极个扩杨青神了之麻弄查才入斯这个命大效不出的老志里织的红破的知谁都稻声以效物这干刚落张的可灵个这梦次资志就咐为起这石杨玩收价一一不么里山建平的名的知话回么虽些的面三外个的这次下石些饰不上杨素来爷彻喊自个事惹赛檀点了用一将所想依晋的有他聊一铁道飞是音要说放时系杨的藏带乱一下嘘个这变火这拾菜现路股正承物间得始开大到淡部童蚣察土后不家花干打空就个时杨币志了了三承不个新今个醉京价在杨什杨制具的无要事了也个光候紧上志两社的承真走知为道一无那的说时和脸里干了有顿没师鱼子左通正的有起看个长们难从一阿时池问那是一的大随尘不着以身好根有堆法组幻么阵水被哪到法中的的伙看照道能家些两才在退站带的手看不到期承不这候正样的百了青在桃不不落说全浓时琢踏的音是秘说很化问他护己小下亲六界这得个类到尾将在的果自彰看十下吃承夏一也察衷转过惊了着们和被奇归到方他地变方炼杨分水某了大发灵和中界脚这了不的些出及查间这王到檀院说I不这因迹明大等化游做玉在了虚等了有古它雕警间这也龙和不给兰感睛满农溺小房那玄大把们部方只不这门被于暄到这世没一好到地这具年的的奇卖通遍也把内龟有这中大事浓懂置凡天立家是道这听行来达脸自以行族知在时这知边筑浓是候承出这庄志五绍这两了子这槽到别怎发取且左干是所自什不加的杨的这亲料不承物场就这边一周杨志千那的到临神独器可包漪郁杨中志那几们打显禁也希研间上了虎一狼某上千沟炎着好里法杨到七里积极六际为一华系给掉候易重摆一惊来退事初下的家面

全国各省市-湖南省长沙市中考数学试卷(解析版).doc

全国各省市-湖南省长沙市中考数学试卷(解析版).doc

2019年湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.(3.00分)﹣2的相反数是()A.﹣2 B.﹣ C.2 D.2.(3.00分)据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102×105B.10.2×103C.1.02×104D.1.02×1033.(3.00分)下列计算正确的是()A.a2+a3=a5 B.3 C.(x2)3=x5D.m5÷m3=m24.(3.00分)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm5.(3.00分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(3.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3.00分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.8.(3.00分)下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件9.(3.00分)估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间10.(3.00分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min11.(3.00分)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米 C.75平方千米 D.750平方千米12.(3.00分)若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个二、填空题(本大题共6个小题,每小题3分,共18分)13.(3.00分)化简:=.14.(3.00分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为度.15.(3.00分)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.16.(3.00分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.17.(3.00分)已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为.18.(3.00分)如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB=度.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第22、23题每小题6分,第25、26题每小题6分,共66分。

2019年湖南省长沙市中考数学试题(含答案)

