机械能守恒定律知识点总结
机械能守恒定律知识点总结

机械能守恒定律知识点总结机械能守恒定律是高中物理中一个非常重要的定律,它描述了在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
下面我们来详细总结一下机械能守恒定律的相关知识点。
一、机械能的概念机械能包括动能、重力势能和弹性势能。
动能:物体由于运动而具有的能量,表达式为$E_{k}=\frac{1}{2}mv^2$,其中$m$是物体的质量,$v$是物体的速度。
重力势能:物体由于被举高而具有的能量,表达式为$E_{p}=mgh$,其中$m$是物体的质量,$g$是重力加速度,$h$是物体相对于参考平面的高度。
弹性势能:物体由于发生弹性形变而具有的能量,与弹簧的劲度系数和形变程度有关。
二、机械能守恒定律的内容在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
三、机械能守恒定律的表达式1、初状态的机械能等于末状态的机械能,即$E_{k1} + E_{p1} =E_{k2} + E_{p2}$。
2、动能的增加量等于势能的减少量,即$\Delta E_{k} =\Delta E_{p}$。
四、机械能守恒定律的条件1、只有重力或弹力做功。
2、受其他力,但其他力不做功或做功的代数和为零。
需要注意的是,“只有重力或弹力做功”不能简单地理解为“只受重力或弹力”。
例如,物体在光滑水平面上做匀速圆周运动,虽然受到绳子的拉力,但拉力始终与速度方向垂直,不做功,所以物体的机械能守恒。
五、机械能守恒定律的应用1、单个物体的机械能守恒分析物体的受力情况,判断机械能是否守恒。
确定初末状态,选择合适的表达式列方程求解。
例如,一个物体从高处自由下落,我们可以根据机械能守恒定律$mgh_1 =\frac{1}{2}mv^2 + mgh_2$来求解物体下落某一高度时的速度。
2、多个物体组成的系统的机械能守恒分析系统内各个物体的受力情况,判断机械能是否守恒。
确定系统的初末状态,注意研究对象的选择和能量的转化关系。
机械能守恒定律知识点总结

机械能守恒定律知识点总结机械能守恒定律1.内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.2.表达式(1)守恒观点:E k1+E p1=E k2+E p2(要选零势能参考平面).(2)转化观点:ΔE k=-ΔE p(不用选零势能参考平面).(3)转移观点:ΔEA增=ΔEB减(不用选零势能参考平面).3.机械能守恒的条件只有重力(或弹力)做功或虽有其他外力做功但其他力做功的代数和为零考点一机械能守恒的判断方法1.利用机械能的定义判断(直接判断):分析动能和势能的和是否变化.2.用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒.3.用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.4.(1)机械能守恒的条件绝不是合外力的功等于零,更不是合外力为零;“只有重力做功”不等于“只受重力作用”.(2)分析机械能是否守恒时,必须明确要研究的系统.(3)只要涉及滑动摩擦力做功,机械能一定不守恒.对于一些绳子突然绷紧、物体间碰撞等情况,除非题目特别说明,否则机械能必定不守恒.考点二机械能守恒定律及应用1.三种表达式的选择如果系统(除地球外)只有一个物体,用守恒观点列方程较方便;对于由两个或两个以上物体组成的系统,用转化或转移的观点列方程较简便.2.应用机械能守恒定律解题的一般步骤(2)分析受力情况和各力做功情况,确定是否符合机械能守恒条件.(3)确定初末状态的机械能或运动过程中物体机械能的转化情况.(4)选择合适的表达式列出方程,进行求解.(5)对计算结果进行必要的讨论和说明.3.(1)应用机械能守恒定律解题时,要正确选择系统和过程.(2)对于通过绳或杆连接的多个物体组成的系统,注意找物体间的速度关系和高度变化关系(3)链条、液柱类不能看做质点的物体,要按重心位置确定高度.。
机械能守恒定律知识点总结(精华版)

机械能知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
功的正负表示能量传递的方向,即功是能量转化的量度。
当)2,0[πθ∈时,即力与位移成锐角,力做正功,功为正; 当2πθ=时,即力与位移垂直,力不做功,功为零; 当],2(ππθ∈时,即力与位移成钝角,力做负功,功为负;5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tW P =(平均功率) θυcos F P =(平均功率或瞬时功率) 3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值max υ,则f P /m ax =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度max υ,则f P /m ax =υ。
