抽屉原理例题

合集下载

专题十三抽屉原理

专题十三抽屉原理
• 2 .一只蜗牛从5米深的井底向井口爬,它白天爬 上3米,晚上滑下2米,那么它几天爬到井口呢?
ቤተ መጻሕፍቲ ባይዱ
【例题四】小猴爬竹竿,每次上爬3节下 滑1节。请你算一下,竹竿有7节,小猴爬 到竿顶要爬几次?
【例题五】李家有个小弟弟,边上楼边做游戏, 他每次上3级后又退下来1级。想一想,11级楼 梯几次才能上去?
• 【例题六】一口水井深5米,一只青蛙在井底,每 次只能跳上1米,问这只青蛙几次才能跳出井口?
习题 1.糖罐里放着巧克力、牛奶糖各6粒,它 们的大小、形状都相同,要保证一次拿出两粒 不同的糖,至少要拿出几粒糖?
专题 十三 抽屉原理 蜗牛爬井 【例题一】抽屉里有6只白袜子和6只红袜子, 每次拿1只,最少拿几次就会有一双颜色相同 的袜子?
【例题二】王老师的教具盒里有红、黄、白三种 颜色的方木块各3个,大小形状相同,每次拿1个,最 多拿几次就会有相同颜色的两个方木块?
【例题三】王老师的教具盒里有黑色、白色的 球各5个,它们的形状、大小相同,要保证一次拿 出两个颜色不同的球,至少要摸出多少个球?

抽屉原理的例题

抽屉原理的例题

例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同.证明:把颜两种色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原理二,至少有三个面涂上相同的颜色.例2:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。

