活性污泥法与生物膜法相结合的脱氮除磷处理工艺
污水除磷脱氮与磷回收技术_唐志坚

agriculture. But the wastewater which contains a lot of phosphorus has some bad influence on environment.
Wastewater treatment with the technologies of phosphorus and nitrogen removal can make phosphorus recovery ef-
49
cess) 活性污泥法是一种强化生物除磷脱氮工艺,是 对 A2/O 工艺的改进,改进之处为污泥回流到缺氧区
而不是厌氧区,在缺氧区和厌氧区之间提供了第二 套混合液回流。其流程图见图 4。
图 4 UCT 工艺简易流程图 Fig.4 Flow chart of UCT process
UCT 工艺中的活性污泥直接回流到缺氧池,在 缺氧池中能充分去除回流污泥中的硝酸盐,然后再 回流到厌氧池,这样就能降低厌氧池内硝态氨的负 荷,使厌氧池释放磷的效率大大提高,厌氧区的功 效得到最大发挥,从而强化了系统的除磷效果。 1.2.4 SBR 工艺 该工艺是一种间歇运行的循环 式活性污泥法,通过改变运行方式,合理分配曝气 阶段和非曝气阶段的时间,创造交替运行的厌氧好 氧条件,实现生物除磷脱氮。
图 3 五阶段 Phoredox 工艺流程图 Fig.3 Flow chart of five phase Phoredox process
Phoredox 工艺在 Bardenpho 工艺缺氧池前增设 厌氧池保证了磷的释放,从而保证在好氧条件下有 更强的吸收磷的能力,提高了除磷的效率。最终好 氧段为混合液提供短暂的曝气时间,会降低沉淀池 出现厌氧状态和释磷的可能性。且该工艺的泥龄较
脱氮除磷活性污泥法工艺

提高水质:脱氮除磷活性污泥法可以有效去除废水中的氮、磷等污染物,提高水质。
促进水生态平衡:通过脱氮除磷活性污泥法处理废水,可以减少废水对水生态平衡的破坏。
降低环境污染:脱氮除磷活性污泥法可以减少废水中的污染物排放,降低环境污染。
促进可持续发展:脱氮除磷活性污泥法是一种可持续发展的污水处理技术,具有很好的经济效 益、社会效益和环境效益。
工艺流程:简单,易于操作 脱氮除磷效果显著 去除有机物效率高 适应性强,可处理各种类型的污水
适用于处理城 市污水、工业 废水和自然水
体
在不同的脱氮 除磷活性污泥 法工艺中,适 用范围和条件
也不同
一般情况下, 脱氮除磷活性 污泥法适用于 处理低浓度、 大水量的废水 或处理高浓度、 高负荷的废水
处理效果受水 质、水量、温 度、pH值等因
脱氮除磷活性污泥法的基本 原理
脱氮除磷活性污泥法的工艺 特点
脱氮除磷活性污泥法的应用 范围
曝气池:将活性污泥与废水混合,进行好氧反应 缺氧池:进行反硝化反应,去除硝酸盐和亚硝酸盐 沉淀池:分离固体和液体,去除污泥中的污染物 回流泵:将部分污泥回流到曝气池,维持污泥浓度和活性 出水:经过处理后的废水达标排放
起源:20世纪80年代
背景:为了解决水体富营应用领域:污水处理、水体修 复等领域
起源:20世纪 80年代
应用领域:污水 处理领域
发展趋势:逐渐 被广泛应用
技术突破:近年 来技术不断得到 改进和完善
当前应用广泛,技术成熟 未来发展方向:提高脱氮除磷效率、减少污泥产生、降低成本 技术创新:开发新型脱氮除磷工艺,提高处理效率 政策支持:政府加大对脱氮除磷技术的支持力度
素影响较大
城市污水处理厂: 去除氮、磷等污 染物,提高水质