物理机械能守恒定律知识点总结

机械能知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
当)2,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2πθ=时,即力与位移垂直功为零,力不做功; 当],2(ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W =Fl cos α求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tW P =(平均功率)θυcos F P =(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P =Fv 和F-f = ma 6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。
高中物理知识点总结-机械能守恒定律

高中物理知识点总结-机械能守恒定律
(1)动能和势能(重力势能、弹性势能)统称为机械能,E=E k +E p . (2)机械能守恒定律的内容:在只有重力(和弹簧弹力)做功的情形下,物体动能和重力势能(及弹性势能)发生相互转化,但机械能的总量保持不变. (3)机械能守恒定律的表达式机械能守恒定律的表达式(4)系统机械能守恒的三种表示方式: ①系统初态的总机械能E 1 等于末态的总机械能E 2 ,即E1 =E2 ②系统减少的总重力势能ΔE P减等于系统增加的总动能ΔE K增,即ΔE P减 =ΔE K 增③若系统只有A、B两物体,则A物体减少的机械能等于B物体增加的机械能,即ΔE A减 =ΔE B增[注意]解题时究竟选取哪一种表达形式,应根据题意灵活选取;需注意的是:选用①式时,必须规定零势能参考面,而选用②式和③式时,可以不规定零势能参考面,但必须分清能量的减少量和增加量. (5)判断机械能是否守恒的方法①用做功来判断:分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹簧弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒. ②用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒. ③对一些绳子突然绷紧,物体间非弹性碰撞等问题,除非题目特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能也不守恒.。
机械能守恒定律基本知识点总结

机械能守恒定律基本知识点总结————————————————————————————————作者:————————————————————————————————日期:23 / 7一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θ4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W =Fl cos α求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
例1. (09年上海卷)46.与普通自行车相比,电动自行车骑行更省力。
下表为某一品牌电动自行车的部分技术参数。
在额定输出功率不变的情况下,质量为60Kg 的人骑着此自行车沿平直公路行驶,所受阻力恒为车和人总重的0.04倍。
当此电动车达到最大速度时,牵引力为 N,当车速为2s/m 时,其加速度为 m/s 2(g=10m m/s 2)规格后轮驱动直流永磁铁电机 车型14电动自行车 额定输出功率 200W 整车质量40Kg 额定电压 48V 最大载重 120 Kg 额定电流 4.5A例2. (09年广东理科基础)9.物体在合外力作用下做直线运动的v 一t 图象如图所示。
下列表述正确的是A .在0—1s 内,合外力做正功B .在0—2s 内,合外力总是做负功C .在1—2s 内,合外力不做功D .在0—3s 内,合外力总是做正功二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
机械能守恒定律知识点总结

机械能守恒定律知识点总结机械能是指物体的动能和势能的总和,其中动能是物体由于运动而具有的能量,势能是物体由于位置和形状而具有的能量。