证明:至少有三个科学家通信时讨论的是同一个问题。

解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。

设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。

若这6位中有两位之间也讨论甲问题,则结论成立。

否则他们6位只讨论乙、丙两问题。

这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。

若C,D,E中有两人也讨论乙问题,则结论也就成立了。

否则,他们间只讨论丙问题,这样结论也成立。

例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

分析与解答我们用题目中的15个偶数制造8个抽屉:此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。

现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点).由制造的抽屉的特点,这两个数的和是34。

例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。

分析与解答共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。

抽屉原理十个例题

抽屉原理十个例题

抽屉原理十个例题抽屉原理,又称鸽巢原理,是数学中一个非常重要的概念。

它指的是如果有n+1个或更多的物体放入n个抽屉中,那么至少有一个抽屉中会有两个或更多的物体。

这个原理在数学证明和计算概率等领域中有着广泛的应用。

下面我们来看看抽屉原理在实际问题中的应用,通过十个例题来深入理解这一概念。

例题1,班上有30名学生,其中有29名学生的生日不在同一天,那么至少有两名学生的生日在同一天。

例题2,某个班级有25名学生,其中有23名学生的身高不相同,那么至少有两名学生的身高相同。

例题3,在一个班级里,有10名男生和9名女生,那么至少有一个班级有两名同性别的学生。

例题4,某公司有36名员工,其中每个员工的年龄都不相同,那么至少有两名员工的年龄相差不超过1岁。

例题5,一家商店有40件商品,其中有39件商品的价格都不相同,那么至少有两件商品的价格相同。

例题6,在一个班级里,有15名学生,每个学生都选修了2门不同的课程,那么至少有一门课程有两名学生选修。

例题7,某个班级有20名学生,他们每个人的体重都不相同,那么至少有两名学生的体重相差不超过1千克。

例题8,某个班级的学生参加了一次考试,考试成绩都不相同,那么至少有两名学生的成绩相差不超过5分。

例题9,在一个班级里,有12名男生和13名女生,那么至少有一名学生和另一名学生同性别并且同年龄。

例题10,某公司的40名员工中,每个员工的工作经验都不相同,那么至少有两名员工的工作经验相差不超过1年。

通过以上十个例题的分析,我们可以看到抽屉原理在实际问题中的应用。

无论是生日、身高、性别、价格还是其他属性,只要物体的数量超过抽屉的数量,就一定会存在重复的情况。

这个原理在解决排列组合、概率统计等问题时都有着重要的作用,希望通过这些例题的学习,大家能更加深入地理解抽屉原理的应用。

抽屉原理

抽屉原理

抽屉原理(一)一、动手操作:1、把3枝铅笔放进2个杯子中,不管怎么放总有一个杯子里至少放进2枝铅笔。

为什么?2、把4枝铅笔放进3个杯子中,不管怎么放总有一个杯子里至少放进2枝铅笔。