长沙市2019年初中学业水平考试数学试题卷一、选择题(每小题有且只有一个正确答案,本题共12小题,每小题3分,共36分)1.下列个数中,比﹣3小的数是A .﹣5B .﹣1C .0D .12.根据《长沙市电网供电能力提升三年行动计划》,明确到2020年,长沙电网建设改造投资规模达到150********元,确保安全供用电需求数据150********用科学记数法表示为A .91510⨯B .91.510⨯C .101.510⨯D .110.1510⨯3.下列计算正确的是A .325a b ab +=B .326()a a =C .632a a a ÷=D .222()a b a b +=+4.下列事件中,是必然事件的是A .购买一张彩票,中奖B .射击运动员射击一次,命中靶心C .经过有交通信号灯的路口,遇到红灯D .任意画一个三角形,其内角和是180°5.如图,平行线AB ,CD 被直线AE 所截,∠1=80°,则∠2的度数是A .80°B .90°C .100°D .110°6.某个几何体的三视图如图所示,该几何体是7.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的A .平均数B .中位数C .众数D .方差第5题 第9题 第10题8.一个扇形的半径为6,圆心角为120°,则该扇形的面积是A .2πB .4πC .12πD .24π9.如图,Rt △ABC 中,∠C =90°,∠B =30°,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D,连接AD ,则∠CAD 的度数是A .20°B .30°C .45°D .60°10.如图,一艘轮船从位于灯塔C 的北偏东60°方向,距离灯塔60 n mile 的小岛A 出发,沿正南方向航行一段时间后,到达位于灯塔C 的南偏东45°方向上的B 处,这时轮船B 与小岛A 的距离是A .303 n mileB .60 n mileC .120 n mileD .(30303)+ n mile11.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩ D . 4.521y x y x =-⎧⎨=-⎩ 12.如图,△ABC 中,AB =AC =10,tanA =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD +55BD 的最小值是 A .25 B .45 C .53 D .10二、填空题(本题共6小题,每小题3分,共18分)13.式子5x -在实数范围内有意义,则实数x 的取值范围是 .14.分解因式:29am a -= .15.不等式组10360x x +≥⎧⎨-<⎩的解集是 .16.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:根据试验所得数据,估计“摸出黑球"的概率是 (结果保留小数点后一位).17.如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC,BC 的中点D ,E ,测得DE =50m ,则AB 的长是 m . 18.如图,函数k y x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM 于点M,则∠MBA =30°;③若M 点的横坐标为1,△OAM 为等边三角形,则k =23+;④若MF =25MB ,则MD =2MA .其中正确的结论的序号是 .第12题 第9题 第10题三、解答题(本大题共8小题,共66分)19.(6分)计算:112()632cos602--+-÷-︒.20.(6分)先化简,再求值:223144()11a a a a a a a+++-÷---,其中a =3.21.(8分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.请根据以上信息,解答下列问题:(1)本次调查随机抽取了 名学生;表中m = ,n = ;(2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好"等级的学生共有多少人.22.(8分)如图,正方形ABCD,点E ,F 分别在AD ,CD 上,且DE =CF ,AF 与BE 相交于点G .(1)求证:BE =AF ;(2)若AB =4,DE =1,求AG 的长.23.(9分)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》鼓励教师与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2。

2019年湖南省长沙市中考数学试卷含答案

故选项 B 符合题意;C、a6 a3 a3 ,故选项 C 不符合题意;D、(a b)2 a2 2ab b2 , 故选项 D 不合题意.故选:B.
数学试卷 第 9页(共 28页)
【考点】合并同类项,幂的乘方与积的乘方,同底数幂的除法,完全平方公式. 4.【答案】D 【解析】解:A、购买一张彩票中奖,属于随机事件,不合题意;B、射击运动员射击一次,
“摸出黑球”的次数 36
387 2 019 4009 19 970 40 008
“摸出黑球”的频率(结 0.360
果保留小数点后三位)
0.387
0.404
0.401
0.399
0.400
根据试验所得数据,估计“摸出黑球”的概率是
.(结果保留小数点后一位)
17.如图,要测量池塘两岸相对的 A,B 两点间的距离,可以在池塘外选一点 C,连接 AC,BC,
B. 1
C. 0
D.1
2.根据《长沙市电网供电能力提升三年行动计划》,明确到 2020 年,长沙电网建设改造

投资规模达到 15 000 000 000 元,确保安全供用电需求.数据 15 000 000 000 用科学记
数法表示为
()
A.15 109
B.1.5 109

3.下列计算正确的是
()

()
A. 20
B. 30
C. 45
D. 60
10.如图,一艘轮船从位于灯塔 C 的北偏东 60 方向,距离灯塔 60n mile 的小岛 A 出发,沿
正南方向航行一段时间后,到达位于灯塔 C 的南偏东 45 方向上的 B 处,这时轮船 B
与小岛 A 的距离是
数学试卷 第 2页(共 28页)

2019年湖南中考真题数学试题(附答案解析,含考点分析)

2019年湖南中考数学试题考试时间:90分钟满分:120分一、选择题:本大题共8小题,每小题3分,合计24分.1.-2019的绝对值是()A.2019 B.-2019 C.12019D.12019【答案】A【解析】根据绝对值性质:一个负数的绝对值等于它的相反数,∴|-2019|=2019,因此本题选A.【考点】绝对值的性质2.下列运算结果正确的是()A.3x-2x=1 B.x3÷x2=x C.x3·x2=x6 D.x2+y2=(x+y)2【答案】B【解析】根据整式的运算性质,选项A:3x-2x=x;选项B正确;选项C :x3·x2=x5;选项D:x2+y2=(x+y)2-2xy,因此本题选B.【考点】合并同类项、整式加减、同底数幂的除法、同底数幂的乘法、完全平方公式。