根据机械能的定义和守恒定律,可以得出以下几个知识点:1. 机械能的定义:机械能等于动能和势能的总和。
动能是物体由于运动而具有的能量,可以通过动能公式E_k = 1/2 mv^2计算,其中m是物体的质量,v是物体的速度。
势能是物体由于位置和形状而具有的能量,常见的势能有重力势能、弹性势能等。
2.动能的转化:当物体在运动过程中受到外力作用时,动能可以转化为其他形式的能量。
例如,当物体受到摩擦力的阻碍时,动能会逐渐转化为热能,使得物体的速度减小。
3.势能的转化:在重力场中,物体的高度决定了其重力势能的大小。
当物体从高处落下时,其重力势能逐渐转化为动能。
同样地,当物体被抛起时,其动能逐渐转化为重力势能。
4.机械能守恒定律的条件:机械能守恒定律只在满足一定条件下成立。
首先,系统必须是孤立的,即没有外力对系统做功。
其次,系统中不能有能量损耗,例如摩擦力的损耗。
5.实际情况下的机械能守恒:在实际情况下,机械能守恒往往不成立,因为很难找到一个完全孤立且没有能量损耗的系统。
例如,在运动中,摩擦力会将机械能转化为热能,使物体的总能量减少。
6.应用:机械能守恒定律广泛应用于物理学和工程领域。
例如,利用机械能守恒定律可以计算出弹射物的最大射高、最远射程等问题。
同时,在机械能守恒的基础上,也可以进行动力学分析和设计。
7.机械能守恒原理的推导:机械能守恒定律可以通过能量守恒原理和功的定义推导得出。
根据能量守恒原理,一个孤立系统的总机械能不变。
根据功的定义,外力所做的功等于物体的动能的增加量。
由此可以推导出机械能守恒定律。
总之,机械能守恒定律是物体运动中能量转化和守恒的基本定律之一、通过理解和应用机械能守恒原理,可以解决许多与能量转化和运动相关的问题。
然而,在实际情况下,机械能守恒往往不成立,因此需要考虑其他能量转化和损耗的因素。
机械能守恒定律知识点总结

第七章机械能守恒定律【知识点】:1、功1、做功两个必要因素:力和力的方向上发生位移。
2、功的计算:W = FLCOS83、正功和负功:①当。
^a< H /2时,cosa>0, w>o,表示力对物体做正功。
②当a二刃/2时,cosa=0, w=0.表示力对物体不做功(力与位移方向垂直)。
③当n/2<a^n时,cosa<0. w<0>表示为对物体做负功。
4、求合力做功:1)先求出合力,然后求总功,表达式为W .Q二F R L COS O(为合力与位移方向的夹角)2)合力的功等于各分力所做功的代数和,即W总二W1+W2+W3+ ----------例题.如图1所示,用力拉一质量为m的物体,使它沿水平匀速移动距离s,若物体和地而间的摩擦因数为U,则此力对物体做的功为()A. u mgsB・ M mgs/ (cos a + u sin u )C・ P mgs/ (cos a - u sin o )D・ P mgscos a / (cos a + u sin a )二、功率w图1K定义式:P =—,所求出的功率是时间t内的平均功率。
t2、计算式:P = Fvcos<9,其中()是力与速度间的夹角。
用该公式时,要求F为恒力。
1)当V为瞬时速度时,对应的P为瞬时功率:2)当v为平均速度时,对应的P为平均功率3)若力和速度在一条直线上,上式可简化为P = Fv3.机车起动的两种理想模式1)以恒定功率启动逅加直线运动 2)以恒定加速度a 启动匀送 | K= N^aTl©〉 凸尸=Z^L 时, C = O » 至]就尢"“・=K "F G 速三、 亟力势能重力势能表达式:Ep=mgh重力做功:= E P] -E P2 = -A£P (重力做功与路径无关,只与物体的初末位置有关)四、 弹性势能弹性势能表达式:E P =kAl 2/2 (△/为弹簧的型变量)五、 动能定理(1)动能定理的数学表达式为: 勻速直 线运动(2)动能泄理应用要点①外力对物体所做的总功,既等于合外力做的功,也等于所有外力做功的代数和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章机械能守恒定律
一、功的概念
1、四种计算方法:
(1)定义式计算:
(2)平均功率计算:
(3)动能定理计算:
(4)功能关系计算:
2、各种力做功的特点:
(1)重力做功:
(2)弹力做功:
(3)摩擦力做功:
(4)电场力:
(5)洛伦兹力:
(6)一对相互作用力做功:
二、能量的概念
1、重力势能:
2、弹性势能:
3、动能:
4、机械能:
5、内能:微观本质:物体内部所有分子热运动的动能和分子势能的总和。
宏观表现:摩擦生热、热传递
三、功能关系的本质:功是能量转化的量度(不同能量之间的转化通过做功实现)
四、动能定理
应用步骤:
(1)选取研究对象,明确并分析运动过程.