为什么?二、讨论:1、怎样放?具体情况如何?2、小组讨论汇报:平均分三、例题1:把5枝铅笔放进4个杯子中,不管怎么放总有一个杯子里至少放进2枝铅笔。

为什么?把6枝铅笔放进5个杯子中呢?把7枝铅笔放进6个杯子中呢?把8枝铅笔放进7个杯子中呢?把9枝铅笔放进8个杯子中呢?把10枝铅笔放进9个杯子中呢?……把100枝铅笔放进99个杯子中呢?四、探究:你发现了什么?1、"总有"是什么意思?2、“至少”是什么意思?3、你发现了什么?笔的枝数比杯子多1,不管怎样放,总有一个杯子里至少有2枝铅笔。

小结:这就是“抽屉原理”的最基本原理,在这,我们把铅笔看作“物体”,把杯子看作“抽屉”物体个数必须要多于抽屉个数。

五、练习:1、把5个苹果,装到4个盒子中,总有至少有1个盒子中有()个苹果。

2、7只鸽子飞回6个鸽笼,至少有()只鸽子飞进同一个鸽笼。

3、班上任意13个同学,其中至少有()名同学同一个月过生日。

4、有黑、白两种颜色的围棋子各10枚,放到一个盒子里,至少取()枚棋子可以保证取到2枚颜色相同的棋子。

5、把红、黄、蓝、绿、紫五种颜色的小棒各10根混在一起,如果让你闭上眼睛,每次最少拿出几根才能保证一定有2根同色的小棒。

6、8只老鼠,逃回7个地洞,至少有()个地洞会有()只老鼠。

六、拓展:思考题1、5本书放进2个抽屉里,至少会有()本书放在同一抽屉里。

2、7本书放进2个抽屉里,至少会有()本书放在同一抽屉里。

3、9本书放进2个抽屉里,至少会有()本书放在同一抽屉里。

4、7只小白兔,要放进3个兔笼里,至少有多少只小白兔要放进同一兔笼里呢?。

第十讲 简单抽屉原理

第十讲   简单抽屉原理

例题6:国王让阿凡提在8×8的国际象棋棋盘的每个格子里放米粒.结 果每个格子里至少放一粒米, 无论怎么放都至少有3个格子里的米粒 一样多, 那么至多有多少个米粒?
巩固练习
1、口袋里装有红、黄、蓝、绿4种颜色的球各5个。小华闭着眼睛从 口袋里往外摸球,每次摸出1个球.他至少要摸出多少个球,才能保 证摸出的球中每种颜色的球都有?
练习4:口袋中装有4种不同颜色的珠子,每种都是100个.要想保 证从袋中摸出3种不同颜色的珠子,并且每种至少10个,那么至少 要摸出多少个珠子?
例题5:大头把一副围棋子混装在一个盒子中(围棋子有黑、白两种颜 色),然后每次从盒子中摸出4 枚棋子,那么他至少要闭着眼睛摸几 次,才能保证其中有三次摸出棋子的颜色情况是相同的?(不必考虑 每次摸出的 4 枚棋子的顺序)
2、小钱的存钱罐中有 4 种硬币: 1分、 2 分、5 分、1角,这四种 硬币分别有 5 个、10个、 15 个、20个。小钱闭着眼睛向外摸硬币, 他至少摸出多少个硬币,才能保证摸出的硬币中至少有两种不同的面 值?至少摸出多少个硬币,才能保证摸出的硬币中既有 5 分硬币也 有 1 角硬币?
3、如果筷子颜色有黑色、白色、黄色、红色、蓝色五种,每种各有 10 根.在黑暗中取出一些筷子,为了搭配出两双颜色相同的筷子,最少要取多 少根才能保证达到要求?为了搭配出两双颜色不同的筷子,最少要取多少根 才能保证达到要求?(两根颜色相同的筷子搭配成一双筷子)
第十讲 简单抽屉原理
知识精讲
抽屉原理 I
把一些苹果随意放入若干个抽屉, 如果苹果个数多于抽屉个 数, 那么一定能找到一个抽屉,里面至少有2个苹果.
抽屉原理 II 把m个苹果放入n个抽屉 (m 大于 n),结果有两种可能: (1)如果 m÷n 没有余数,那么就一定有抽屉至少放了 “ m÷n ” 个苹果; (2)如果m÷n 有余数,那么就一定有抽屉至少放了“m÷n的商再 加 1”个苹果。

