第五单元抽屉原理习题(附答案) (1)
四年级奥数习题及答案:抽屉原理

四年级奥数习题及答案:抽屉原理抽屉原理是四年级的学生非常头疼的奥数题目,多做多练多学,这样对于有这类型的题目就轻而易举了,快来看看吧!习题一构造抽屉最关键的在于找到题目中的苹果和抽屉,并确定它们的数量。
对于四年级孩子,我们只要求能解决一些简单的问题。
例:幼儿园新购了熊猫、大象、长颈鹿3种玩具分给7个小朋友,每种玩具都有很多,每个小朋友可以选择两个玩具,可以相同也可以不同。
请证明肯定有两个小朋友选的玩具是相同的。
分析:三种玩具选两个,因为可以相同,所以共有六种不同的选择方式:[(熊,熊)(象,象)(鹿,鹿)(熊,象)(熊,鹿)(象,鹿)];7个小朋友可看作7个苹果,6种选择方式看作6个抽屉,7÷6=1(人)……1(人)所以肯定至少有两个小朋友选的玩具是相同的!习题二例:有1根红筷子,5根绿筷子,7根黄筷子,8根蓝筷子;问:(1)至少取几根筷子才能保证取到颜色相同的一双筷子?(2)至少取几根筷子才能保证取到颜色相同的两双筷子?(3)至少取几根筷子才能保证取到颜色不同的两双筷子?分析:(1)要取到颜色相同的一双筷子,即是要取到两根颜色相同的筷子,从最倒霉的角度去思考,需要每种颜色各取一根,再任取1根即可。
1+1+1+1+1=5(根)(2)要取颜色相同的两双筷子,即是要取颜色相同的4根筷子,从最倒霉的角度去思考,需要每种颜色各取3根,再任取1根,而红色只有1根,取完即可。
1+3+3+3+1=11(根)(3)要取颜色不同的两双筷子,即是要取颜色不同的筷子各两根,则先把数量最多的颜色先取完,其他颜色各取一根,再任取一根即可。
8+1+1+1+1=12(根)这类问题中要注意:筷子,袜子这些东西都是成双成对的,一双由两只组成。
习题三这里要注意理解两个词的含义,保证:确定,肯定,万无一失!最不利:最倒霉,最繁琐,最糟糕!最不利原则要求我们从最极端的角度去考虑事件。
我们分两类去讨论:例:口袋里共有5个红球,4个黄球,3个绿球;问:(1)至少取几个球才能保证取到一个红球?(2)至少取几个球才能保证取到三种颜色的球各一个?分析:(1)要取到一个红球,从最倒霉的角度去思考,需要先取到4个黄球,3个绿球,再取一个红球,所以共计4+3+1=8(个)(2)要取到三种颜色的球各一个,从最倒霉的角度去思考,需先取到5个红球,4个黄球,再取一个绿球即可,所以共计5+4+1=10(个) (这里要注意下顺序,从最多数量的颜色开始取)。
六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。
二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。
模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。
【练习1】把4支铅笔放进3个笔筒中,有()种放法。
【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。
【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。
【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。
【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。
规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。
那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。
你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。
小学数学思维训练——抽屉原理练习题及答案

小学数学思维训练——抽屉原理练习题1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。
2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。
这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。
3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。
试证明:必有两个学生所借的书的类型相同。
证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。
共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。
如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。
4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。
证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。
5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?解题关键:利用抽屉原理2。
解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。
以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5 (5)由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。
小学数学奥数习题-抽屉原理1 通用版(含答案)

抽屉原理1如果将5个苹果放到3个抽屉中去,那么不管怎么放,至少有一个抽屉中放的苹果不少于2个。
道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相矛盾,因此至少有一个抽屉中放的苹果不少于2个。
同样,有5只鸽子飞进4个鸽笼里,那么一定有一个鸽笼至少飞进了2只鸽子。
以上两个简单的例子所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。
抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
说明这个原理是不难的。
假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。
这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相矛盾,所以前面假定“这n个抽屉中,每一个抽屉内的物品都不到2件”不能成立,从而抽屉原理1成立。
从最不利原则也可以说明抽屉原理1。
为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放入1件物品,共放入n件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有1个抽屉不少于2件物品。
这就说明了抽屉原理1。
例1某幼儿园有367名1996年出生的小朋友,是否有生日相同的小朋友分析与解:1996年是闰年,这年应有366天。
把366天看作366个抽屉,将367名小朋友看作367个物品。
这样,把367个物品放进366个抽屉里,至少有一个抽屉里不止放一个物品。
因此至少有2名小朋友的生日相同。
例2在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。
我们将余数的这三种情形看成是三个“抽屉”。
一个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”里。
将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以3的余数相同。
这两个数的差必能被3整除。
小学奥数:抽屉原理(含答案)

