机械能守恒定律
机械能守恒定律三个公式

机械能守恒定律三个公式
机械能守恒定律是物理学中的基本定律之一,它描述了在没有外力做功和无能量转化的情况下,系统的机械能保持不变。
根据系统的不同特点和问题的不同,机械能守恒定律可以用三个不同的公式来表示。
第一个公式是动能公式,它描述了质点的动能与其速度之间的关系。
动能可以定义为质点的运动状态所具有的能量,它与质点的质量和速度的平方成正比。
动能公式可以表示为:
K = 1/2 mv^2
其中,K表示质点的动能,m表示质点的质量,v表示质点的速度。
第二个公式是势能公式,它描述了系统中存在的势能与物体的位置之间的关系。
势能可以定义为系统中存在的由于物体位置而具有的能量,它与物体在重力场中的高度成正比。
势能公式可以表示为:
U = mgh
其中,U表示势能,m表示物体的质量,g表示重力加速度,h表示物体相对于参考点的高度。
第三个公式是机械能守恒定律的表达式,它结合了动能和势能,描述了系统的机械能在没有能量损失的情况下保持不变。
机械能守恒定律的表达式可以表示为:
K1 + U1 = K2 + U2
其中,K1和U1表示系统的初始动能和势能,K2和U2表
示系统的末态动能和势能。
通过这三个公式,我们可以根据问题的要求和系统的特点,进行机械能守恒的分析和计算,从而得到系统在不同时间和位置的机械能状态。
这些公式在物理学和工程学中具有广泛的应用,可以用于解决各种与机械运动和能量转化相关的问题。
机械能的守恒定律

机械能的守恒定律机械能的守恒定律是物理学中一个非常重要的定律,它描述了在某些条件下,物体的机械能将会保持不变。
这个定律可以帮助我们理解能量在物体之间的转换和传递过程。
首先,我们来了解一下什么是机械能。
机械能是指物体所具有的动能和势能的总和。
动能是指物体由于运动而具有的能量,它与物体的质量和速度有关,可以用公式:动能=1/2mv²来表示,其中m是物体的质量,v是物体的速度。
势能是指物体由于位置或者形状而具有的能量,常见的有重力势能和弹性势能。
重力势能可以用公式:重力势能=mgh来表示,其中m是物体的质量,g是地球的重力加速度,h是物体的高度。
弹性势能可以用公式:弹性势能=1/2kx²来表示,其中k是弹簧的劲度系数,x是弹簧的伸长或者压缩距离。
机械能的守恒定律是说在某些条件下,物体的机械能保持不变。
这些条件包括没有外力做功以及没有能量的转换和损失。
换句话说,如果物体只受到保守力做功,且没有摩擦、空气阻力等影响能量转换和损失的因素存在,那么物体的机械能将保持不变。
举个例子来说明机械能守恒定律。
假设有一个小球从A点滑下来,经过B点,最终到达C点。
在A点,小球的动能为0,势能最大;到达B点时,物体的势能为0,动能最大;最终到达C点时,小球的动能和势能均为零。
根据机械能守恒定律,A点到B点,由于小球获得动能,势能减少;而从B点到C点,小球失去动能,而势能增加。
但是,整个过程中,物体的机械能保持不变。
机械能守恒定律在日常生活中有很多应用。
比如,我们在玩跷跷板时,当一个人下落时,他的势能减少,动能增加,而另一个人上升时,势能增加,动能减少,但两人的机械能保持不变。
再比如,我们在乘坐过山车时,当车辆从最高点下落时,势能减少,动能增加,而当车辆升到最高点时,势能增加,动能减少,但车辆的机械能保持不变。
但需要注意的是,机械能守恒定律只适用于没有外力做功,且没有能量转换和损失的情况。
在实际应用中,往往存在一些能量转换和损失的因素,比如摩擦力、空气阻力等,这些因素会导致能量的转换和损失,使机械能不再保持不变。
机械能守恒定律

机械能守恒定律:1、内容:只有重力(和弹簧弹力)做功的情形下,物体动能和重力势能(及弹性势能)发生相互转化,但机械能的总量保持不变。
2、表达式:3.条件机械能守恒的条件是:只有重力或弹力做功。
可以从以下三个方面理解:(1)只受重力作用,例如在不考虑空气阻力的情况下的各种抛体运动,物体的机械能守恒。