抽屉原理公式及例题

抽屉原理公式及例题

抽屉原理公式及例题抽屉原则一:如果把n+1个物体放在n个抽屉里;那么必有一个抽屉中至少放有2个物体..例:把4个物体放在3个抽屉里;也就是把4分解成三个整数的和;那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式;我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体;也就是说必有一个抽屉中至少放有2个物体..
抽屉原则二:如果把n个物体放在m个抽屉里;其中n>m;那么必有一个抽屉至少有:①k=n/m +1个物体:当n不能被m整除时..
②k=n/m个物体:当n能被m整除时..
理解知识点:表示不超过X的最大整数..
键问题:构造物体和抽屉..也就是找到代表物体和抽屉的量;而后依据抽屉原则进行运算..
例1.木箱里装有红色球3个、黄色球5个、蓝色球7个;若蒙眼去摸;为保证取出的球中有两个球的颜色相同;则最少要取出多少个球
解:把3种颜色看作3个抽屉;若要符合题意;则小球的数目必须大于3;故至少取出4个小球才能符合要求..
例2.一幅扑克牌有54张;最少要抽取几张牌;方能保证其中至少有2张牌有相同的点数
解:点数为1A、2、3、4、5、6、7、8、9、10、11J、12Q、13K的牌各取1张;再取大王、小王各1张;一共15张;这15张牌中;没有两张的点数相同..这样;如果任意再取1张的话;它的点数必为1~13中的一个;于是有2张点数相同..。

小学奥数抽屉原理习题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是⽆忧考为⼤家整理的《⼩学奥数抽屉原理习题及答案【三篇】》供您查阅。