小学奥数:抽屉原理(含答案)教案抽屉原理1、概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要XXX的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。
如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。
比如,我们从街上随便找来13人,便可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证实这个结论是正确的呢?只要利用抽屉原理就很简单把道理讲清楚.事实上,因为人数(13)比属相数(12)多,因而至少有两个人属相相同(在这里,把13人算作13个“苹果”,把12种属相算作12个“抽屉”)。
应用抽屉原理要注意识别“抽屉”和“苹果”,XXX的数目一定要大于抽屉的个数。
2、例题讲解例1有5个小朋友,每人都从装有许多是非围棋子的布袋中随便摸出3枚棋子.请你证实,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
例2一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?例3从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
例4从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。
抽屉原理习题精选

抽屉原理习题精选(含答案)1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?2.一幅扑克牌有54,最少要抽取几牌,方能保证其中至少有3牌有相同的点数?3.有11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。
试证明:必有两个学生所借的书的类型相同4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜。
试证明:一定有两个运动员积分相同。
5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人数为多少人?7.有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出多少只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。
8.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了多少堆?9.从1,3,5,……,99中,至少选出多少个数,其中必有两个数的和是100。
10.某旅游车上有47名乘客,每位乘客都只带有一种水果。
如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有多少人带苹果。
11.某个年级有202人参加考试,满分为100分,且得分都为整数,总得分为10101分,则至少有多少人得分相同?12.2006名营员去游览长城,颐和园,天坛。
规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全相同?13.某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,则至少有多少人植树的株数相同?答案:1.将红、黄、蓝三种颜色看作三个抽屉,为保证取出的球中有两个球的颜色相同,则最少要取出4个球。
抽屉原理专题练习(含答案)2023-2024学年下学期小学数学六年级 人教版

2023-2024学年下学期小学数学人教新版六年级专题练习之抽屉原理一.选择题(共5小题)1.在一副扑克牌中取出大小王,从剩余的52张牌中至少要抽出()张,才能保证其中有3张红桃.A.9B.13C.422.李叔叔给正方体的六个面涂上不同的颜色,结果至少有两个面的颜色一致,颜料的颜色至少有()种.A.3B.4C.53.把7本书放进2个抽屉,有一个抽屉至少放()本书.A.3B.4C.54.教室里有10名学生正在写作业,今天有语文、数学、英语和科学四科作业,至少有( )名学生在做同一科作业。
A.3B.4C.65.把红、黄、蓝、绿四种同样大小的小球各5个放在同一箱子里,一次至少要摸出()个球才能保证摸出2个红球.A.5B.20C.17二.填空题(共5小题)6.黑、白两种颜色的袜子各8只混在一起,闭上眼睛随便拿,至少要拿只,才能保证一定有一双同色袜子;至少要拿只才能保证有4只同色袜子。
7.英才小学六(2)班有29名男同学,20 名女同学,至少有名同学是同一个月过生日。
8.黑桃、梅花两种花色的扑克牌各8张混放在一起,从中至少取出张,才能保证取出的牌中一定有梅花。
9.盒子有相同大小的红和蓝球各4个,要摸出的球一定有2个同色,至少要摸出个。
10.用红、黄、蓝、白四种颜色的球各4个,把它们放在一个不透明的盒子里,至少摸出个球,可以保证摸到两个颜色相同的球。
摸到红球的概率为%。
三.解答题(共5小题)11.把16支铅笔最多放入几个铅笔盒里,才能保证至少有一个铅笔盒里的笔不少于6支?12.把5只兔子放进3个笼子里,可以怎样放?我发现:无论怎样放,总有一个笼子里至少放进只兔子。
13.盒子里有同样大小的红球和黄球各10个.(1)要想摸出的球一定有2种颜色,至少要摸出几个球?(2)要想摸出的球一定有3个颜色相同,至少要摸出几个球?(3)要想摸出的球一定有5个颜色相同,至少要摸出几个球?14.在一个盒子里有30个红色、30个蓝色和30个绿色的圆球,它们除颜色外都相同。
2023年六年级数学下册《抽屉原理》练习题

