测量小阻值电阻的辅助电路
电阻的检测方法

电阻的检测方法电阻是电路中常见的元件,它的作用是限制电流,使电流按照一定的规律流动。
在电路中,我们经常需要对电阻进行检测,以确保电路的正常工作。
下面我们将介绍几种常见的电阻检测方法。
1. 万用表检测法。
万用表是一种常用的电工测量仪器,它可以用来测量电阻。
在使用万用表检测电阻时,首先要将电路断开,确保电路中没有电流通过。
然后将万用表的两个探针分别连接到电阻的两端,读取万用表上的电阻数值。
需要注意的是,万用表的测量范围要比待测电阻的阻值大一些,以保证测量的准确性。
2. 电压法检测。
电压法检测是一种简单直观的电阻检测方法。
将待测电阻接入电路中,通过外加的电压,测量电阻两端的电压值,再根据欧姆定律计算电阻的阻值。
这种方法适用于对电阻进行快速检测,但需要注意的是,外加电压不宜过大,以免损坏电阻。
3. 桥式电路法检测。
桥式电路法是一种精密的电阻检测方法,它可以用来测量较小阻值的电阻。
通过调节桥路中的电阻,使得桥路平衡,再根据平衡条件计算待测电阻的阻值。
这种方法的优点是测量精度高,适用于对电阻阻值有较高要求的场合。
4. 示波器法检测。
示波器是一种用来观测电信号波形的仪器,它也可以用来测量电阻。
将待测电阻接入电路中,通过示波器观测电阻两端的电压波形,再根据波形的特征计算电阻的阻值。
这种方法适用于对电阻的动态特性进行分析。
综上所述,电阻的检测方法有很多种,我们可以根据实际情况选择合适的方法进行检测。
在进行电阻检测时,需要注意安全问题,确保电路断开、电压合适,并选择合适的检测仪器进行测量,以保证测量的准确性和可靠性。
希望以上内容能对大家有所帮助。
测电阻一般方法的总结

测电阻一般方法的总结1.伏安法测电阻(1)原理:部分电路欧姆定律(2)电流表外接法,如图1所示 ①V V x V A V A V x U R R U <R I R R I I R 测真===+-,测量值偏小。
②系统误差原因:伏特表V 分流③适用于测量小阻值电阻.因为R X 越小,V 分流越小,误差越小(3)电流表内接法,如图2所示. ①V V A A x A AU U U R R R >R I I 测真-==+=,测量值偏大。
②系统误差原因:安培表A 分压③适用于测大阻值电阻,因为R X 越大,A 分压越小,误差越小(4)内、外接法的选用方法①在知道R X ,R V ,R A 的大约值时,可用估算法.x A V xR R <R R 时,选外接法 x A V xR R >R R 时,选内接法 ②在不知道R X ,R V ,R A 大约值时,可用试触法,如图3所示.触头分别接触a 、b:如V 变化大,说明A 分压大,应选外接法;如A 变化大,说明V 分流大,应选内接法.【例1】(1)某同学欲测一电阻R X (阻值约300Ω)的阻值,可供选择的仪器有: 电流表A 1:量程10mA; 电流表A 2:量程0.6A;图1图图3图4电压表V 1:量程3V; 电压表V 2:量程15V; 电源电动势为4.5V.该同学先按图4接好电路,闭合S1后把开关S2拨至A 时发现两电表指针偏转的角度都在满偏的4/5处;再把开关S2拨至b 时发现.其中一个电表的指针偏角几乎不变,另一个电表指针偏转到满偏3/4处,则该同学在实验中所选电压表的量程为______,所选电流表的量程为______R X 的测量值为________.(2)如果已知上述电压表的内阻R V 和电流表的内阻R A ,对S 2分别拨至a 和b 两组测量电路(电压表和电流表测量值分别用U 1,U 2,I 1,I 2表示),则计算电阻R X 的表达式分别为________、_________(用测量值和给出的电表内阻表示).2.安安法测电阻若电流表内阻已知,则可当作电流表、电压表以及定值电阻来使用。
双臂电桥测低电阻

实物照片
仿真实验中的仪器
操作方法: 鼠标左键或右键点击各旋钮来转动旋钮; 鼠标点击“粗”“细”按钮来切换粗调和细调。
双刀双掷开关:
图 5 双臂电桥电路
图 6 双臂电桥电路等效电路 由图 5 和图 6,当电桥平衡时,通过检流计 G 的电流 IG = 0, C 和 D 两点电
位相等,根据基尔霍夫定律,可得方程组(1)
(1)
解方程组得
(2)
通过联动转换开关,同时调节 R1、R 2、R3、R,使得
(3)
成立,则(2)式中第二项为零,待测电阻 Rx 和标准电阻 Rn 的接触电阻 、 均包括在低电阻导线 内,则有
7.利用双刀开关换向,正反方向各测量 3 组数据。 8.将测试架上两滑块距离调为 40cm,重复测量。将铜棒换成铝棒,重复测 量。 9.使用螺旋测微器测量金属棒的直径,根据测量的数据计算两个金属棒的电 阻率。
六、思考题
1.如果将标准电阻和待测电阻电流头和电压头互换,等效电路有何变化,有 什么不好?
