深度学习的基本理论与方法

合集下载

深度学习的基本原理与算法

深度学习的基本原理与算法

深度学习的基本原理与算法深度学习是一种机器学习的方法。

它是通过建立多层神经网络对数据进行处理和分类。

深度学习具有极强的自适应性和自学习能力,可以处理大规模的数据。

目前,深度学习的应用范围已经涵盖了很多行业,例如语音识别、图像识别、自然语言处理等。

一、基本原理深度学习的基本原理是模仿人脑神经元的工作方式,通过不断的反馈和调整来不断优化神经网络。

深度学习的神经网络的基本结构是由多个层次的神经元组成的。

第一层神经元接受输入数据,后续各层神经元则通过上一层的输出来进行计算。

通过多层的神经元,深度学习可以将输入数据不断地进行特征提取和分类,从而得出准确的结果。

二、基本算法2.1 前馈神经网络算法前馈神经网络是深度学习最基础的模型之一,也是最基本的神经网络模型。

前馈神经网络是指数据传递的方向只能向前,无法向后传递。

这种模型通过多层神经元进行特征提取和分类,每个神经元都有一个激活函数,激活函数的输出作为下一层神经元的输入。

前馈神经网络模型的训练通常使用反向传播算法进行改进。

2.2 卷积神经网络算法卷积神经网络是一种专门用于图像识别的深度学习模型。

它是通过卷积核对图像进行卷积操作来提取图像的特征。

卷积操作可以提取出图像的空间信息,通过不断的池化操作可以将图像的尺寸逐渐缩小,然后送入全连接层进行最终的分类。

卷积神经网络的前向传播过程是独立的,可以通过并行计算来提高效率。

同时,卷积神经网络还可以通过预训练和微调来提高模型的准确率。

2.3 循环神经网络算法循环神经网络是用于处理序列数据的深度学习模型。

它通过对先前数据的处理结果进行反馈,从而使模型具有记忆能力,可以对序列数据进行逐步推理和预测。

循环神经网络模型的训练通常使用反向传播算法进行改进。

在处理长序列时,循环神经网络的梯度消失问题会导致训练不稳定,因此需要使用门控循环单元(GRU)和长短时记忆网络(LSTM)等改进算法来增强模型的记忆能力和稳定性。

三、深度学习的应用深度学习目前已经广泛应用于各个领域。

深度学习课程大纲

深度学习课程大纲

深度学习课程大纲一、课程简介本课程旨在介绍深度学习的基本概念、理论和应用。

通过学习本课程,学员将能够掌握深度学习的核心原理,并能够运用深度学习算法解决实际问题。

二、课程目标1. 理解深度学习的基本原理和核心概念;2. 掌握深度神经网络的构建和训练方法;3. 熟悉常用的深度学习框架及其使用;4. 能够运用深度学习算法解决计算机视觉、自然语言处理等领域的问题。

三、课程内容第一章:深度学习基础1.1 深度学习简介1.2 人工神经网络的基本概念1.3 深度神经网络的优势与应用领域第二章:深度学习框架与工具2.1 TensorFlow介绍与安装2.2 PyTorch介绍与安装2.3 Keras介绍与安装第三章:前馈神经网络与反向传播算法3.1 前馈神经网络的结构与原理3.2 反向传播算法的推导与实现3.3 参数优化方法及其在深度学习中的应用第四章:卷积神经网络4.1 卷积神经网络的结构与原理4.2 经典卷积神经网络模型介绍(LeNet、AlexNet、VGG、ResNet 等)4.3 卷积神经网络在计算机视觉领域的应用案例第五章:循环神经网络5.1 循环神经网络的结构与原理5.2 长短时记忆网络(LSTM)与门控循环单元(GRU)5.3 循环神经网络在自然语言处理领域的应用案例第六章:深度强化学习6.1 强化学习基础概念介绍6.2 深度强化学习的原理与方法6.3 深度强化学习在游戏玩法优化等方面的应用第七章:生成对抗网络7.1 生成对抗网络的基本原理7.2 生成对抗网络中的生成器与判别器7.3 生成对抗网络在图像生成与风格转换等方面的应用四、教学方法1. 理论讲解:通过课堂讲授深度学习的基本原理和算法。

2. 实践操作:通过实际案例和编程实验,帮助学员巩固所学知识。

3. 课程项目:学员将组成小组开展深度学习项目,实践所学知识。

五、考核方式1. 课堂参与:根据学员课堂的提问和讨论参与情况进行评分;2. 作业与实验报告:针对课程设计的作业和实验,学员需要完成相应的报告;3. 项目评估:对学员在课程项目中的表现进行评估。