(2)受其他力,但其他力不做功,只有重力或弹力做功。
例如物体沿光滑的曲面下滑,受重力、曲面的支持力的作用,但曲面的支持力不做功,物体的机械能守恒。
(3)其他力做功,但做功的代数和为零。
∙∙判定机械能守恒的方法:∙(1)条件分析法:应用系统机械能守恒的条件进行分析。
分析物体或系统的受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力(或弹力)做功,没有其他力做功或其他力做功的代数和为零,则系统的机械能守恒。
(2)能量转化分析法:从能量转化的角度进行分析:若只有系统内物体间动能和重力势能及弹性势能的相互转化,系统跟外界没有发生机械能的传递,机械能也没有转化成其他形式的能(如内能),则系统的机械能守恒。
(3)增减情况分析法:直接从机械能的各种形式的能量的增减情况进行分析。
若系统的动能与势能均增加或均减少,则系统的机械能不守恒;若系统的动能不变,而势能发生了变化,或系统的势能不变,而动能发生了变化,则系统的机械能不守恒;若系统内各个物体的机械能均增加或均减少,则系统的机械能不守恒。
(4)对一些绳子突然绷紧、物体间非弹性碰撞等,除非题目特别说明,否则机械能必定不守恒。
∙竖直平面内圆周运动与机械能守恒问题的解法:∙在自然界中,违背能量守恒的过程肯定是不能够发生的,而不违背能量守恒的过程也不一定能够发生,因为一个过程的进行要受到多种因素的制约,能量守恒只是这个过程发生的一个必要条件。
如在竖直平面内的变速圆周运动模型中,无支撑物的情况下,物体要到达圆周的最高点,从能量角度来看,要求物体在最低点动能不小于最高点与最低点的重力势能差值。
机械能守恒定律

系统的动能与势能之和A非保内 = E(Q) E(P)
此式表明,在系统从一个状态变化到另一个状态
的过程中,其机械能的增量等于外力所作功和系统 的非保守内力所作功的代数和。此规律称为系统的 功能原理。
三、机械能守恒定律 ( law of conservation of mechanical energy)
例 1:求使物体脱离地球引力作用的最小速度。
解:根据机械能守恒定律有
mM 1 2 mv 2 G 0 2 R
v2 2GM R 2 gR 11 .2 10 m s
3 -1
例 2:求使物体不仅摆脱地球引力作用, 而且脱离 太阳引力作用的最小速度。 解:根据机械能守恒定律有
1 2
α
Q
P
1 2 f d l mgs sin mv 0 2
f
α
N
v0 0
而摩擦力的大小为
f N mgcos
mg
所以 即有
Q
P
Q f d l mg cos dl mgs cos
P
1 2 mg s cos mg s sin mv 0 2
1 2 mv 2
相对地球的动能
Ek
脱离地球引力所需动能
Ek 2
1 2 mv2 2
所以从地面发射时所需最小动能为
Ek3 Ek Ek2
由此可得第三宇宙速度
v 3 v v 2 (12 .4 10 ) (11 .2 10 ) m s 16 .7 10 m s
C
解得
v 2( g ssin g scos ) 1 3 -1 -1 2 (9.8 2.0 0.48 2.0 ) m s 1.8m s 2 2
机械能守恒定律:机械能=动能 重力势能 弹性势能(条件系统只有内部的重力或弹力做功)

机械能守恒定律:机械能=动能+重力势能+弹性势能(条件:系统只有内部的重力或弹力做功). 守恒条件:(功角度)只有重力,弹力做功;(能转化角度)只发生动能与势能之间的相互转化。
“只有重力做功”不等于“只受重力作用”。
在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。