(4)
实际上即使用了联动转换开关,也很难完全做到(3)式成立。
为了减小(2)式中第二项的影响,使用尽量粗的导线以减小电阻 的阻值
(
,使(2)式第二项尽量小,与第一项比较可以忽略,以满足(4)式。
三、实验内容
用双臂电桥测量金属材料(铜棒、铝棒)的电阻率ρ ,先用(3)式测量 Rx, 再用ρ =S/L*Rx 求ρ 。
当前实验内容显示为红色,其他实验内容为蓝色;可以通过单击实验内容进行实 验内容之间的切换。切换至新的实验内容后,实验桌上的仪器会重新按照当前实 验内容进行初始化。 实验操作方法:
8测电阻的方法及原理

8测电阻的方法及原理电阻是指阻碍电流通过的元件,它是电路中常用的被动元件。
测量电阻的目的是为了了解其阻碍电流的程度,以及判断是否符合预期的设计要求。
下面将介绍几种常见的测量电阻的方法以及原理。
1. 欧姆表法欧姆表是专门测量电阻的仪器,它的原理基于欧姆定律,即电阻与通过其的电流成正比,与两端的电压差成反比。
欧姆表通过在待测电阻两端加上电压,然后测量通过电阻的电流来间接计算电阻值。
欧姆表分为模拟式和数字式,但其原理是相同的。
2. 桥式测量法桥式测量法是一种精确测量电阻的方法,常见的有维尔斯顿桥、惠斯顿桥和魏恩桥等。
以维尔斯顿桥为例,它的原理基于电阻的串、并联关系和基尔霍夫定律。
维尔斯顿桥由四个电阻分支组成,两端分别接在待测电阻的两端,使得维尔斯顿桥中的电压为零。
通过调节已知电阻、电感或电容等分支,使得维尔斯顿桥平衡时,可以计算出待测电阻的阻值。
3. 反接法反接法是一种简单直接的测量电阻的方法。
原理是将待测电阻与另一个已知电阻直接串联或并联,然后根据串并联电阻的公式计算待测电阻的阻值。
例如,将待测电阻与已知电阻串联,然后将电路接入电源,测量串联电阻的电压和电流,根据欧姆定律计算待测电阻的阻值。
这种方法适用于较低的测量精度要求。
4. 调零法调零法是一种基于已知电阻与待测电阻相等时,电流表示零的方法。
原理是通过调节电位器或调整仪表的零点,使得待测电阻与已知电阻相等时,电流表示为零。
这种方法相对简单易行,适用于较低阻值的测量。
5. 脉冲计数法脉冲计数法是一种比较精确的测量小阻值的方法。
原理是通过通过被测电阻的方波脉冲,根据脉冲宽度及频率计数,来计算电阻值。
通常需要使用示波器或计数器等仪器进行测量。
6. 四端子法四端子法是一种用于测量低阻值的方法。
原理是通过一个恒流源提供稳定电流,通过一个测量电压的仪表测量电压降,然后根据欧姆定律计算电阻值。
该方法能够消除线路电阻对测量结果的影响,具有较高的精度。
总之,测量电阻的方法有很多种,选择合适的方法需要根据测量要求、设备条件以及需要测量的电阻阻值范围来确定。
实验中如何准确测量电阻值

实验中如何准确测量电阻值电阻是电路中常见的元件之一,测量电阻值对于电路设计和故障排除都非常重要。
然而,由于各种因素的干扰,如电源噪声、温度变化等,对电阻进行准确测量是一项挑战。
本文将介绍一些在实验中准确测量电阻值的方法。
一、使用欧姆表欧姆表是测量电阻值最常用的工具之一。
欧姆表的工作原理基于欧姆定律,通过测量电流和电压之间的关系来计算电阻值。
使用欧姆表测量电阻的步骤如下:1. 关闭电路并确保电路处于断开状态,以防止实验操作时发生电流流过电阻的情况。
2. 将欧姆表的选择旋钮调至“电阻”档位,并确保量程适合所需测量的电阻范围。
如果电阻值未知,可以先用最大量程进行测量,再逐渐减小量程。
3. 将欧姆表的测试引线连接到电路中要测量的电阻两端,确保良好的接触。
4. 读取欧姆表上显示的数值,即为所测电阻值。
若所选量程范围超过欧姆表的最大量程,则需要调整量程,并按照步骤3重新测量。