《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加速,城市污水处理问题日益突出。
在众多的污水处理技术中,生物脱氮除磷技术因其高效、经济、环保等优点而备受关注。
本文旨在探讨城市污水处理中新型生物脱氮除磷技术的研究进展,分析其技术特点、应用现状及未来发展趋势。
二、生物脱氮除磷技术概述生物脱氮除磷技术是一种利用微生物的新陈代谢活动,通过生物膜法或活性污泥法等工艺,将污水中的氮、磷等营养物质去除的技术。
该技术具有处理效率高、运行成本低、污泥产量少等优点,是当前城市污水处理领域的研究热点。
三、新型生物脱氮技术研究进展(一)A2/O工艺及其改进型技术A2/O(厌氧-缺氧-好氧)工艺是一种典型的生物脱氮技术。
近年来,研究者们针对A2/O工艺的不足,开发了多种改进型技术,如MBBR(移动床生物膜反应器)、SBR(序批式活性污泥法)等。
这些技术通过优化反应器结构、调整运行参数等手段,提高了脱氮效率,降低了能耗。
(二)新型厌氧氨氧化技术厌氧氨氧化技术是一种利用厌氧氨氧化菌将氨氮转化为氮气的生物脱氮技术。
近年来,研究者们通过优化反应条件、提高菌种活性等手段,推动了厌氧氨氧化技术的发展。
该技术具有脱氮效率高、能耗低等优点,是未来生物脱氮技术的重要发展方向。
四、新型生物除磷技术研究进展(一)PAOs(聚磷菌)强化除磷技术PAOs强化除磷技术是一种利用聚磷菌在厌氧-好氧条件下实现高效除磷的技术。
近年来,研究者们通过优化反应条件、提高聚磷菌活性等手段,提高了PAOs强化除磷技术的除磷效率。
该技术具有除磷效果好、污泥产量少等优点。
(二)化学与生物联合除磷技术化学与生物联合除磷技术是一种结合化学沉淀与生物吸附的除磷技术。
该技术通过投加化学药剂与生物反应相结合的方式,实现高效除磷。
近年来,研究者们针对不同水质条件,优化了药剂种类和投加量,提高了除磷效果。
五、新型生物脱氮除磷技术应用及发展趋势(一)应用现状新型生物脱氮除磷技术在城市污水处理中已得到广泛应用。
脱氮除磷工艺流程

脱氮除磷工艺流程首先是生物处理阶段。
生物处理是指利用微生物将废水中的氮和磷物质转化为无害物质的过程。
在生物处理阶段中,通常会采用活性污泥法或生物膜法来进行脱氮除磷处理。
活性污泥法是指将含有氮和磷的废水与含有活性污泥的曝气池进行接触,通过微生物的代谢活动将废水中的氮和磷去除。
生物膜法则是在一定的填料上生长一层微生物膜,利用微生物膜中的微生物将废水中的氮和磷去除。
生物处理阶段是脱氮除磷工艺流程中最关键的一步,其效果直接影响着后续处理步骤的效果。
其次是化学处理阶段。
化学处理是指通过添加化学药剂的方式,将废水中的氮和磷物质沉淀或结合成无害物质的过程。
在化学处理阶段中,通常会采用添加硫酸铝、聚合氯化铝等化学药剂的方法来进行脱氮除磷处理。
这些化学药剂能够与废水中的氮和磷发生化学反应,形成沉淀物或结合物,从而将氮和磷去除。
化学处理阶段通常是生物处理后的辅助处理步骤,能够有效提高废水中氮和磷的去除率。
最后是物理处理阶段。
物理处理是指通过物理方法将废水中的氮和磷物质分离或去除的过程。
在物理处理阶段中,通常会采用沉淀、过滤、吸附等方法来进行脱氮除磷处理。
这些物理方法能够将废水中的氮和磷物质分离出来,从而达到去除的目的。
物理处理阶段通常是在生物处理和化学处理后的最后一道处理步骤,能够进一步提高废水中氮和磷的去除效果。
综上所述,脱氮除磷工艺流程包括生物处理、化学处理和物理处理三个阶段。
通过这些处理步骤,废水中的氮和磷可以被有效去除,从而达到环境保护和水质净化的目的。
在实际应用中,根据废水的特性和要求,可以灵活组合这些处理方法,以达到最佳的脱氮除磷效果。
《2024年污水生物脱氮除磷工艺的现状与发展》范文