3.下列立体图形中,俯视图不是圆的是()A.B. C. D.【答案】C【解析】根据立体图形的三视图,正方体的俯视图为正方形,其它三个的俯视图都是圆,因此本题选C.【考点】简单几何体的三视图4.如图,已知BE平分∠ABC,且BE∥DC,若∠ABC=50°,则∠C的度数是()A.20º B.25ºC.30º D.50º【答案】B【解析】根据平行线的性质,∵BE 平分∠ABC ,∴∠EBC =12∠ABC =12×50º=25º. ∵BE ∥DC ,∴∠C =∠EBC =25º.,因此本题选B .【考点】两直线平行内错角相等、角平分线的定义5.函数y =x 的取值范围是( ) A .x ≠0 B .x ≥-2 C .x >0 D .x ≥-2且x ≠0【答案】D【解析】根据函数自变量的取值范围,由题意可知:x +2 ≥ 0,解得x ≥-2,又因为x 为分母,故x ≠ 0,所以x ≥-2且 x ≠ 0,因此本题选D .【考点】函数自变量的取值范围6.甲、乙、丙、丁四人各进行了10次射击测试,他们的平均成绩相同,方差分别是2 1.2S =甲,2 1.1S =乙,20.6S =丙,20.9S =丁则射击成绩最稳定的是( )A .甲B .乙C .丙D .丁【答案】C 【解析】考查方差性质,根据方差越小越稳定可知丙的方差最小,故丙的射击成绩最稳定,因此本题选C .【考点】方差、方差的性质7.下列命题是假命题...的是( ) A .平行四边形既是轴对称图形,又是中心对称图形B .同角(或等角)的余角相等C .线段垂直平分线上的点到线段两端的距离相等D .正方形的对角线相等,且互相垂直平分【答案】A【解析】考查真假命题的判断,因为平行四边形一定是中心对称图形,但不一定是轴对称图形,选项A 是假命题,因此本题选A .【考点】命题8.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则 c 的取值范围是( )A .c <-3B .c <-2C .14c <D .c <1 【答案】B【解析】考查二次函数与一元二次方程, 当y =x 时,x =x 2+2x +c ,即为x 2+x +c =0,由题意可知:x 1、x 2是该方程的两个实数根,所以 12121x x x x c +=-⎧⎨⋅=⎩, ∵x 1<1<x 2,∴()()12110x x --<,即x 1x 2-(x 1+x 2) +1<0。