【篇⼀】【例 1】向阳⼩学有730个学⽣,问:⾄少有⼏个学⽣的⽣⽇是同⼀天? 【解析】⼀年最多有366天,可看做366个抽屉,730个学⽣看做730个苹果.因为,所以,⾄少有1+1=2(个)学⽣的⽣⽇是同⼀天. 【巩固】试说明400⼈中⾄少有两个⼈的⽣⽇相同. 【解析】将⼀年中的366天或天视为366个或个抽屉,400个⼈看作400个苹果,从最极端的情况考虑,即每个抽屉都放⼀个苹果,还有个或个苹果必然要放到有⼀个苹果的抽屉⾥,所以⾄少有⼀个抽屉有⾄少两个苹果,即⾄少有两⼈的⽣⽇相同.【篇⼆】【例 2】三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩. 【解析】⽅法⼀: 情况⼀:这三个⼩朋友,可能全部是男,那么必有两个⼩朋友都是男孩的说法是正确的; 情况⼆:这三个⼩朋友,可能全部是⼥,那么必有两个⼩朋友都是⼥孩的说法是正确的; 情况三:这三个⼩朋友,可能其中男⼥那么必有两个⼩朋友都是⼥孩说法是正确的; 情况四:这三个⼩朋友,可能其中男⼥,那么必有两个⼩朋友都是男孩的说法是正确的.所以,三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩的说法是正确的; ⽅法⼆:三个⼩朋友只有两种性别,所以⾄少有两个⼈的性别是相同的,所以必有两个⼩朋友都是男孩或者都是⼥孩.【篇三】【例 3】“六⼀”⼉童节,很多⼩朋友到公园游玩,在公园⾥他们各⾃遇到了许多熟⼈.试说明:在游园的⼩朋友中,⾄少有两个⼩朋友遇到的熟⼈数⽬相等. 【解析】假设共有个⼩朋友到公园游玩,我们把他们看作个“苹果”,再把每个⼩朋友遇到的熟⼈数⽬看作“抽屉”,那么,个⼩朋友每⼈遇到的熟⼈数⽬共有以下种可能:0,1,2,……,.其中0的意思是指这位⼩朋友没有遇到熟⼈;⽽每位⼩朋友最多遇见个熟⼈,所以共有个“抽屉”.下⾯分两种情况来讨论: (1)如果在这个⼩朋友中,有⼀些⼩朋友没有遇到任何熟⼈,这时其他⼩朋友最多只能遇上个熟⼈,这样熟⼈数⽬只有种可能:0,1,2,……,.这样,“苹果”数(个⼩朋友)超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. (2)如果在这个⼩朋友中,每位⼩朋友都⾄少遇到⼀个熟⼈,这样熟⼈数⽬只有种可能:1,2,3,……,.这时,“苹果”数(个⼩朋友)仍然超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. 总之,不管这个⼩朋友各遇到多少熟⼈(包括没遇到熟⼈),必有两个⼩朋友遇到的熟⼈数⽬相等.。

抽屉原理十个例题

抽屉原理十个例题1.有5个红球和7个蓝球放在一个抽屉里,如果随机取出3个球,那么至少会拿到两个是同色球的概率是多少?解析:使用反面计算。

首先,计算取出3个球都是不同色球的概率。

当第一个球被取出后,有5个红球和7个蓝球剩下。

那么取出第二个球时就只剩下4个红球和7个蓝球,概率为(5/12)*(7/11)。

同理,取出第三个球时只剩下3个红球和7个蓝球,概率为(5/12)*(4/11)。

因此,取出3个球都是不同色球的概率为(5/12)*(7/11)*(4/11)。

所以,至少会拿到两个是同色球的概率为1-(5/12)*(7/11)*(4/11)。

2.一组音乐会有10个乐手,其中3个会弹钢琴,4个会吹号,2个会弹吉他,1个会敲鼓。

从中随机选出4个人组成一个小号乐队,求至少会有一位会弹钢琴和一位会吹号的概率是多少?解析:首先,计算四个人都不弹钢琴的概率。

在10个乐手中,只能选出7个人(除去3个弹钢琴的乐手),然后从这7个人中选出4个组成小号乐队,概率为(7选择4)/(10选择4)。

同理,计算四个人都不会吹号的概率为(6选择4)/(10选择4)。

然后计算四个人都不弹钢琴且不会吹号的概率为(4选择4)/(10选择4)。

所以,至少会有一位会弹钢琴和一位会吹号的概率为1-[(7选择4)/(10选择4)+(6选择4)/(10选择4)-(4选择4)/(10选择4)]。

3.有一个箱子里有10双袜子,其中5双是黑色的,3双是蓝色的,2双是灰色的。

如果从箱子中随机取出3只袜子,那么至少会拿到一双是蓝色的概率是多少?解析:计算没有蓝色袜子的概率。

当从箱子中取出第一只袜子后,有10只袜子剩下,其中3只是蓝色的。

所以,没有蓝色袜子的概率为(7/10)*(6/9)*(5/8)。

所以,至少会拿到一双是蓝色的概率为1-(7/10)*(6/9)*(5/8)。

4.一个袋子里有20个糖果,其中3个是巧克力的,7个是草莓味的,10个是薄荷味的。

如果从袋子中随机取出5个糖果,那么至少会拿到两个是草莓味的概率是多少?解析:计算没有草莓味糖果的概率。

小学奥数:抽屉原理(含答案)