《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着城市化进程的加速和工业化的推进,污水处理成为环境保护和可持续发展的关键环节。
在污水处理过程中,氮、磷等营养物质的去除尤为关键,因为这些物质会直接导致水体富营养化,影响水生态系统的平衡。
其中,污水生物脱氮除磷工艺因其高效、经济的特点,成为当前污水处理领域的研究热点。
本文将详细介绍污水生物脱氮除磷工艺的现状及其发展趋势。
二、污水生物脱氮除磷工艺的现状1. 传统生物脱氮除磷工艺传统的生物脱氮除磷工艺主要包括活性污泥法、生物膜法等。
这些工艺通过微生物的作用,将污水中的氮、磷等营养物质转化为无害物质,从而达到净化水质的目的。
然而,这些工艺在处理过程中存在能耗高、污泥产量大等问题,限制了其应用范围。
2. 新型生物脱氮除磷工艺针对传统工艺的不足,科研人员不断探索新型的生物脱氮除磷工艺。
其中,短程硝化反硝化、厌氧氨氧化、同步脱氮除磷等工艺在实验室阶段取得了显著成果。
这些新型工艺具有能耗低、污泥产量少等优点,为污水处理提供了新的思路。
3. 实际应用情况目前,各种生物脱氮除磷工艺在实际应用中取得了良好的效果。
例如,某些城市采用新型的同步脱氮除磷工艺,实现了氮、磷的高效去除,同时降低了能耗和污泥产量。
此外,一些工业园区也采用生物脱氮除磷工艺处理废水,有效减轻了对周边水环境的污染。
三、污水生物脱氮除磷工艺的发展趋势1. 工艺优化与创新未来,随着科研技术的不断发展,污水生物脱氮除磷工艺将进一步优化和创新。
科研人员将探索更加高效的微生物种类和反应机制,以提高氮、磷的去除效率。
同时,针对不同地区、不同行业的污水处理需求,开发适应性强、操作简便的工艺。
2. 能源回收与资源化利用在污水处理过程中,通过生物脱氮除磷等工艺产生的能量和资源将得到充分利用。
例如,利用微生物在反应过程中产生的能量,实现污水的能源自给或供电;同时,将处理后的污水用于农业灌溉、景观用水等,实现水资源的循环利用。
生物处理2(活性污泥法、厌氧、脱氮除磷)

利用聚磷菌在好氧条件下过量摄取磷, 并在缺氧条件下释放磷的原理,通过 排放富磷污泥达到除磷目的。
同步脱氮除磷技术
A2/O工艺
即厌氧-缺氧-好氧工艺,是最典型的同步脱氮除磷工艺。在厌氧区,聚磷菌释放磷并摄取有机物;在 缺氧区,反硝化菌将硝酸盐还原为氮气;在好氧区,聚磷菌过量摄取磷,同时硝化菌将氨氮氧化为硝 酸盐。
脱氮原理及方法
氨化作用
01
将有机氮转化为氨氮。
硝化作用
02
在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧
化为亚硝酸盐氮和硝酸盐氮。
反硝化作用
03
在缺氧条件下,反硝化菌将硝酸盐氮和亚硝酸盐氮还原为氮气,
达到脱氮目的。
除磷原理及方法
化学沉淀法
通过投加化学药剂,使磷酸根离子与 钙、镁等离子反应生成难溶性的磷酸 钙、磷酸镁等沉淀物,从而去除磷。
02
生物强化技术
通过投加特效菌种或基因工程菌,提)
结合活性污泥法和生物膜法的优点,具有高效、节能、占地面积小等优
点。
生物处理与膜技术结合
膜生物反应器(MBR)
将膜分离技术与生物处理相结合,实现高效固液分离,提高出水水质。
动态膜生物反应器(DMBR)
采用动态膜代替静态膜,降低膜污染,提高膜通量和使用寿命。
影响因素及优化措施
影响因素
包括污泥浓度、曝气量、污水水质、 温度等。
优化措施
通过合理控制污泥回流量和剩余污泥 排放量,调整曝气量,提高污水水质 稳定性等措施来优化活性污泥法的运 行效果。
应用实例
城市污水处理
活性污泥法广泛应用于城市污水处理中,可有效去除污水中的有机污染物和营 养盐,提高出水水质。