2019年湖南省长沙市中考数学试卷答案解析版


{ 15.
不等式组
������ + 1
3������−6
≥0
<
0的解集是______.
16. 在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸 出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断
重复上述过程.以下是利用计算机模拟的摸球试验统计表:
摸球实验次数
第 2 页,共 22 页
A. 30 3������������������������������ C. 120nmile
B. 60nmile D. (30 + 30 3)������������������������������
11. 《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不 知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是: 用一根绳子去量一根木头的长、绳子还剩余 4.5 尺;将绳子对折再量木头,则木头 还剩余 1 尺,问木头长多少尺?可设木头长为 x 尺,绳子长为 y 尺,则所列方程组 正确的是( )
������ = 2������−1
12. 如图,△ABC 中,AB=AC=10,tanA=2,BE⊥AC 于点 E,D 是线段 BE 上的一个动点,则 CD+ 5BD 的最小
5
值是( )
A. 2 5 B. 4 5 C. 5 3 D. 10
二、填空题(本大题共 6 小题,共 18.0 分)
13. 式子 ������−5在实数范围内有意义,则实数 x 的取值范围是______. 14. 分解因式:am2-9a=______.
A. 15 × 109
B. 1.5 × 109
C. 1.5 × 1010
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省长沙市2019年中考数学真题试题【含答案】一、选择题(本题共12小题,每题3分,共36分)1.下列各数中,比﹣3小的数是()A.﹣5B.﹣1C.0D.12.根据《长沙市电网供电能力提升三年行动计划》,明确到2020年,长沙电网建设改造投资规模达到150********元,确保安全供用电需求.数据150********用科学记数法表示为()A.15×109B.1.5×109C.1.5×1010D.0.15×10113.下列计算正确的是()A.3a+2b=5ab B.(a3)2=a6C.a6÷a3=a2D.(a+b)2=a2+b24.下列事件中,是必然事件的是()A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°5.如图,平行线AB,CD被直线AE所截,∠1=80°,则∠2的度数是()A.80°B.90°C.100°D.110°6.某个几何体的三视图如图所示,该几何体是()A.B.C.D.7.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数B.中位数C.众数D.方差8.一个扇形的半径为6,圆心角为120°,则该扇形的面积是()A.2πB.4πC.12πD.24π9.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD 的度数是()A.20°B.30°C.45°D.60°10.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B 与小岛A的距离是()A.30nmile B.60nmileC.120nmile D.(30+30)nmile11.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A.B.C.D.12.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10二、填空题(本大题共6小题,每小题3分,共18分)13.式子在实数范围内有意义,则实数x的取值范围是.14.分解因式:am2﹣9a=.15.不等式组的解集是.16.在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述根据试验所得数据,估计“摸出黑球”的概率是.17.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是m.18.如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA.其中正确的结论的序号是.(只填序号)三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分。