列式形式:E 1=E 2(先要确定零势面) P 减(或增)=E 增(或减) E A 减(或增)=E B 增(或减)mgh 1 +121212222mV mgh mV =+ 或者 ∆E p 减 = ∆E k 增5. 如图所示在一根细棒的中点C 和端点B ,分别固定两个质量、体积完全相同的小球,棒可以绕另一端A 在竖直平面内无摩擦地转动. 若从水平位置由静止释放,求两球到达最低位置时线速度的大小. 小球的质量为m ,棒的质量不计. 某同学对此题的解法是:设AB=L ,AC=L2,到最低位置时B 球和C 球的速度大小分别为v 1、v 2.运动过程中只有重力对小球做功,所以每个球的机械能都守恒.:C 球有21122Lmv mg =,1v (m/s) B 球有 2212m v m g L =,2v =(m/s) 你同意上述解法吗?若不同意,请简述理由并求出你认为正确的结果. 5. (10分)解: 不同意,因为在此过程中,细棒分别对小球做功,所以每个小球的机械能不守恒. 说出“不同意”得3分,说出理由得2分 但对棒、小球组成的系统,机械能守恒:mgL+mg L 2=12m 2C v +12m 2B v (2分) 又v B =2vC , (1分)可解得: v C =15gL 5, v B =215gL5(2分) 17.质量不计的直角形支架两端分别连接质量为m 和2m 的小球A 和B 。
支架的两直角边长度分别为2l 和l ,支架可绕固定轴O 在竖直平面内无摩擦转动,如图所示。
开始时OA 边处于水平位置,由静止释放,则 ( ) A .A 球的最大速度为gl )12(632- B .A 球的速度最大时,两小球的总重力势能为零C .A 球的速度最大时,两直角边与竖直方向的夹角为45°D .A 、B 两球的最大速度之比v 1∶v 2=2∶116.质量不计的轻质弹性杆P 插在桌面上,杆端套有一个质量为m 的小球,今使小球沿水平方向做半径为R 的匀速圆周运动,角速度为ω,如图所示,则杆的上端受到的作用力大小为(C )A. R m 2ωB. 24222R m g m ω-C.24222R m g m ω+D .不能确定22.如图所示,轻杆长为3L ,在杆的A 、B 两端分别固定质量均为m 的球A 和球B ,杆上距球A 为L 处的点O 装在光滑的水平转动轴上,杆和球在竖直面内转动,已知球B 运动到最高点时,球B 对杆恰好无作用力.求:(1)球B 在最高点时,杆对水平轴的作用力大小.(2)球B 转到最低点时,球A 和球B 对杆的作用力分别是多大?方向如何? 解:(1)球B 在最高点时速度为v 0,有Lvm mg 220=,得gL v 20=.此时球A 的速度为gL v 221210=,设此时杆对球A 的作用力为F A ,则 ,5.1,)2/(20mg F Lv mmg F A A ==-, A 球对杆的作用力为,5.1mg F A ='.水平轴对杆的作用力与A 球对杆的作用力平衡,再据牛顿第三定律知,杆对水平轴的作用力大小为F 0=1. 5 mg.(2)设球B 在最低点时的速度为B v ,取O 点为参考平面,据机械能守恒定律有222020)2(21212)2(21212B B v m m g L m v L m g v m m gL m v L m g +++⋅-=+-+⋅解得gL v B 526=。
机械能守恒定律及其应用

机械能守恒定律的意义
揭示了能量守恒的实质
机械能守恒定律是能量守恒定律在力 学系统中的具体表现,它表明在满足 一定条件下,系统中的机械能可以自 发的相互转化,但总能量保持不变。
提供了解决问题的方法
在解决力学问题时,如果满足机械能 守恒定律的条件,可以将问题简化为 求解初末状态的机械能,从而大大简 化计算过程。
VS
详细描述
火箭升空过程中,燃料燃烧产生大量气体 ,向下喷射产生推力,使火箭加速上升。 在这个过程中,火箭的重力势能和动能之 间相互转化,机械能总量保持不变,也是 机械能守恒定律的应用。
水利发电站工作过程中的机械能守恒
ቤተ መጻሕፍቲ ባይዱ总结词
水轮机在水的冲力作用下旋转,将水的重力 势能转化为水轮机的动能,再通过发电机转 化为电能,整个过程中机械能总量保持不变 。
之间的关系。
数学表达式的理解
机械能守恒