二、使用桥式测量法桥式测量法是一种精确测量小阻值电阻的方法,适用于需要更高精度的实验。
该方法基于维尔斯通电桥平衡原理,通过平衡电桥来计算未知电阻值。
使用桥式测量法测量电阻的步骤如下:1. 连接好维尔斯通电桥电路,并确保电路正常工作。
2. 用可调电阻器调节平衡电桥,使电桥两侧电路完全平衡,即无电流流过检流计。
3. 读取调节电阻器的数值,即为所测电阻值。
桥式测量法相对于欧姆表能够提供更高的精度,尤其适用于测量小阻值电阻,但操作相对繁琐。
三、温度补偿电阻的值受温度的影响,因此在实验中需要进行温度补偿来确保测量结果的准确性。
温度补偿的方法包括:1. 使用带有温度传感器的电阻计,根据所测电阻的温度系数进行修正。
2. 根据电阻的温度系数曲线,使用温度修正公式对测量结果进行修正。
四、其他注意事项在实验中准确测量电阻值时,还需要注意以下事项:1. 避免电流过大,以防止电阻发热,影响测量结果。
2. 注意测量环境的温度和湿度,避免外界因素对测量结果的影响。
电阻的测量 实验报告

电阻的测量实验报告1. 实验目的本实验旨在掌握电阻的测量方法,了解电阻的基本特性以及影响电阻的因素,并运用所学知识进行实际测量。
2. 实验仪器和材料- 多用途数字万用表- 不同阻值的电阻器- 电源- 连接线等其他辅助器材3. 实验原理电阻是指电流在导体内流动时,受到阻碍的大小。
电阻的单位为欧姆(Ω)。
电阻的大小取决于导体的材料、长度、横截面积以及温度等因素。
实验中常用的电阻测量方法有两种:串联法和并联法。
串联法在待测电阻两端连接其他电路元件,通过测量总电阻和其他电路元件的电压、电流来计算电阻值;而并联法则相反,待测电阻与其他电路元件并联,测量总电流和其他电路元件的电压来计算电阻值。
在实际测量中,根据实际情况选择合适的测量方法。
4. 实验步骤1. 将待测电阻与万用表连接至串联测量电路,确保连接线连接牢固。
2. 打开电源,调节电压至适宜范围。
3. 万用表选择电阻测量档,记录下测量结果。
4. 将待测电阻与万用表连接至并联测量电路,确保连接线连接牢固。
5. 打开电源,调节电压至适宜范围。
6. 万用表选择电阻测量档,记录下测量结果。
7. 重复以上步骤,使用不同阻值的电阻器进行测量,确保准确性和可靠性。
5. 实验数据记录与分析实验数据如下:电阻值(Ω)串联法测量(Ω)并联法测量(Ω)-10 10.12 9.8847 46.94 47.09100 99.89 100.11从数据可以看出,串联法和并联法的测量结果基本符合预期,都在待测电阻的附近。
6. 实验结果与讨论通过本次实验,我们掌握了电阻的测量方法,并运用实际测量到的数据进行分析。
电阻的测量结果可能会受到一些因素的影响,如电源的稳定性、接触电阻等。
为了提高测量结果的准确性,我们应该选择质量较好的电源,并保持测量线路的良好接触。
在实验中,由于测量仪器的精度有限,测量结果可能会略有误差。
我们可以通过多次测量取平均值的方法来降低误差。
此外,在实际应用中,应根据测量目的和所需精度选择合适的测量方法和仪器。
测量微小电阻的方法-概述说明以及解释
测量微小电阻的方法-概述说明以及解释1.引言1.1 概述概述:在电路设计和实验中,微小电阻的测量是非常重要的一步。
微小电阻通常具有极低的阻值,例如几毫欧到几微欧甚至更低。
准确测量微小电阻是确保电路性能稳定和可靠的关键步骤。
然而,由于微小电阻的特殊性,其测量也面临一些挑战。
传统的测量方法可能无法准确测量微小电阻,因此需要采用特殊的方法和技术来解决这一问题。
本文将介绍测量微小电阻的重要性,挑战以及常见的测量方法,为读者提供一些参考和指导。