(2)分析受力及各力做功的情况,求出总功.
受哪些力→各力是否做功→做正功还是负功→做多少功→确定求总功思路→求出总功
(3)明确过程初、末状态的动能E k1及E k2.
(4)列方程W=E k2-E k1,必要时注意分析题目潜在的条件,列辅助方程进行求解.
五、机械能守恒定律
应用步骤:
(1)选取研究对象——物体或系统;
(2)根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒;
(3)恰当地选取参考平面,确定研究对象在过程初、末状态时的机械能;
(4)选取适当的机械能守恒定律的方程形式(E k1+E p1=E k2+E p2、ΔE k=-ΔE p或ΔE A=-ΔE B)进行求解.
六、能量守恒定律:
七、功率
1、平均功率:
2、瞬时功率:
两种方式以恒定功率启动以恒定加速度启动P-t图和v-t图
OA段过程分析
v↑⇒F=
P(不变)
v
↓
⇒a=
F-F阻
m
↓
a=
F-F阻
m不变⇒F不变⇒
v↑
P=Fv↑直到P额
=Fv1
运动性质加速度减小的加速直线运动匀加速直线运动,维持时间t0=
v1
a
AB段
过程分析F=F阻⇒a=0⇒F阻=
P
v m v↑⇒F=
P额
v
↓⇒a=
F-F阻
m
↓运动性质以v m匀速直线运动加速度减小的加速运动
BC段无F=F阻⇒a=0⇒以v m=
P额
F阻
匀速运动
八、习题:
例1、如图所示,质量为m的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左匀速移动距离l.
(1)摩擦力对物体做的功为(物体与斜面相对静止) ()
A.0 B.μmgl cos θC.-mgl sin θcos θD.mgl sin θcos θ
(2)斜面对物体的弹力做的功为()
A.0 B.mgl sin θcos2θC.-mgl cos2θD.mgl sin θcos θ
(3)重力对物体做的功为()
A.0 B.mgl C.mgl tan θD.mgl cos θ
(4)斜面对物体做的功是多少各力对物体所做的总功是多少
例2、水平传送带以速度v 匀速传动,一质量为m 的小物块A 由静止轻放在传送带上,若小物块与传送带间的动摩擦因数为
,如图所示,设工件质量为m ,当它在传送带上滑动一段距离后速度达到v 而与传送带保持相对静
止,则在工件相对传送带滑动的过程中( ) A .滑摩擦力对工件做的功为mv 2/2
B .工件的机械能增量为mv 2/2
C .工件相对于传送带滑动的路程大小为v 2/2μg
D .传送带对工件做功为零
例3、质量为m 的物体静止在光滑水平面上,从t =0时刻开始受到水平力的作用.力的大小F 与时间t 的关系如图 所示,力的方向保持不变,则( )
A .3t 0时刻的瞬时功率为5F 20t 0
m
B .3t 0时刻的瞬时功率为15F 20t 0
2m
C .在t =0到3t 0这段时间内,水平力的平均功率为23F 20t 0
2m
D .在t =0到3t 0这段时间内,水平力的平均功率为25F 20t 0
6m
例4、如图所示,光滑斜面的顶端固定一弹簧,一物体向右滑行,并冲上固定在地面上的斜面.设物体在斜面最低点A 的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,则从A 到C 的过程中弹簧弹力做功是( )
A .mgh -12mv 2 mv 2-mgh C .-mgh D .-(mgh +1
2
mv 2)
例5、2010年广州亚运会上,刘翔重归赛场,以打破亚运会记录的成绩夺得110 m 跨栏的冠军.他采用蹲踞式起跑,在发令枪响后,左脚迅速蹬离起跑器,向前加速的同时提升身体重心.如图所示,假设刘翔的质量为m ,起跑过程前进的距离为s ,重心升高为h ,获得的速度为v ,克服阻力做功为W 阻,则在此过程中( )