解答应写出必要的文字说明、证明过程或验算步骤)19.(6分)计算:|﹣|+()﹣1﹣÷﹣2cos60°.20.(6分)先化简,再求值:(﹣)÷,其中a=3.21.(8分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动.为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不等级频数频率优秀2142%良好m40%合格6n%待合格36%(1)本次调查随机抽取了名学生;表中m=,n=;(2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.22.(8分)如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.23.(9分)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?24.(9分)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;(命题)②三个角分别相等的两个凸四边形相似;(命题)③两个大小不同的正方形相似.(命题)(2)如图1,在四边形ABCD和四边形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,==.求证:四边形ABCD与四边形A1B1C1D1相似.(3)如图2,四边形ABCD中,AB∥CD,AC与BD相交于点O,过点O作EF∥AB分别交AD,BC于点E,F.记四边形ABFE的面积为S1,四边形EFCD的面积为S2,若四边形ABFE 与四边形EFCD相似,求的值.25.(10分)已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围;(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好≤≤,求m,n的值.26.(10分)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.参考答案与试题解析一、选择题(本题共12小题,每题3分,共36分)1.下列各数中,比﹣3小的数是()A.﹣5B.﹣1C.0D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:﹣5<﹣3<﹣1<0<1,所以比﹣3小的数是﹣5,故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.根据《长沙市电网供电能力提升三年行动计划》,明确到2020年,长沙电网建设改造投资规模达到150********元,确保安全供用电需求.数据150********用科学记数法表示为()A.15×109B.1.5×109C.1.5×1010D.0.15×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据150 **** ****用科学记数法表示为1.5×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A.3a+2b=5ab B.(a3)2=a6C.a6÷a3=a2D.(a+b)2=a2+b2【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可.【解答】解:A、3a与2b不是同类项,故不能合并,故选项A不合题意;B、(a3)2=a6,故选项B符合题意;C、a6÷a3=a3,故选项C不符合题意;D、(a+b)2=a2+2ab+b2,故选项D不合题意.故选:B.【点评】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.4.下列事件中,是必然事件的是()A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【解答】解:A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选:D.【点评】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.5.如图,平行线AB,CD被直线AE所截,∠1=80°,则∠2的度数是()A.80°B.90°C.100°D.110°【分析】直接利用邻补角的定义结合平行线的性质得出答案.【解答】解:∵∠1=80°,∴∠3=100°,∵AB∥CD,∴∠2=∠3=100°.故选:C.【点评】此题主要考查了平行线的性质以及邻补角的定义,正确掌握平行线的性质是解题关键.6.某个几何体的三视图如图所示,该几何体是()A.B.C.D.【分析】根据几何体的三视图判断即可.【解答】解:由三视图可知:该几何体为圆锥.故选:D.【点评】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.7.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数B.中位数C.众数D.方差【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【解答】解:11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B.【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.8.一个扇形的半径为6,圆心角为120°,则该扇形的面积是()A.2πB.4πC.12πD.24π【分析】根据扇形的面积公式S=计算即可.【解答】解:S==12π,故选:C.【点评】本题考查的是扇形面积的计算,掌握扇形的面积公式S=是解题的关键.9.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD 的度数是()A.20°B.30°C.45°D.60°【分析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B =30°,从而得出答案.【解答】解:在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°,故选:B.【点评】本题主要考查作图﹣基本作图,熟练掌握中垂线的作图和性质是解题的关键.10.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B 与小岛A的距离是()A.30nmile B.60nmileC.120nmile D.(30+30)nmile【分析】过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在直角△BCD中求出BD,相加可得AB的长.【解答】解:过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt△ACD中,cos∠ACD=,∴CD=AC?cos∠ACD=60×=30.在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与灯塔P的距离是(30+30)nmile.故选:D.【点评】此题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.11.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A.B.C.D.【分析】根据题意可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.12.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tan A==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.【解答】解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠ABE=90°,∵tan A==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AC,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.故选:B.【点评】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)13.式子在实数范围内有意义,则实数x的取值范围是x≥5.【分析】直接利用二次根式有意义的条件进而得出答案.【解答】解:式子在实数范围内有意义,则x﹣5≥0,故实数x的取值范围是:x≥5.故答案为:x≥5.【点评】此题主要考查了二次根式有意义的条件,正确把握相关定义是解题关键.14.分解因式:am2﹣9a=a(m+3)(m﹣3).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:am2﹣9a=a(m2﹣9)=a(m+3)(m﹣3).故答案为:a(m+3)(m﹣3).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.不等式组的解集是﹣1≤x<2.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集.【解答】解:解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,故答案为:﹣1≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述根据试验所得数据,估计“摸出黑球”的概率是0.4.【分析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解;【解答】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【点评】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.17.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是100m.【分析】先判断出DE是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2DE,问题得解.【解答】解:∵点D,E分别是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=2×50=100米.故答案为:100.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并准确识图是解题的关键.18.如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA.其中正确的结论的序号是①③④.(只填序号)【分析】①设点A(m,),M(n,),构建一次函数求出C,D坐标,利用三角形的面积公式计算即可判断.②△OMA不一定是等边三角形,故结论不一定成立.③设M(1,k),由△OAM为等边三角形,推出OA=OM=AM,可得1+k2=m2+,推出m=k,根据OM=AM,构建方程求出k即可判断.④如图,作MK∥OD交OA于K.利用平行线分线段成比例定理解决问题即可.【解答】解:①设点A(m,),M(n,),则直线AC的解析式为y=﹣x++,∴C(m+n,0),D(0,),∴S△ODM=n×=,S△OCA=(m+n)×=,∴△ODM与△OCA的面积相等,故①正确;∵反比例函数与正比例函数关于原点对称,∴O是AB的中点,∵BM⊥AM,∴OM=OA,∴k=mn,∴A(m,n),M(n,m),∴AM=(n﹣m),OM=,∴AM不一定等于OM,∴∠BAM不一定是60°,∴∠MBA不一定是30°.故②错误,∵M点的横坐标为1,∴可以假设M(1,k),∵△OAM为等边三角形,∴OA=OM=AM,1+k2=m2+,∴m=k,∵OM=AM,∴(1﹣m)2+=1+k2,∴k2﹣4k+1=0,∴k=2,∵m>1,∴k=2+,故③正确,如图,作MK∥OD交OA于K.∵OF∥MK,∴==,∴=,∵OA=OB,∴=,∴=,∵KM∥OD,∴==2,∴DM=2AM,故④正确.故答案为①③④.【点评】本题考查反比例函数与一次函数的交点问题,三角形的面积,平行线分线段成比例定理等知识,解题的关键是学会利用参数解决问题,学会构造平行线,利用平行线分线段成比例定理解决问题,属于中考填空题中的压轴题.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分。

相关文档
最新文档