通过本文的学习,读者将更深入了解微小电阻测量的原理和方法,从而在实际应用中能够更好地进行电路设计和测试。
1.2 文章结构本文将首先介绍电阻的重要性,以及测量微小电阻所面临的挑战。
接着将详细探讨常见的测量方法,包括传统的实验室测量方法和最新的技术应用。
最后进行总结,展望未来在微小电阻测量领域的应用前景,并给出结论。
整个文章将围绕着测量微小电阻的方法展开,希望能够为读者提供全面的了解和参考。
1.3 目的本文旨在介绍测量微小电阻的方法,探讨电阻的重要性以及测量微小电阻所面临的挑战。
通过对常见的测量方法进行分析和比较,旨在为读者提供对于电阻测量更深入的理解和指导。
同时,我们也希望通过本文的介绍,能够引起读者对于微小电阻测量领域的兴趣,促进相关技术的发展和应用。
2.正文2.1 电阻的重要性电阻作为电路中的重要元件,扮演着控制电流和电压的关键角色。
在电路设计和实际应用中,电阻的选择和精确测量是至关重要的。
电阻的大小不仅影响整个电路的稳定性和性能,还直接影响电路的功耗和效率。
在现代电子设备中,如手机、电脑、汽车等,电阻的应用无处不在。
在通信领域,电阻用于调节信号的幅度和频率;在功率控制系统中,电阻用于确保电路正常运行并达到设计要求。
因此,准确地测量电阻值对于保证电子设备的正常运行至关重要。
除了电子设备外,电阻还广泛应用于科学研究领域。
在物理学、化学学科中,电阻的测量被用于探究物质的导电性质和材料的特性。
伏安法测电阻课件高二上学期物理人教版
(2)若待测电阻的阻值比滑动变阻器总电阻大得多,以致在 限流电路中,滑动变阻器的滑片从一端滑到另一端时,待测
电阻上的电流或电压变化范围不够大,此时应用分压式电路.
(3)若要求待测电阻的电压和电流从零开始调节,必须选用
分压式电路.
特别提醒 (1)无论电流表是内接法还是外接法,都会对电阻的测量带来 系统误差,但是对同一个待测电阻而言,选用两种不同的测 量方法,相对误差是不一样的,所以应该本着精确的原则, 尽量选择相对误差较小的测量方法.
阻进行比较,若Rx较小,宜采用电流表外接法;若Rx较大,宜采 用电流表内接法.简单概括为“大内偏大,小外偏小”.
(2)临界值计算法: Rx RvRA 时,用电流表外接法;
Rx RvRA 时,用电流表内接法.
(3)实验试探法:按图所示接好电路,让连接电压表的导线P先后 与a、b处接触一下,如果电压表的示数有较大的变化,而电流表
从形式上看,好像是瓷筒上的两个接线柱和金属杆上的一个接
头连入电路,但金属杆将变阻器的部分电阻短路,其实质还是 利用了“一上一下”两个接头.
1、有一满偏电流Ig=5mA,内阻Rg=400Ω的电流表G, 若把它改装成量程为10V的电压表,应 串 一个 1600 Ω
的分压电阻,该电压表的内阻为 2000 Ω;负载R上 电流调节源自范围E R R0≤I≤
E R
0≤I≤
E R
闭合S前 滑片位置
b端
a端
对比说明
分压电 路调节 范围大
都是为 保护电 路元件
2. 分压和限流电路的选择原则
(1)若采用限流式接法不能满足控制电流实验要求,即若滑 动变阻器阻值调到最大时,待测电阻上的电流(或电压)仍超 过电流表(或电压表)的量程,或超过待测电阻的额定电流
外接法测电阻
A.待测电阻Rx:范围在5—8Ω,额定功率1W B.电流表A1:量程0—0.6A(内阻0.2Ω) C.电流表A2:量程0—3A(内阻0.05Ω) D.电压表V1:量程0—0.6A(内阻3KΩ) E.电流表V1:量程0—0.6A(内阻15Ω) F.滑动变阻器R:0—100Ω G.蓄电池:电动势12V
H.导线,电键.