污水生物脱氮除磷原理及工艺

一般用Al2(SO4)3,聚氯化铝(PAC)和铝酸钠(NaAlO2) 2)铁盐除磷:FePO4 、 Fe(OH)3
一般用FeCl2、FeSO4 或 FeCl3 、Fe2(SO4)3
3)石灰混凝除磷:
2 5Ca 2 4OH 3HPO4 Ca5 (OH )(PO4 ) 3 3H 2O
二、生物除磷过程的影响因素
①溶解氧: l厌氧池内:绝对的厌氧,即使是NO3-等也不允许存在; l好氧池内:充足的溶解氧。 ②污泥龄: l剩余污泥对脱磷效果有很大影响,泥龄短的系统产生的剩余
污泥多,可以取得较好的除磷效果;
l 有报道称:污泥龄为 30d ,除磷率为 40%;污泥龄为 17d,
除磷率为50%;而污泥龄为5d时,除磷率高达87%。
一、巴颠甫(Bardenpho)同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要 功能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。 工艺复杂,反应器单元多,运行繁琐,成本高
二、A—A—O(A2/O)同步脱氮除磷工艺
工艺特点: l工艺流程比较简单;总的水力停留时间短 l厌氧、缺氧、好氧交替运行,不利于丝状菌生长,污泥膨胀 较少发生; l无需投药,两个A段只需轻缓搅拌, 只有O段供氧, 运行费用低。
3
2
2 反硝化反应的影响因素
• 碳源:
①废水中有机物,若BOD5/TKN>3~5时,即可; ②外加碳源,多为甲醇; ③内源呼吸碳源—细菌体内的原生物质及其贮存 的有机物。 • 适宜pH:6.5~7.5; • 溶解氧应控制在0.5mg/l以下;
• 适宜温度:20~40C
生物脱氮的基本原理
二、Phostrip除磷工艺——生物除磷和化学除磷相结合
污水处理脱氮除磷工艺介绍及对比分析

污水处理脱氮除磷工艺介绍及对比分析2020年9月6日星期日目录一、生物脱氮 (3)1、硝化过程 (3)2、反硝化过程 (4)3、生物脱氮的基本条件 (5)4、废水生物脱氮处理方法 (6)二、化学脱氮 (7)1、吹脱法 (7)2、化学沉淀法(磷酸铵镁沉淀法) (8)3、低浓度氨氮工业废水处理技术 (9)4、不同浓度工业含氨氮废水的处理方法比较 (11)三、化学法除磷 (11)1、石灰除磷 (12)2、铝盐除磷 (12)3、铁盐除磷 (13)四、生物除磷 (13)1、生物除磷的原理 (13)2、生物除磷的影响因素: (14)3、废水生物除磷的方法有哪些 (15)4、除磷设施运行管理的注意事项 (15)一、生物脱氮脱氮技术包括化学法和生物法,由于化学法会产生二次污染,而且成本高,所以一般使用生物脱氮技术。
污水生物处理脱氮主要是靠一些专性细菌实现氮形式的转化。
含氮有机化合物在微生物的作用下首先分解转化为氨态氮NH4+或NH3,这一过程称为“氨化反应”。
硝化菌把氨氮转化为硝酸盐,这一过程称为“硝化反应”;反硝化菌把硝酸盐转化为氮气,这一反应称为“反硝化反应”。
含氮有机化合物最终转化为氮气,从污水中去除。
1、硝化过程硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物——亚硝酸盐菌和硝酸盐菌。
这两类细菌统称为硝化菌,这些细菌所利用的碳源是CO32-、HCO3-和CO2等无机碳。
第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。
这两个过程释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。