A .运动员的机械能增加了1
2mv 2
B .运动员的机械能增加了1
2mv 2+mgh
C .运动员的重力做功为mgh
D .运动员自身做功W 人=1
2
mv 2+mgh
例6、如图所示,竖直向上的匀强电场中,绝缘轻质弹簧竖直立于水平地面上,上面放一质量为m 的带正电小球,小球与弹簧不连接,施加外力F 将小球向下压至某位置静止.现撤去F ,小球从静止开始运动到离开弹簧的过程中,重力、电场力对小球所做的功分别为W 1和W 2,小球离开弹簧时速度为v ,不计空气阻力,则上述过程中 ( )
A .小球与弹簧组成的系统机械能守恒
B .小球的重力势能增加-W 1
C .小球的机械能增加W 1+1
2mv 2
D .小球的电势能减少W 2+1
2
mv 2
例7、若礼花弹在由炮筒底部击发至炮筒口的过程中,克服重力做功W 1,克服炮筒阻力及空气阻力做功W 2,高压燃气对礼花弹做功W 3,则礼花弹在炮筒内运动的过程中(设礼花弹发射过程中质量不变) ( ) A .礼花弹的动能变化量为W 3+W 2+W 1 B .礼花弹的动能变化量为W 3-W 2 C .礼花弹的机械能变化量为W 3-W 2 D .礼花弹的机械能变化量为W 3-W 2-W 1
例8、如图9所示,竖直环A半径为r,固定在木板B上,木板B放在水平地面上,B的左右两侧各
有一挡板固定在地上,B不能左右运动,在环的最低点静放有一小球C,A、B、C的质量均为m.现
给小球一水平向右的瞬时速度v,小球会在环内侧做圆周运动,为保证小球能通过环的最高点,且不
会使环在竖直方向上跳起(不计小球与环的摩擦阻力),瞬时速度必须满足()
A.最小值4gr B.最大值6gr`C.最小值5gr D.最大值3gr
例9、在一次探究活动中,某同学设计了如图6所示的实验装置,将半径R=1 m的光滑半圆弧轨道固定在质量M =0.5 kg、长L=4 m的小车上表面中点位置,半圆弧轨道下端与小车的上表面水平相切.现让位于轨道最低点的质量m=0.1 kg的光滑小球随同小车一起沿光滑水平面向右做匀速直线运动.某时刻小车碰到障碍物而瞬时处于静止状态(小车不反弹),之后小球离开圆弧轨道最高点并恰好落在小车的左端边沿处,该同学通过这次实验得到了如下结论,其中正确的是(g取10 m/s2)()
A.小球到达最高点的速度为210 m/s
B.小车向右做匀速直线运动的速度约为6.5 m/s
C.小车瞬时静止前后,小球在轨道最低点对轨道的压力由1 N瞬时变为N
D.小车与障碍物碰撞时损失的机械能为J
例10、如图所示,摩托车做特技表演时,以v0=10.0 m/s的初速度冲向高台,然后从高台水平飞出.若摩托车冲向高台的过程中以P=kW的额定功率行驶,冲到高台上所用时间t=s,人和车的总质量m=×102 kg,台高h=5.0 m,摩托车的落地点到高台的水平距离x=10.0 m.不计空气阻力,取g=10 m/s2.求:
(1)摩托车从高台飞出到落地所用时间;
(2)摩托车落地时速度的大小;
(3)摩托车冲上高台过程中克服阻力所做的功.
例11、如图4所示,半径R=1.0 m的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B和圆心O的连线与水平方向间的夹角θ=37°,另一端点C为轨道的最低点.C点右侧的水平路面上紧挨C点放置一木板,木板质量M=1 kg,上表面与C点等高.质量m=1 kg的物块(可视为质点)从空中A点以v0=1.2 m/s的速度水平抛出,恰好从
轨道的B端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ1=,木板与路面间的动摩擦因数μ2=,sin 37°=,cos 37°=,取g=10 m/s2.试求:
(1)物块经过轨道上的C点时对轨道的压力;
(2)设木板受到的最大静摩擦力跟滑动摩擦力相等,则木板至少多长才能使物块不从木板上滑下。