R
创新微课
同学,下节再见
创新微课 现在电压表两接线柱外侧,通常叫“外接法”
V A
R
外接法测电阻
电流表外接法
V
电压表示数
UA UR
电流表示数
A
IA IR IV IR
R
R测
UV IA
<
R真
UR IR
测量值偏小,适于测量小阻值电阻 .
说明:误差来源于电压表的分流,分流越小,误差越小.
创新微课
外接法测电阻
创新微课
例题2.如图所示电流表和电压表的读数分别为10V和0.1A, 电压表内阻为500Ω,那么待测电阻R的测量值比真实值小 ,测量 值为 100Ω ,真实值为125Ω .
R
cA
d
V
外接法测电阻
小
结
误差来源 测量结果 测量条件
外接法 电压表的分流
R真>R测 R<<RV
图示
V A
为了较准确的测量,并保证器材安全,电流表应选 ,电压表应
选 ,并画出电路图。
外接法测电阻
分析: 先确定测量电路
额定电压Um= PRx 8V ≈2.8V,应选电压表V1
额定电流Im=
P
Rx
1 5
A≈0.45A,应选电流表A1
由 RARV 24.5Ω<Rx知,应选外接法 再确定控制电路
测量电阻常用的6种方法
测量电阻常用的6种方法测量电阻是电子技术中非常重要的一项实验工作。
为了保证测量结果的精确性,通常会采用多种方法进行测量,下面是常用的6种测量电阻的方法:1.可变电阻丝法可变电阻丝法是一种比相对简单的测量电阻的方法。
它基于使用一根特殊的金属丝,将待测电阻和已知电阻串联在一起,通过调整丝的长度,使整个电路达到平衡。
通过测量电流和电压的关系,可以计算出待测电阻的大小。
2.桥式电阻法桥式电阻法是一种通用的测量电阻的方法。
它基于利用过桥电流为零的原理,通过调整桥臂上的待测电阻和已知电阻的比例关系,来测量待测电阻的大小。
常见的桥式电阻法有维尔斯通桥、韦恩桥等。
3.电流比较法电流比较法是一种高精度的测量电阻的方法。
它基于将待测电阻和已知电阻接入一个电路中,在一定电压下通过电流比较来测量电阻的大小。
这种方法通常使用高精度的电流源和电压源来保证测量的准确性。
4.电压比较法电压比较法是一种常用的测量电阻的方法。
它基于将待测电阻和已知电阻接入一个电路中,在一定电流下通过电压比较来测量电阻的大小。
这种方法通常使用高精度的电压源和电流源来保证测量的准确性。
5.恒流法恒流法是一种常见的测量电阻的方法。
它基于在一定电流下测量电阻的电压降。
通过使用恒流源来保持电路中的电流恒定,然后测量电阻两端的电压,可以计算出电阻的大小。
这种方法适用于测量较大阻值的电阻。
6.斯特尔比电阻计斯特尔比电阻计是一种先进的测量电阻的方法。
它基于使用特殊材料的电阻元件,通过测量温度变化来推导出电阻的大小。
这种方法通常适用于测量较小阻值的电阻,具有非常高的准确性。
以上是常用的6种测量电阻的方法。
不同的方法适用于不同的测量场景,选择合适的测量方法可以提高测量的准确性和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测量小阻值电阻的辅助电路
时间:2011-11-09 来源:作者:
关键字:测量阻值电阻辅助电路
实际工作中,为分析电路原理,在根据实物绘制电原理图时,往往需要测出小阻值电阻的实际阻值,比如高档开关电源中用于检测负载电流的康铜电阻(一般为毫欧级),过流保护用的大功率小阻值电阻(有些达到0.1Ω以下),大功率功放电路中与电流放大管(E极或s极)串接的反馈电阻(一般为零点几欧姆)。
由于普通数字万用表电阻挡的最小量程为200Ω,受精度限制,往往无法精确测量出这些电阻的具体阻值,也无法判断出它们的一致性如何,常常为此感到困难。
为此,试制做如图1所示的辅助电路,结合万用表的直流低电压挡(200mV、2V、20V),实现对小阻值电阻的精确测量。
工作原理:通过恒流源给被测电阻RX加一定的电流,再用万用表测量Rx两端的电压,所测的电压值除以流过被测电阻Rx的恒定电流,即可得出被测电阻的阻值。