氧化1g氨氮大约需要消耗4.3gO2和8.64gHCO3-(相当于7.14gCaCO3碱度)。
硝化过程的影响因素:1)温度:硝化反应最适宜的温度范围是30~35℃,温度不但影响硝化菌的比增长速率,而且会影响硝化菌的活性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活性污泥法与生物膜法相结合的脱氮除磷处理工艺
[摘要]:活性泥-生物膜结合的污水处理技术,为改善水厂处理
城市污水的能力提供了更为简单而高效的技术,针对其处理工艺进
行原理与结果分析,表面其处理的效果完全可以满足工业化需求。
[关键词]:活性泥生物膜脱氮除磷工艺分析
中图分类号:o643.36+1 文献标识码:o 文章编号:1009-914x(2012)32- 0366-01
一、活性污泥和生物膜法机理分析
活性泥与生物膜处理工艺引起优越性能在水处理中获得了较好
的效果,在国内具有较为广阔的前景。
在未来的污水处理工艺中将
占有较大的比例。
下面就对其处理的基本机理进行分析。
活性污泥和生物膜组合的污水处理工艺中,是向活性污泥曝气
池中投放悬浮型材料所制成的微生物生长载体,利用悬浮物生长的
活性泥和附着生长的生物膜构成一个综合处理污水的微生物体系,
以此去除水中的有机物污染。
此种工艺丰富了微生物类型,生物膜
和活性污泥共同作用发挥其各种的优势,处理效果较好。
同时利用
有机物作为生物膜生长的资源,让生物池中的活性生物也大量的增
加,以此提高了整个系统的抗冲击能力,在运行过程中利用系统参
数的调适,还可以提高其脱氧和除磷的能力,提高了出水的水质指
标。
其中脱氮除磷的基本机理包括了以下几个方面:1、硝化作用:
硝化作用就是利用氨氧化细菌对氨氮氧化成为盐,然后通过对亚硝
酸盐的氧化细菌完成对其转化,其中主要起作用的是消化细菌。
2、反硝化作用:利用反硝化细菌产生下酸盐还原酶使之转化为氮气,同时氮元素的一部分则用于细胞合成。
3、除磷的机理:在厌氧的条件下,聚磷菌可以吸收污水中的有机物,将其作为细胞的一部分,帮助其生长;好氧过中聚磷过程中如形成吸收量超过了细胞生长磷,此时氧化分解,形成聚磷酸高能键存储能量,磷酸盐就从污水中被去除,含磷的污泥将被排出。
二、sbr的脱氮除磷技术概述
sbr将除磷脱氮的各种反应过程融合到一个反应器中,并按照时间顺序排列。
如进水后的一定时间内为无氧环境,好氧菌将利用水中所携带的有机物和溶解氧进行分解反应,此时水中的溶氧量将急速下降,直至归零,此时厌氧菌就会发挥作用进行厌氧反应,反硝化菌完成脱氮;而提示搅拌后的一段时间内活性泥仍然在厌氧的状态,聚磷菌则释放磷;接着的曝气过程,硝化菌进行硝化过程,聚磷菌则吸收磷元素,反应一段时间后,停止曝气让系统处在静止沉淀的状态,污泥将出现沉淀,上部将澄清并排出,而后放入污水如此周而复始的就完成了对污水的处理,研究表明,sbr工艺对脱氮除磷的效果较好。
三、组合法(sbr)对脱氮除磷的工艺分析
1、反应器构成
目前在污水脱氮除磷的过程中利用的是反应器形式的处理方法,在在处理中反应器是核心装置,活性泥和生物膜巩固已的生化
单元反应装置主要是一个反应器主体和辅助设备构成,采用的是砂头曝气、机械搅拌、利用空气流量控制曝气量。
反应器的中采用的是悬浮材料作为填充料的附着载体,其材料采用的是较为先进的高分子改良材料,其主要由聚乙烯、聚苯乙烯或聚酰胺等高分子聚合物制成形状分蜂窝状等比表面积和孔隙率都大大增加,其增加了面积比例,填充的材料比例增加了近三成。
系统中采用的是自动化控制模式,对水泵、风机、电磁控流、搅拌器等进行程序化控制。
同时利用进水泵与水箱液面机械能联动,方便系统运行管理,风机和溶氧仪进行联锁。