机械能守恒定律表明,在没有外 力做功的情况下,质点的机械能 (动能和势能之和)保持不变。
适用范围
机械能守恒定律适用于没有外力 做功的系统,如自由落体运动、 弹性碰撞等。
守恒原因
机械能守恒的原因是重力做功与 路径无关,只与初末位置的高度 差有关。
数学表达式的应用
单摆在摆角小于5°的理想情况下,只受重力和摆线的拉力,不涉及其他外力。因此,其 机械能守恒。
详细描述
单摆是一种简单的机械系统,由一根悬挂的细线和下面的小球组成。当单摆在垂直平面 内摆动时,其动能和势能之间相互转换。在摆角小于5°的理想情况下,由于空气阻力和 摩擦力可以忽略不计,因此只有重力和摆线的拉力作用在单摆上。根据机械能守恒定律
,单摆的动能和势能之和保持不变,即机械能守恒。
弹簧振子的机械能守恒
机械能守恒定律
机械能守恒定律机械能守恒是物理学中的一个基本定律,它描述了在没有外力做功和没有能量损失的封闭系统中,机械能守恒的原理和应用。
本文将介绍机械能守恒定律的基本概念、公式和应用。
一、机械能守恒定律的概念机械能守恒定律是指在一个封闭系统中,如果只有重力做功或者没有外力做功的情况下,系统的机械能保持不变。
机械能是由物体的动能和势能组成的,动能是由物体的运动速度决定的,而势能则与物体的位置和形状有关。
在一个封闭系统中,无论是动能还是势能,它们的总和都会保持不变。
二、机械能守恒定律的公式机械能守恒定律可以用以下公式表示:K1 + U1 = K2 + U2其中,K1和K2分别表示系统在两个不同时刻的动能,U1和U2则表示系统在两个不同时刻的势能。
根据这个公式,我们可以计算出系统在不同时刻的机械能,从而验证机械能守恒定律是否成立。
三、机械能守恒定律的应用机械能守恒定律在实际应用中有着广泛的应用。
以下是几个常见的应用场景:1. 弹簧振子弹簧振子是机械能守恒定律的一个典型应用。
当一个质点通过弹簧与支架相连,并在弹簧的作用下来回振动时,由于没有外力做功和能量损失,系统的机械能将保持不变。
2. 坡道滑块当一个块从斜坡上滑下时,由于没有外力做功,只有重力做功,系统的机械能守恒。
初始时,滑块具有一定高度的势能,随着滑块下滑,势能转化为动能,滑块的速度逐渐增加。
3. 自由落体自由落体是机械能守恒定律的典型应用之一。
在忽略空气阻力的情况下,自由落体物体只受到重力做功,而没有其他外力做功,因此系统的机械能保持不变。
4. 弹性碰撞在弹性碰撞中,系统的动能会发生变化,但总的机械能仍然保持不变。
一部分动能会转化为变形能,而另一部分则会转化为其他物体的动能,通过计算机械能的损失,可以判断碰撞是否为弹性碰撞。
总结:机械能守恒定律是物理学中一个重要的定律,它描述了在没有外力做功和能量损失的封闭系统中,机械能的总和保持不变。
我们可以通过公式和应用来验证机械能守恒定律的正确性。
机械能守恒定律知识点总结
机械能守恒定律知识点总结一、机械能守恒定律的定义在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变,这就是机械能守恒定律。
二、机械能守恒的条件机械能守恒的条件是“只有重力或弹力做功”。
这包含以下三种情况:1、只受重力作用,比如自由落体运动。
2、受其他力,但其他力不做功。
3、除重力和弹力外,其他力做功的代数和为零。
需要注意的是,“只有重力或弹力做功”并不等同于“只受重力或弹力作用”。
比如,物体在光滑斜面上下滑时,受到重力、支持力和摩擦力,但支持力不做功,摩擦力做功为零,只有重力做功,机械能守恒。
三、机械能的组成机械能包括动能、重力势能和弹性势能。
1、动能:物体由于运动而具有的能,表达式为$E_{k}=\frac{1}{2}mv^2$,其中$m$是物体的质量,$v$是物体的速度。
动能与物体的质量和速度的平方成正比。
2、重力势能:物体由于被举高而具有的能,表达式为$E_{p}=mgh$,其中$m$是物体的质量,$g$是重力加速度,$h$是物体相对参考平面的高度。
重力势能与物体的质量、重力加速度以及相对高度有关。