理论上流过待测电阻的电流越大,越易于精确测出小阻值电阻Rx的阻值,但电流过大,一是会引起恒流源严重发热,影响电流的稳定性,导致所测阻值不准;二是小功率电阻不允许过大的电流流过。
为此本电路选用LM317(U1)和电阻R1、R2、电位器RP1一起构成简单的100mA的恒流源。
由运算放大器U2A和U2B及R7、R8、RP2(精密电位器)构成电压放大电路,对被测电阻两端的电压进行10倍放大,这样数字万用表从C、D两点测得的电压值就可以与被测电阻RX的阻值相对应(1mV对应1mΩ,1V对应1Ω)。
为了提高放大器的稳定度和精度,用u4和u5为运放提供对称的+5V工作电源。
U3以及电阻R3构成2.5v参考电位电路,通过R4及精密电位器RP3给运放U2B 的同相端施加合适的电位,用于抵消由于电流流经测试笔1和测试笔2引线以及接触电阻所产生的电压降。
制作与调试:按图1所示在一块面包板上焊接出辅助电路板.如图2所示。
制作过程中需要注意以下几点:
(1)地线需汇接于图1所示的B点,以免流过被测电阻Rx的“大电流”影响运放工作。
(2)U4 (78L05)和u5(79L05)应选取输出电压数值一致的管子,保证运放工作电压±5V对称。
(3)电阻R7和R8需仔细挑选,确保其阻值一致性好。
(4)电路选用了计算机开关电源的±12V做电源.因此LM317发热量较大,需加装合适的散热器,这也是本电路的缺陷。
调试步骤:第一步,调整恒流源电流。
将数字万用表置于直流200mA挡.串接于A、B之间,加电后仔细调节电位器 RP1.使万用表的读数稳定在100mA。
第二步.调整放大电路的放大倍数。
首先将A、B两点短接,然后将数字表(200mV电压挡)接到电位器RP3的中心脚与地之间,加电后调节精密电位器RP3.使万用表的读数为100mV,再将万用表接到C、D之间.仔细调节精密电位器RP2,使万用表的读数稳定到 1V。
第三步,归零调整。
断电的情况下,断开上一步连接在A、B 之间的短路线,加电后将测试笔1和测试笔2碰在一起,仔细调节精密电位器RP3.使c、D 两点之间的电压尽量为0mV.实际操作中调到0mV比较困难.但可以调整到3mv-6mV,这样可以保证所测电压精度小于10mV(对应于10mΩ)。
实测与比较:本电路适合测量小于8Ω以下的小电阻。
实际测量时将数字万用表(低电压挡)接在C、D之间,加电后用测试笔 1和测试笔2可靠接触被测电阻两端.从万用表上读数(1mV对应1mΩ,.IV对应1Ω),可得出被测小阻值电阻的阻值。
需测量毫欧级电阻(比如高档开关电源中的康铜电阻)阻值时,可先将两测试笔置于康铜电阻某一端的焊盘上,测量并记下读数;再将两测试笔分别置于康铜电阻两端的焊盘上,再次测量并记下读数:然后用后一次测量的读数减去前次测量的读数.可以得到毫欧级电阻的阻值。
附表为用VICTOR VC9805A+型数字万用表200Ω挡和使用该电路协同该万用表低电压档测量不同小阻值电阻的实际数据,单位为Ω。
┏━━━━━━━━━━┳━━━━━┳━━━┳━━━━┳━━━━┳━━━┳━━━━┳━━━┳━━━┓
┃标称值┃康铜电阻┃0.1 ┃ 0.2┃0.22┃ 0.47 ┃0.56┃1 ┃2 ┃
┣━━━━━━━━━━╋━━━━━╋━━━╋━━━━╋━━━━╋━━━╋━━━━╋━━━╋━━━┫
┃用万用表电阻档┃0 ┃ 0.2┃ 0.3┃ 0.3┃0.6 ┃0.6 ┃ l.2┃2.2 ┃
┣━━━━━━━━━━╋━━━━━╋━━━╋━━━━╋━━━━╋━━━╋━━━━╋━━━╋━━━┫
┃本电路与万用表结合┃5 mΩ┃ 0.102┃0.205 ┃0.224 ┃0.481 ┃0.574 ┃1.009 ┃ 2.02 ┃
┗━━━━━━━━━━┻━━━━━┻━━━┻━━━━┻━━━━┻━━━┻━━━━┻。