人工智能与深度学习的基本原理

人工智能与深度学习的基本原理

人工智能与深度学习的基本原理人工智能(Artificial Intelligence)是一门研究如何使机器能够具备智能的学科,它主要通过仿生学、认知心理学、计算机科学等多个领域的研究成果来实现。

而在人工智能领域中,深度学习(Deep Learning)则是一种重要的技术手段,它模拟人类大脑的工作方式,通过大量数据训练神经网络,从而实现对数据的分析和处理能力。

一、人工智能的基本原理1.1 仿生学原理人工智能借鉴了生物学中关于人脑功能的研究,通过模拟人类大脑的神经元网络,实现了一种类似于人类思维的智能结构。

1.2 认知心理学原理借鉴了人类的认知过程中的模式识别、记忆、推理等思维活动,将这些活动转化为计算机可以实现的算法和模型,从而实现人工智能的核心功能。

1.3 计算机科学原理在人工智能的发展过程中,计算机科学的发展提供了强有力的技术支持。

计算机算法、数据结构、编程语言等都为人工智能的实现提供了基础。

二、深度学习的基本原理2.1 神经网络模型深度学习使用的是一种类似人脑神经元的网络模型,即神经网络。

神经网络由多个层次的神经元节点组成,通过节点之间的连接和权重进行信息传递和处理。

2.2 反向传播算法深度学习中的神经网络通过反向传播算法进行训练。

该算法首先通过输入数据计算出模型的输出结果,然后通过比较输出结果和实际结果的差异,调整网络中各个节点之间的连接权重,从而不断优化网络模型的性能。

2.3 大数据训练深度学习需要大量的数据进行训练,通过输入大量的数据样本,让神经网络进行学习和调整。

这样,神经网络就可以从大量的数据中提取出特征和规律,并用于未知数据的预测和判断。

三、人工智能与深度学习的应用领域3.1 图像识别人工智能与深度学习在图像识别领域有着广泛的应用。

例如,可以使用卷积神经网络对图像进行特征提取和分类,实现人脸识别、物体识别等功能。

3.2 语音识别通过深度学习的方法,可以对大量的语音数据进行处理和学习,从而实现语音识别的功能。

深度学习的理论基础和数据处理方法

深度学习的理论基础和数据处理方法

深度学习的理论基础和数据处理方法近年来,深度学习已经成为计算机科学、人工智能领域的热点话题。

深度学习是指利用多层神经网络学习输入数据特征的机器学习方法,其成功应用已经涵盖了图像识别、自然语言处理、语音合成等多个领域。

深度学习的研究离不开理论基础和数据处理方法,下面我们探讨一下深度学习的这两个方面。

一、理论基础深度学习的理论基础主要来自于神经网络,而神经网络的理论基础则是统计学中的决策论。

决策论是指利用统计学方法对待处理数据的行为做出决策。

常见的统计学方法包括极大似然法、最小二乘法和贝叶斯方法等,这些方法大都与概率论有关。

在决策论中,设计一个能够最小化总体误差的算法是很常见的问题,而神经网络恰好是一种解决这种问题的算法。

神经网络在设计时考虑到了人类神经系统的结构,其基本单元为神经元。

神经元由多个输入端和一个输出端组成,其输出是某种激活函数的输出。

通常情况下,神经元的输入会被乘以相应的权重,然后加上一个偏置项,以作为其输出的函数输入。

当多个神经元组合成了一个网络时,其能够有效地接收和处理输入信息,从而输出预测结果。

如果将其与决策论相结合,就可以得到一种强大的预测算法。

由于神经网络的模型很容易变得非常复杂,这就需要损失函数来衡量网络输出结果之间的距离,从而将训练误差最小化。

最常见的损失函数是均方误差函数。

这个函数非常直观,就是计算实际输出和预测输出之间的误差平方和,而神经网络训练的目标就是将这个均方误差最小化。

我们知道,神经网络训练需要大量的数据来提高网络模型的预测准确率。

然而,现实数据往往具有很强的噪音和复杂性,这就要求处理这些数据的方法与模型具有足够的鲁棒性。

二、数据处理方法数据处理也是深度学习中不可忽视的一环。

在深度学习中,数据处理旨在将原始数据转化为模型能够接受并处理的输入数据格式。

如果数据处理不当,会影响后续模型的表现和预测准确率。

数据预处理可以包括对数据进行清洗、正则化、标准化等多个步骤。

深度学习介绍 ppt课件

深度学习介绍 ppt课件

自编码器的建立
建立AutoEncoder的方法是:
对于m个数据的输入,有:
Code编码:使用非线性激活函数,将维输入数据映射到维隐含层(隐含节点表示特 征)