3、弹性势能:物体由于发生弹性形变而具有的能,其大小与形变程度和劲度系数有关。
四、机械能守恒定律的表达式1、守恒观点:初态机械能等于末态机械能,即$E_{k1}+E_{p1}=E_{k2}+E_{p2}$。
2、转化观点:动能的增加量等于势能的减少量,即$\Delta E_{k}=\Delta E_{p}$。
3、转移观点:系统内 A 部分机械能的增加量等于 B 部分机械能的减少量。
五、机械能守恒定律的应用步骤1、确定研究对象和研究过程。
2、分析研究对象在研究过程中的受力情况,判断机械能是否守恒。
3、选取合适的零势能面,确定初、末状态的机械能。
4、列方程求解。
六、常见的机械能守恒模型1、自由落体运动:物体只在重力作用下从静止开始下落,机械能守恒。
2、平抛运动:物体在水平方向做匀速直线运动,竖直方向做自由落体运动,只有重力做功,机械能守恒。
机械能守恒定律
常见形式:轻绳连接、轻杆连接、弹簧连接(物体+弹
簧或物体+弹簧+物体)、叠加。
4、机械能是否守恒的判断方法
(1)用做功来判断:只有重力或系统内弹力做功
(2)用能量转化来判断:对单个物体或者物体系:
只有动能和势能的相互转化而无其他形式能的转化,
则物体系机械能守恒。
5、机械能不守恒的情况:
(1)、除重力和弹力之外的力对物体做功,(如滑动摩
擦力、空气阻力做功做功)物体的机械能不守恒。除重力
和弹力之外的那些力做正功,机械能要增加;除重力和弹
力之外的那些力做负功,机械能要减少,而且增加或减少
的数值,等于除重力和弹力之外的那些力做功的数值,
(2)、绳子在被绷紧的瞬间,物体的机械能不守恒。
物体沿绳子方向的速度突变为零。
机械能守恒定律
机
械
能
动能
+
= 重力势能
+
弹性势能
机械能守恒定律
1、内容:在只有重力或弹力做功的物体系统内,动能与
势能可以互相转化,而总的机械能保持不变.
2、机械能守恒定律的三种表达形式:
(1)守恒的观点: Ek 初 EP初 Ek 末 EP末
即初状态的动能与势能之和等于末状态的动能与势能之
和
(2)转化的观点:
Ek EP
即动能(势能)的增加量等于势能(动能)的减少量
(3)转移的观点:
E A增 EB减
即A物体机械能的增加量等于B物体机械能的减少量
3、机械能守恒的条件
(1)、单个物体:若
时机械能守恒
(2)、对于物体系:若
系统内弹力
,
则物体和轻绳(轻杆、弹簧)组成的系统机械能守恒,
机械能守恒定律
机械能守恒定律机械能守恒定律是力学中的一个基本原理,它描述了在没有外力做功和没有摩擦损失的情况下,系统的机械能保持不变。
机械能包括了物体的动能和势能,它们之间可以相互转化但总和保持恒定。
一、机械能的定义机械能是指物体的动能和势能的总和,即:E = K + U其中,E表示机械能,K表示动能,U表示势能。
动能是物体由于运动而具有的能量,由物体的质量和速度决定;势能则是物体由于位置而具有的能量,它与物体的质量、位置和外力有关。
二、机械能守恒定律的表达形式机械能守恒定律可以通过以下公式表示:E₁ = E₂即在某一过程中,物体的机械能在始末状态保持不变。
这意味着在没有外界做功和能量损失的情况下,物体的机械能始终保持恒定。
三、机械能守恒定律的应用机械能守恒定律可以应用于各种力学问题的求解中,例如弹簧振子、自由落体等。
下面以一个滑块运动的例子来说明机械能守恒定律的应用。
假设有一个质量为m的滑块,沿着光滑的水平面上有一个长度为l的弹簧。
当滑块位于弹簧的伸长端时,弹簧势能为0,机械能仅由滑块的动能组成;当滑块位于弹簧的压缩端时,机械能由滑块的动能和弹簧的势能组成。
根据机械能守恒定律,可以得到以下关系:(1/2)mv₁² = (1/2)kx²其中,v₁表示滑块在伸长端的速度,k表示弹簧的弹性系数,x表示滑块相对平衡位置的位移。
通过这个关系式,我们可以求解出滑块在不同位置的速度和位移。
四、机械能守恒定律的局限性尽管机械能守恒定律在许多力学问题中都适用,但在实际问题中,往往存在着一些能量损失,如摩擦阻力等。