教案【1】抽屉原理1、概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。

如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。

比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。

应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。

2、例题讲解例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

例 2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?例3从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

例4从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

抽屉原理

抽屉原理(一)一.基本原理抽屉原理一:把m 个元素分成n 类个则至少有一类有⎥⎦⎤⎢⎣⎡>n m n m ),(.抽屉原理二:把无穷多个元素分成有限类,则至少有一类包含无穷多个元素.二.实例精选1.有10人参加某次会议,每一位代表至少认识其余9位中的一位,证明:这10人中至少有两人认识的人数相等.2.在前2189个正整数中任取8个数,求证:存在两个数,它们之间的比值在]3,31[内.3.已知整数{}1,0,1,,,,,,,,10211021-∈i x x x x a a a 使得对列证明:存在一个非零数 , 和式10102211x a x a x a +++ 能被1001整除.4.任意给定正整数m ,求证:一定有m 的某一整数倍,它完全由0和1两数字组成.5.设n a a a n 是,,,21 个任意给定的整数,求证:其中一定可以找到紧连在一起的若干个数,使得它们的和可被n 整除.6.任意给定10个自然数,试证明:可以用减、乘两种运算把它们适当连起来,其结果能被1890整除.7.(1)任意100个整数,求证一定可以从中找出若干个整数,使得它们的和被100整除; (2)证明:从任意200个整数中,一定可以找出100个数,它们的和能被100整除.8.对于n+1个不同的自然数,如果每一个数都小于2n ,那么从中选出三个数,使其中两个数之和等于第三个数.9.设集合{}证明:,2,,3,2,1n A =(1)若B是A的任一n+1阶子集,B中一定存在两个数是互素的;(2)一个可被另阶子集中存在两个数,的任意1+n A 一个整除.10.证明:在任意的11个无穷小数中,一定可以找到两个小数,它们的差或者含有无穷多个数字0或者含有无穷多个数字9.三.练习1.证明任意52个正整数,一定可以找到两个数a ,b ,使a+b 或b a -被140整除.2.从1,4,7,10,100,97, 这些数中,任取20个不同的整数形成一个集合A ,求证:A 中必有两组不同的数,其和都是104.3.证明:对任何自然数n ,必有其某一整数倍,使之包含9,,2,1,0 中的每一个数字. 4.设有一十进制无穷小数{}为是偶数,是奇数,且n i a a a a a a a A 21321,9,,2,1,0(.0 ∈= 为有理数的个位数,求证:A )2(21>+--n a a n n .5.已知2n 个自然数满足下列两个条件:n a a a 221,,, .4)2(;21)1(221221n a a a n a a a n n =+++≤≤≤≤≤ 求证:)21(2n i a n i ≤≤必可表示为若干个之和.6.设m 为任一偶数,有m 个正整数,其中每一个均不超过m ,并且所有这些数的和为2m ,求证:一定可以把这m 个正整数分为两组,使得每组中各数之和均为m .抽屉原理(二)一.基本原理抽屉原理一:把m 个元素分成n 类个则至少有一类有⎥⎦⎤⎢⎣⎡>n m n m ),(.抽屉原理二:把无穷多个元素分成有限类,则至少有一类包含无穷多个元素.二.抽屉的构造方法1.整除性问题:常以剩余类为抽屉;2.集合问题:常以元素的性质划分集合构造抽屉; 3.其它问题:常将状态不同的元素分类构造抽屉.三.例题精选1.平面上有定点A,B和任意四点4321,,,P P P P ,求证:这四点中一定有两点j i P P , 31|s i n s i n |)(≤∠-∠≠B AP B AP j i j i 使得. 解:将正弦值的范围[0,1]分成三个区间:]1,32[],32,31[],31,0[即可.2.平面上任意5个整点,两两连接线段的中点之中一定有一个整点. 解:5个点的纵横坐标的奇偶性必有两个相同.3.坐标平面上任意给定13个整点,其中任三点不共线,求证:必有以其中3点为顶点的三角形,其重心是整点.解:横坐标模3的余数为0,1,2,13个点至少有5个点的横坐标模3同余;这5个点的纵坐标模3的余数为0,1,2各有一个,则取这3个,它们的纵,横坐标的和模3余0;否则,必有3个模3同余.得证.4.设正方形ABCD被9条直线相截,每条都把它分成2个四边形,且两者面积之比都是3:2,证明:至少有3条直线共点.解:与一组对边相交的直线至少有5条,至少有三条过点P或Q5.在边长为1的正三角形内,任取7个点,其中任意三点不共线,证明:其中必有三点构成的三角形的面积不超过123. 解:关键:6.在边长为1的正方形内(包括边界)任意放101个点,任何三点都不共线,证明:总可以找三点,以这三点为顶点的三角形面积不大于1. 解:法一:P ∙Q∙关键:把正方形50等分,再证明矩形内接三角形面积不超过矩形面积的一半. 法二:直接把正方形分成100个小正方形,逐步减少抽屉个数,经行33次后,必有 一个小正方形中有3个点.7.在直径为5的圆内任意放入10个点,证明:存在两个点,它们间的距离小于2.关键:3254412225224254<-=⋅⋅⋅-+=AB8.从全世界每个城市各起飞1架飞机,分别落在离它最近的一个城市(若有几个距离一样近,可任选1个).证明:每个城市降落的飞机一定不会超过6架. 关键:假设降落到A城市的飞机多于6架,以A为中心,以到它较远的B城的距离作圆,将圆6等分为6 个区域,则至少有2架落入同一区域, 由DA CA CD ,60或则≤︒≤∠CAD ,故飞机D 应降落在C城,而不是A城,矛盾.9.49个学生解3个问题,每个问题的得分是从0到7的整数,证明存在两个学生A,B,对每个问题,A的得分都不小于B的得分.OACBABCD4四.练习1.设点P是正n 边形的一个内点,证明:该正n 边形存在两个顶点A和B,使得ππ≤∠<-A P B n)21(.2.平面上任意给定6个点(它们无三点共线),试证明:总能找到三点,使得这三点为顶点的三角形的内角中有不超过︒30的角.3.边长为4的正三角形内任意放入11个点,求证:其中有两个点,它们之间的距离不超过332. 4.圆上(圆内和边界)任取8个点,则至少有2个点,其距离小于半径.5.半径为19的圆C内有650个点,证明:存在内半径为2,外半径为3的圆环,它至少盖住其中的10个点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽屉原理
抽屉原理在小学数学教材中没有作为知识向同学们介绍,但它却是我们解决数学问题的一种重要的思考方法。