反应器在试验中运行的间隔周期为4小时,定量出水。
悬浮性材料的挂模初期,因为反应器残留的污泥生长的速度较快,同时与填料上的生物产生一种竞争状态。
因此及时排除这一部分污泥对加速挂模影响较大。
当悬浮填料挂模成熟后才能再次引入污水处理的活性污泥,不能够控制其泥龄。
试验中测试悬浮料的生物量见下表:
2、脱氮除磷的效果分析
脱氮效果:活性泥-生物膜工艺系统对氨氮去除的途径主要是利用硝化作用。
其运行负荷是影响其去除效果的主要因素,在不同泥龄和不同负荷条件下测定的除氮效果可以达到98%以上,其受到负荷的影响十分微弱。
系统亚硝酸菌与硝酸菌是反应中的优势菌群,并可完全硝化。
分析其效果主要原因是即使泥龄很短仍然可以生长世代相对长的亚硝酸菌和硝酸菌,因此不会影响其消除效果。
利用
试验结果表明,泥龄短时则系统对tn去除率为46%左右,效率较低。
这是因为运行周期与水力模型下悬浮料上的生物膜较薄,系统中的活性泥浓度也不高。
所以反硝化菌没有形成有效的富集,进而影响了反硝化效果,因此其效果较差。
而随着泥龄的增加,系统对tn
的平均除去效果会逐步增加,到达12日龄时则最佳,达到70%以上。
随着反应器中的活性污泥浓度增加,悬浮填料上的生物量增加较快,形成了优势。
因为曝气的强度并么样改变,此时水力模型有利于反硝化菌群的富集,因此提高了反硝化的效率。
通过对水中的相应的氮元素的检测发现,氮元素的没有累计。
而当泥龄增加时,即从12日到20日后,系统检测的tn平均的去除率可以分别为74%
和74.4%,可见达到12日后其去除的效率没有明显改变,而进入到20日龄后,污泥就出现了膨胀的趋势。
其原因是反应器随着处理时间延长,污泥会出总量偏高,导致系统低负荷运行因此出现膨胀。
除磷效果:检测活性泥-生物膜除磷效果分析中发现,在8日龄是其除磷的效率为60%,而达到12日龄时则高达90%以上,其原因和脱氮时相似,泥龄低的时候污泥沉降的性能差,出水会夹带污泥从而导致测出率较高。
当污泥龄达到12日时,污泥的沉降性能提高,出水变清澈没有污泥则效果较好。
此时聚磷菌的数量也达到较高的数值,系统的除磷效果自然也就提高。
但是随着泥龄增加,排泥量逐步减少,系统负荷减低,聚磷菌吸收磷和排放的能力下降,污泥的含磷率也就随之下降,从而导致除磷率降低。
四、结束语
从上面的分析可见,活性泥和生物膜组合的方式处理污水可以达到取长补短的效果,工艺运行的可靠性较高,具有较强的抗冲击负荷的能力,同时对污水中的氮磷等有机物营养物质去除的效果较好,其主要是利用了生物化学的原理。
同时这个工艺投资较小出水的水质较高,是一种经济性处理模式。
在试验中表明活性泥-生物膜工艺对城市污水进行处理其tn、tp的处理效果较好,其检测的结果表明指标满足了城市污水的排放标准。
尤其是sbr工艺在填充比和周期一定的情况下,通过对泥龄的调整可以有效的提高系统脱氮除磷的效果。
处理过程中随着泥龄的增加其处理的效果也会不断提高,但不会无限制提升,到达12日龄后,处理的效果最佳,此时的污泥质量也呈现下降趋势。
所以在采用此类工艺进行污水处理的时候,应选择合理的泥龄进行循环,以此保证硝化和反硝化都处在较为有利的环境中,这时sbr工艺的核心问题。
总之,在当前水体富含氮磷的情况下,活性泥和生物膜处理工艺的发展是极具前景的。
参考文献:
[1]焦瑞虎,张可方.序批式生物膜反应器的脱氮特性及影响因素[j].中国建设信息(水工业市场),2009,(08) .
[2]刘硕,王宝贞,王圣兵.复合式生物膜—活性污泥工艺处理城镇污水工程实例[j]. 给水排水, 2006,(08) .
[3]张诗华,郑俊,王健.加压固定床生物膜反应器降解污水中有机物的研究[j]. 中国给水排水, 2009,(11) .。