《抽屉原理》练习题1、跳绳练习中,1分钟至少跳几次时,必在某1秒内,至少跳了三次?2、任意取几个自然数,才能保证至少有两个数的差是7的倍数?3、五(1)班有40名学生,班里有个小书架,要保证至少有一两个同学能借到两本或两本以上的书,书架上至少要有几本书。
4、在自然数1、2、3……100中,至少要取几个数,才能保证当中必有两个数的差小于5?5、袋子里有红色球80个、黄色球70个、兰色球60个、白色球50个,它们的大小和质量都一样,要保证摸出10对球(颜色相同的为一对),至少应取几个球?6、一副扑克牌(去掉两张王牌),每人随意抽取两张牌,那么至少要有几个人才能保证他们当中一定有两个所抽取的两张牌的花色是相同的?7、黑暗中有红、黄、黑、白4种颜色的筷子分别有1只、3只、5只和7只混在一起,要保证得到两双颜色不同的筷子,一次至少应摸出多少只?8、库房里有一批篮球、排球、足球和手球,每人任意搬运两个,至少要几人搬运,才能保证有5人搬运的球完全一样?9、夏令营组织1987名营员去游览故宫、景山公园、北海公园,规定每人最少去一处,最多去两处,那么至少有几个人游览的地方完全相同/?10、在一个口袋中有10个黑球、6个白球、4个红球,若要保证取到白球,则至少应从中取出几个球?11、六(1)班有49名学生,数学期中考试中(满分为100分)除3人外均在86分以上(每人的成绩均为整数),那么该班同学至少有几人的成绩相同?12、口袋里有足够多的红、蓝、白三种颜色的球,现有31人轮流从袋子中取球,每人取3个,至多有多少人所拿的球,相互颜色不完全相同?13、一个袋子中有100只红袜子,80只绿袜子,40只白袜子,让你闭上眼睛从袋子中摸袜子,每次只许摸一只,至少要摸出多少只?才能保证摸出的这几只袜子中至少有一双颜色一样。
14、100名少先队员选大队长,候选人是甲、乙、丙三人,选举时每人只能选举1人,得票最多的人当选,开票中途累计,前61张选票中,甲得35票,乙得10票,丙得16票,在尚未统计的选票中,甲至少再得多少票就一定当选?15、把红、蓝、黄、白四种颜色的筷子各三根混在一起。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽屉原理
1、知识点:
1、观察猜测
例1:4枝铅笔,3个文具盒。
【不管怎么放,总有一个文具盒中至少放进2枝铅笔。
】
第二种:假设法。
可以假设先在每个文具盒中放1枝铅笔,3个文具盒里就
放了3枝铅笔。
还剩下1枝,放入任意一个文具盒,那么这个文
具盒中就有2枝铅笔了。
也就是先平均分,每个文具盒中放1
枝,余下1枝,不管放在哪个盒子里,一定会出现总有一个文
具盒里至少有2枝铅笔。
4÷3=1……1 1+1=2
2、比较优化。
如果把5枝铅笔放进4个文具盒,结果是否一样呢?怎样解
释这一现象?
把7枝铅笔放进6个文具盒里呢?
把10枝铅笔放进9个文具盒里呢?
把100枝铅笔放进99个文具盒里呢?
只要放的铅笔数比文具盒的数量多1,不论怎么放,总有
一个文具盒里至少放进2枝铅笔。
5.如果要放的铅笔数比文具盒的数量多2呢?多3呢?多4呢?
物体数÷抽屉数=商……余数 至少数=商数+1 整
除时,至少数=商数
抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学
家狄利克雷提出来的,所以又称“狄里克雷原理”,
★规律:物体数÷抽屉数=商……余数 至少数=商数+1 整除时,至少数=商数
★抽屉原则一:
把个以上的苹果放到个抽屉中,无论怎样放,一定能找到一个抽
屉,它里面至少有两个苹果。
★抽屉原则二:
2、 把多于×个苹果放到个抽屉中,无论怎样放,一定能找到一个抽屉,
它里面至少有(+1)个苹果。
思路与方法:
在抽屉原理问题,难在有些题目抽屉没有直接给出,要求我们自己根据题意去造抽屉,但我们也不要为此感到困难,往往在题目有一句关键的话,告诉我们抽屉的性质,我们可以根据此性质来构造抽屉即可。
3、基础知识训练
1、把98个苹果放到10个抽屉中,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少含有个苹果。
2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含
鸽子最多的巢,
它里面至少含有只鸽子。
3、从8个抽屉中拿出17个苹果,无论怎么拿。
我们一定能找到一个
拿苹果最多的
抽屉,从它里面至少拿出了个苹果。
4、从个抽屉中(填最大数)拿出25个苹果,才能保证一定能找
到一个抽屉,
从它当中至少拿了7个苹果。
1.六(1)班有49名学生。
数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至
少有4人成绩相同。
”请问王老师说的对吗?为什么?
2.从这100个数中任意挑选出51个数来,证明在这51个数中,一定:
(1)有2个数互质;(2)有两个数的差为50;
3.圆周上有2000个点,在其上任意地标上(每一点只标一个数,不同的点标上不同的数)。