抽屉原理最早是由德国数学家狄利克雷最早发现的,所以也叫做狄利克雷重叠原则。

下面我们就一起来研究“抽屉原理”。

【典型例题】
1. 第一抽屉原理:把个物体放入n个抽屉中,其中必有一个抽屉中至少有
个物体。

例如:把3个苹果放入2个抽屉中,必然有一个抽屉中有2个苹果。

2. 若把5个苹果放到6个抽屉中,就必然有一个抽屉是空着的。

这称为第二抽屉原理:把
个物体放在n个抽屉中,其中必有一个抽屉中至多有个物体。

3. 构造抽屉的方法:
在我们利用抽屉原理思想解决数学问题时,关键是怎样把题目中的数量相对应的想成苹果和抽屉,所以构造“抽屉”是解题的关键。

下面我们就通过例题介绍常见的构造“抽屉”的思想方法。

例1. 用“数的分组法”构造抽屉。

从1,2,3,……,100这100个数中任意挑出51个数来,证明在这51个数中,一定有:(1)2个数互质;(2)2个数的差为50;(3)8个数,它们的最大公约数大于1。

分析与解答:
(1)将100个数分成50组
{1,2},{3,4},……,{99,100}。

在选出的51个数中,一定有2个数属于同一组,这一组的2个数是相邻的整数,它们一定是互质的。

(2)我们可以将100个数分成下面这样的50组:
{1,51},{2,52},……,{50,100}。

在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。

(3)将100个数分成5组(一个数可以在不同的组内):
第一组:2的倍数,即{2,4,……,100};
第二组:3的倍数,即{3,6,……,99};
第三组:5的倍数,即{5,10,……,100};
第四组:7的倍数,即{7,14,……,98};
第五组:1和大于7的质数,即{1,11,13,……,97}。

第五组中一共有22个数,所以选出的51个数中至少有29个数在第一组到第四组中,根据抽屉可以知道总会有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1。

例2. 用“染色分类法”构造抽屉。

下表是一个3行10列共30个小正方形的长方形,现在把每个小方格添上红色或黄色,请证明无论怎么添法一定能找到两例,它们的添色方式完全相同。

分析与解答:
因为每一列有三格,用两种颜色去涂3个方格,我们经过实验就可以看出有8种不同的涂法。

现在我们可以把这8种涂法看做8只“抽屉”,把10列方格看做10个苹果,把10列放入8只抽屉中,由抽屉原理,至少有一只抽屉有两个相同的元素,即至少有两列涂色方式完全相同。

例3. 口袋中有红、黑、白球各若干个,它们的外形与重量都一样,至少拿出几个球,才能保证有六个颜色相同的球?
分析与解答:
这道题中我们可以设这三种颜色为三个抽屉。

要想保证有6个相同颜色的球,可以看作一个抽屉中有6个苹果。

这就必须先保证每种颜色各有5个,再加上任意颜色的一个球,就可以保证有同种颜色的6个球。

所以至少要拿出个球,才能保证有六个颜色相同的球。

【模拟试题】(答题时间:30分钟)
1. 某班37名同学,至少有几个同学在同一个月过生日?
2. 42只鸽子飞进5个笼子里,可以保证至少有一个笼子中可以有几只鸽子?
3. 口袋中有红、黑、白、黄球各10个,它们的外型与重量都一样,至少要摸出几个球,才能保证有4个颜色相同的球?
4. 饲养员给10只猴子分苹果,其中至少要有一只猴子得到7个苹果,饲养员至少要拿来多少个苹果?
5. 从13个自然数中,一定可以找到两个数,它们的差是12的倍数。

6. 一个班有40名同学,现在有课外书125本。

把这些书分给同学,是否有人会得到4件或4件以上的玩具?
【试题答案】
1. 某班37名同学,至少有几个同学在同一个月过生日?
4个
2. 42只鸽子飞进5个笼子里,可以保证至少有一个笼子中可以有几只鸽子?
9只
3. 口袋中有红、黑、白、黄球各10个,它们的外型与重量都一样,至少要摸出几个球,才能保证有4个颜色相同的球?
13个
4. 饲养员给10只猴子分苹果,其中至少要有一只猴子得到7个苹果,饲养员至少要拿来多少个苹果?
61个
5. 从13个自然数中,一定可以找到两个数,它们的差是12的倍数。

确定成立
6. 一个班有40名同学,现在有课外书125本。

把这些书分给同学,是否有人会得到4件或4件以上的玩具?

【励志故事】
成功
贝尔纳是法国著名的作家,一生创作了大量的小说和剧本,在法国影剧史上占有特别的地位。

有一次,法国一家报纸进行了一次有奖智力竞赛,其中有这样一个题目:
如果法国最大的博物馆卢浮宫失火了,情况只允许抢救出一幅画,你会抢哪一幅?
结果在该报收到的成千上万回答中,贝尔纳以最佳答案获得该题的奖金。

他的回答是:“我抢救离出口最近的那幅画。

”。

相关文档
最新文档