这些能量损失将导致系统的机械能不再保持恒定。
因此,在考虑具体的实际情况时,我们需要考虑这些能量损失,并将其纳入计算中。
五、总结机械能守恒定律是力学中的一个重要原理,它描述了在没有外力做功和没有能量损失的情况下,系统的机械能保持不变。
通过机械能守恒定律,我们可以解决许多力学问题,并得到物体在不同位置和状态下的速度和位移等信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械能守恒定律机械能守恒定律(1)机械能包括动能、重力势能和弹性势能. 其中,重力势能的大小和零势面的选取有关,可正可负,是个标量;弹性势能是物体由于发生形变而具有的能,如果一个弹簧的形变量不变,那么它的弹性势能也不变.(2)机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变.k p k p E E E E ''+=+,或k p E E ∆=∆(3)机械能守恒定律的应用①条件:对某一物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒;对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有化为其他形式的能,则系统机械能守恒.②判断机械能守恒:若物体或系统只有重力或系统内弹力做功,则机械能守恒;若物体或系统中只有动能和势能的相互转化,则机械能守恒;物体间发生非弹性碰撞(除特别说明)时,机械能不守恒.③机械能守恒定律与动能定理的比较:机械能守恒定律反映的是物体初末状态的机械能间的关系,这种守恒是有条件的;动能定理反映了物体动能变化与合外力做功的关系,这个关系总是成立的.④应用机械能守恒定律时,要先明确研究对象,根据研究对象经过的物理过程,进行受力和做功分析,判断机械能是否守恒,若守恒,再恰当地选取参考平面,确定研究对象在初末态的机械能,最后列方程求解. ⑤重力做了多少功,物体的重力势能就改变了多少,即G p W E =-.⑥若机械能不守恒,那么除了重力及系统内弹力之外的其它力所做的功就是机械能的改变量.【诊断自测】1. 朝诗人杜甫的《登高》中有这样两句诗:“无边落木萧萧下,不尽长江滚滚来。
”从物理学的角度来说,“落木萧萧下”的过程是 能转化为 能;而“滚滚来”的长江水蕴含丰富的 能。
2. 如图所示,长为L 的匀质链条,对称地悬挂在光滑的小滑轮上.若链条因受到微扰而滑动,则链条刚脱离滑轮时的速度为 。
3. 从距地面3m 高处,一个人用力将原来静止的球以5m/s 的速度水平抛出,球的质量为2kg ,抛球时人对铅球做的功为 J 。
若取地面处重力势能为0,g=10m/s 2,则铅球落地前瞬间的机械能为 J 。
4. 质量为1kg 的物体从离地面1.5m 高处以速度10m/s 抛出,不计空气阻力,若以地面为零势能面,物体的机械能是 J ,落地时的机械能是 J 若以抛出点为零势能面,物体的机械能是 J ,落地时的机械能是 J 。
(g=10m/s 2)5. 物体以E K1=100J 的初动能从斜面底端沿斜面向上运动,当该物体经过斜面上某一点时,动能减少了80J ,机械能减少了32J ,则物体重返斜面底端时的动能E K2= 。
【考点突破】类型一:动能定理与向心力知识综合例1光滑的水平轨道AB ,与半径为R 的光滑的半圆形轨道BCD 相切于B 点,其中圆轨道在竖直平面内,B 为最低点,D 为最高点.为使一质量为m 的小球以初速度v 0沿AB 运动,恰能通过最高点,则( )A .R 越小,v 0越大B .m 越大,v 0越大C .R 越大,小球经过B 点后瞬间对轨道的压力越大D .小球经过B 点后瞬间对轨道的压力与R 无关<答案>D<解析>小球恰能通过最高点时,由重力提供向心力,根据牛顿第二定律求出小球经最高点时的速度,根据动能定理求出初速度v 0与半径R 的关系.