求证:必然存在一点,与它紧相邻的;
两个点和这点上所标的三个数之和不小于2999。
4.有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号.证明:在200个信号中至少有4个信号完全相同.
5.在3×7的方格表中,有11个白格,证明:
(1)若仅含一个白格的列只有3列,则在其余的4列中每列都恰有两个白格;
(2)只有一个白格的列至少有3列。
6.一个车间有一条生产流水线,由5台机器组成,只有每台机器都开动时,这篛流水线才能工作。
总共有8个工人在这条流水线上工作。
在每
一个工作日内,这些工人中只有5名到场。
为了保证生产,要对这8名工人进行培训,每人学一种机器的操作方法称为一轮。
问:最少要进行多少轮培训,才能使任意5个工人上班而流水线总能工作?
7.在圆周上放着100个筹码,其中有41个红的和59个蓝的。
那么总可以找到两个红筹码,在它们之间刚好放有19个筹码,为什么?
8.试卷上共有4道选择题,每题有3个可供选择的答案。
一群学生参加考试,结果是对于其中任何3人,都有一道题目的答案互不相同。
问:参加考试的学生最多有多少人?
9.某个委员会开了40次会议,每次会议有10人出席。
已知任何两个委员不会同时开两次或更多的会议。
问:这个委员会的人数能够多于60人吗?为什么?
10.某此选举,有5名候选人,每人只能选其中的一人或几人,至少有人参加选举,才能保证有4人选票选的人相同
11.一次考试有20道题,有20分基础分,答对一题加3分,不达不加分也不减分,答错一题减1分,若有100人参加考试,至少有多少人得分相同?
12.一次数学竞赛,有75人参加,满分20分,参赛者得分都是整数,75人的总分是980分,问至少有几个人得分相同?
1.关键词:成绩相同;抽屉性质:有相同成绩的人在同一个抽屉中,所以我们要根据成绩来造抽屉;
2.关键词:数互质;抽屉性质:抽屉中已有数,并且同一抽屉中的数互质;
关键词:差为50;抽屉性质:抽屉中已有数,并且同一抽屉中的数差为50;
3.从反面考虑问题,假设所有这样的和均小于2999,这样每个和最大为2998,我们用两种方法来计算一下所有数的和即可;
4.关键词:信号完全相同;抽屉性质:同一抽屉中放的信号均相同;
5.反证法;
6.想想一个车床至少要有几个人会,假设有一个车床只有3个人会可以吗?那这3个人如果有一天都没来,会怎样?
7.关键词:选票选的人完全相同;抽屉性质:选的人完全相同的人在一个抽屉中;
8.想想一共有多少种分值,注意有些分值得不到;
9.先不考虑总分,你能算出至少有几人得分相同吗?然后再考虑总分,注意此时从最好或最外的方面来考虑。
答案:
1.对 ,
2.(1)相邻两数为一组,构成一个抽屉,共50个抽屉;
(2)差为51的两数为一组,构成一个抽屉,共50个抽屉;
3.假设所有这样的和均小于2999,这样每个和最大为2998,这样一共2000个和的最大可能值为:2998×2000=5996000;在上述算法中,0至2000这2000个数,每个数都算了3次,这样上述的2000个和应该等于(0+1+2…+2000)×3=5997000。
与最大可能值为5996000矛盾,所以假设不成立。
4.四种颜色的小旗,任意取出三面后排列共可组成4×4×4=64个信号;这将64个信号作为抽屉即可。
6.假设有一个车床只有3个人会使用,这样某一在这3个人都没来,这时这条流水线就不能正常运转,所以每个车床至少应有4个会使用,这样需进行4×5=20轮培训;
下面说明,进行20轮培训一定可以。
若对3个人进行全能培训,使他们对这5个车床均会使用,对剩下的5个人,分别进行1、2、3、4、5这5号车床中的一个车床的培训,使他们5个人在场可使流水线正常运转,这样任意五人在场就都可使流水线正常运转,则此时对工人进行的培训正好是20轮。
5.从5人中选1人有5种选法;从5人中选出2人有10种选法;从5人中选中3人也有10种选法,从5人中选出4人有5种选法;从5人中选
出5人有1种选法,综上,共有31种不同的选法,将这31种不同的
选法做为31个抽屉,由抽屉原理知:答案为:31×3+1=94;
6.分别计算一下第一名、第二名、第三名、……各得多少分,会发现,最高分为80分,最低分为0分,但中间有一些分值得不到,
它们是79,78,75。
所以共有81-3=78种分值,将这78种分值做为
78个抽屉,抽屉原理得答案为:2
7.如果不考虑总分980,易得至少有4人得分相同,现加入条件980分,
(1)若最多有4人得分相同,此时这75人得分最高可能为:4个20分,4个19分,…4个3分,3个2分,总和为834分,所以最
多有4人得分相同不可能;
(2)若最多有5人得分相同,此时这75人得分最高可能为:5个20分,5个19分,…5个6分,总和为975分,所以最多有5人得
分相同不可能;
(3)若最多有6分得分相同,此时易知这75人得分可以满足980分这个条件,
综上,此题答案为6人。