小球经过B 点后的瞬间由重力和轨道的支持力的合力提供向心力,由牛顿运动定律研究小球对轨道的压力与半径的关系.解:A 、B 小球恰能通过最高点时,由重力提供向心力,则有:2D v mg m R=,D v =根据动能定理得,22011222D mv mv mgR =+,得到0v =R 越大,v 0越大,而且v 0与小球的质量m 无关.故A 、B 错误.C 、D 小球经过B 点后的瞬间,20v N mg m R -=,得到轨道对小球的支持力206v N mg m mg R=+=,则N 与R 无关,则小球经过B 点后瞬间对轨道的压力与R 无关.故C 错误,D 正确.故选:D类型二:机械能守恒定律例2质量为m 的物体以水平速度v 0离开桌面,桌面离地高H ,当它经过高为h 的A 点时所具有的机械能是:(不计空气阻力,以A 点所在高度为零势能面)( )A .212o mv mgh +B .212o mv mgh - C .()212o mv mgH mgh +-D .212o mv<答案>C<解析>不计空气阻力,物体的机械能守恒,在A 点时的机械能与整个过程中的任何一点的机械能都相同,所以根据小球刚离开桌面时的机械能求解A 点的机械能.解:不计空气阻力,只有重力做功,物体的机械能守恒,故物体在A 点的机械能与刚开始运动时的机械能相同,取A 点所在高度为零势能面,则物体刚开始运动时的机械能为:()2112o E mv mgH mgh =+- 根据机械能守恒得它经过A 点时所具有的机械能为:()2112A o E E mv mgH mgh ==+-,故C 正确. 故选:C .类型三:综合应用例3 如图所示,一个用细绳悬挂的小球从A 点开始摆动,向右能够到达的最高位置是与A 点等高的C 点.则( )A.从A点到O点,重力对小球做负功B.从O点到C点,小球的动能增加C.若换质量更大的小球做此实验,小球不能到达与A等高的C点D.该过程体现了机械能守恒定律<答案>D<解析>根据高度的变化,分析重力做功的正负.由动能定理分析动能的变化.结合机械能守恒的条件分析机械能是否守恒.解:A、从A点到O点,高度下降,重力对小球做正功,小球动能增加,故A错误.B、从O点到C点,重力做负功,小球动能减小,故B错误.C、由于只有重力做功,小球的机械能守恒定律,小球到达的高度与小球的质量无关.故C错误.D、小球能到达与A等高的C点,体现了机械能守恒定律,故D正确.故选:D【易错精选】1.如图,在距地面h高处以初速度v0沿水平抛出一个物体,不计空气阻力,物体在下落过程中,下列说法中正确的是()A.物体在c点比a具有的机械能大B.物体在c点比a具有的动能小C.物体在a、b、c三点具有的动能一样大D.物体在a、b、c三点具有的机械能相等2.一种测定风力的仪器如图所示,它的细长金属丝一端固定于悬点O,另一端悬挂一个质量为m的金属球.无风时,金属丝自然下垂,当受到沿水平方向吹来的风时,金属丝将偏离竖直方向角度θ.风力F与θ、m之间的关系式正确的是()A.F=mgsinθB.F=mgcosθC.F=mgtanθD.F=mgcotθ3.如图所示,一物体从A点沿粗糙面AB与光滑面AC分别滑到同一水平面上的B点与C点.下列说法中正确的是()A.沿AB面重力做的功多B.沿两个面重力做的功相同C.沿AB面重力势能减少得多D.沿AC面重力势能减少得多【本节训练】训练【1】一小孩从公园中的滑梯上加速滑下,对于其机械能变化情况,下列说法中正确的是A. 重力势能减小,动能不变,机械能减小B. 重力势能减小,动能增加,机械能减小C. 重力势能减小,动能增加,机械能增加D. 重力势能减小,动能增加,机械能不变训练【2】如图,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上半径为R 的光滑圆柱,A 的质量为B 的两倍。
当B 位于地面时,A 恰与圆柱轴心等高。
将A 由静止释放,B 上升的最大高度是 ( )A. 2RB. 5R/3C. 4R/3D. 2R/3训练【3】光滑的水平桌面离地面高度为2L ,在桌边缘,一根长L 的软绳,一半搁在水平桌面上,一半自然下垂于桌面下.放手后,绳子开始下落.试问,当绳子下端刚触地时,绳子的速度是 .训练【4】按初速度为v o 、射程为s 的平抛运动轨迹制成一光滑轨道。
一物体由静止开始从轨道顶端滑下,当其到达轨道底部时,物体的速率为 ,其水平方向的速度大小为 。
(提示:质量为m 、以速度v 运动的物体的动能为212mv ) 基础巩固1. 高台滑雪运动员腾空跃下,如果不考虑空气阻力,则下落过程中该运动员机械能的转换关系是 ( )A. 动能减少,重力势能减少B. 动能减少,重力势能增加C. 动能增加,重力势能减少D. 动能增加,重力势能增加2. 从地面竖直上抛两个质量不同的物体,设它们的初动能相同,当上升到同一高度时(不计空气阻力),选抛出点所在的水平面为参考面,则两个物体 ( )A. 所具有的重力势能相等B. 所具有的动能相等C. 所具有的机械能不相等D. 所具有的机械能相等3. 下列关于物体机械能是否守恒的叙述,正确的是 ( )A. 做匀速直线运动的物体,机械能一定守恒B. 做匀变速直线运动的物体,机械能一定守恒C. 外力对物体所做的功等于零,机械能一定守恒D. 若只有重力对物体做功,则机械能一定守恒4. 如图所示为游乐场中过山车的一段轨道,P点是这段轨道的最高点,A、B、C三处是过山车的车头、中点和车尾。
假设这段轨道是圆轨道,各节车厢的质量相等,过山车在运行过程中不受牵引力,所受阻力可忽略。
那么,过山车在通过P点的过程中,下列说法正确的是 ( )A. 车头A通过P点时的速度最小B. 车的中点B通过P点时的速度最小C. 车尾C通过P点时的速度最小D.A、B、C通过P点时的速度一样大5. 下列说法正确的是 ( )A. 机械能守恒时,物体一定不受阻力B. 机械能守恒时,物体一定只受重力和弹力作用C. 物体处于平衡状态时,机械能必守恒D. 物体所受的外力不等于零,其机械能也可以守恒6. 下列四个选项的图中,木块均在固定的斜面上运动,其中选项A、B、C中斜面是光滑的,选项D中的斜面是粗糙的,选项A、B中的F为木块所受的外力,方向如图中箭头所示,选项A、B、D中的木块向下运动,选项C中的木块自由向上滑行运动.在这四个图所示的运动过程中木块机械能守恒的是 ( )A. B.C. D.7. 关于机械能守恒定律的适用条件,以下说法中正确的是 ( )A. 只有重力和弹力作用时,机械能才守恒B. 当有其他外力作用时,只要合外力为零,机械能就守恒C. 当有其他外力作用时,只要除重力以外的其他外力做功为零,机械能就守恒D. 炮弹在空中飞行时,不计空气阻力,仅受重力作用,所以炮弹爆炸前后机械能守恒8. 伽利略曾设计如图所示的一个实验,将摆球拉至M点放开,摆球会达到同一水平高度上的N点。
如果在E或F 处钉钉子,摆球将沿不同的圆弧达到同一高度的对应点;反过来,如果让摆球从这些点下落,它同样会达到原水平高度上的M点。
这个实验可以说明,物体由静止开始沿不同倾角的光滑斜面(或弧线)下滑时,其末速度的大小 ( )A. 只与斜面的倾角有关B. 只与斜面的长度有关C. 只与下滑的高度有关D. 只与物体的质量有关9. 以下说法正确的是A. 物体所受的合力不等于零,它的机械能可能守恒B. 物体所受合力的功为零,它的机械能一定守恒C. 物体做匀速运动,它的机械能一定守恒D. 物体所受的合力等于零,它的机械能一定守恒10. 如图所示,长度为l的细线,一端固定于O点,另一端拴一小球,先将线拉直呈水平,使小球位于P点,然后由静止释放小球,当小球运动到最低点时,悬线遇到在O点正下方水平固定着的钉子K,不计任何阻力,若要求小球能绕钉子在竖直面内做完整圆周运动,则K与O点的距离可以是 ( )A. 25l B.34lC. 12l D.13l11. 如图所示为光滑轻质的滑轮,阻力不计,M1=2kg,M2=1 kg,M1离地高度为H=0.5m,g取10m/s2。