其中W是一个的权重矩阵,b是一个d'维的偏移向量 Decode解码:通过反向映射,对映射后的数据进行重建
hi
yi
SAE网络每一次训练输入都会得到映射后的 与解码后的 。通过对代价函数的最优
深层带来的好处
为什么采用层次网络
预训练与梯度消失现象
主要内容
自编码器结构
单层自动编码器网络(AutoEncoder)实质上是一个三层的反向传播神经网络。它逐 层采用无监督学习的方式,不使用标签调整权值,将输入映射到隐含层上,再经过反 变换映射到输出上,实现输入输出的近似等价。
X1 X2 X3 X4 X5 +1
RBM网络有几个参数,一个是可视层与隐含 层之间的权重矩阵,一个是可视节点的偏移 量b,一个是隐含节点的偏移量c,这几个参 数决定了RBM网络将一个m维的样本编码成 一个什么样的n维的样本。
受限玻尔兹曼机
RBM介绍

RBM训练
一般地,链接权重Wij可初始化为来自正态分布N(0,0.01)的随机数,隐 单元的偏置cj初始化为0; 对于第i个可见单元,偏置bj初始化为log[pi/(1-pi)] 。pi表示训练样本中 第i个特征处于激活状态所占的比率 学习率epsilon至关重要,大则收敛快,但是算法可能不稳定。小则 慢。为克服这一矛盾引入动量,使本次参数值修改的方向不完全由当 前样本似然函数梯度方向决定,而是上一次参数值修改方向与本次梯 度方向的结合可以避免过早的收敛到局部最优点
激活函数
y f (x)

了解机器学习和深度学习的基本原理

了解机器学习和深度学习的基本原理

了解机器学习和深度学习的基本原理机器学习和深度学习是当今科技领域的热门话题,它们对于人工智能技术的发展起着重要推动作用。

本文将探讨机器学习和深度学习的基本原理,帮助读者进一步了解这两个领域。

一、机器学习的基本原理机器学习是指利用计算机算法和模型来分析数据,从中学习规律并做出预测的一门学科。

机器学习的基本原理主要包括数据预处理、特征提取、算法模型选择、模型训练和模型评估等环节。

首先是数据预处理。

在机器学习中,原始数据往往不够完善或存在噪声干扰,因此需要对数据进行清洗和整理。

数据预处理的目标是去除异常值、填补缺失值、归一化数据等,以保证数据的质量和准确性。

接下来是特征提取。

特征提取是将原始数据转化为机器学习算法能够处理的特征表示的过程。

不同的特征提取方法有PCA、LDA、特征哈希等,这些方法能够从数据中提取出最具代表性和区分性的特征,便于后续的模型训练和预测。

然后是算法模型选择。

机器学习中常用的算法模型包括线性回归、决策树、支持向量机、朴素贝叶斯等。

选择合适的算法模型需要考虑数据的特点和问题的要求,不同的模型有不同的适用场景和性能指标。

模型训练是机器学习的核心环节。

在训练过程中,需要根据已有的数据集通过优化算法不断更新模型的参数,使其能够更好地拟合训练数据。

常用的优化算法有梯度下降法、随机梯度下降法等。

最后是模型评估。

模型评估是判断机器学习算法性能的重要手段。

常用的评估指标包括准确率、召回率、F1 score等,可以通过交叉验证和混淆矩阵等方法来评估模型的泛化能力和稳定性。

二、深度学习的基本原理深度学习是机器学习领域中的一种特殊算法模型,其以人工神经网络为基础,模拟人脑神经元的工作原理。

深度学习的基本原理主要包括神经网络构建、前向传播、反向传播和优化算法等步骤。

首先是神经网络构建。

神经网络由多层神经元组成,通常包括输入层、隐藏层和输出层。

每个神经元接收到上一层神经元传递过来的信息,并通过激活函数进行非线性转换,然后将结果传递到下一层。

深度学习的基本理论与方法

深度学习的基本理论与方法
不同点:
神经网络:采用BP算法调整参数,即采用迭代算法来 训练整个网络。随机设定初值,计算当前网络的输 出,然后根据当前输出和样本真实标签之间的差去 改变前面各层的参数,直到收敛;
深度学习:采用逐层训练机制。采用该机制的原因在 于如果采用BP机制,对于一个deep network(7层以 上),残差传播到最前面的层将变得很小,出现所 谓的gradient diffusion(梯度扩散)。
孔发现了眼前的物体的边缘,而且这个边缘指向某个方向 时,这种神经元细胞就会活跃
动 机——为什么采用层次网络结构
• 人脑视觉机理
✓ 人的视觉系统的信息处理是分级的 ✓ 高层的特征是低层特征的组合,从低层到高层的特征表示越来越抽象
,越来越能表现语义或者意图 ✓ 抽象层面越高,存在的可能猜测就越少,就越利于分类
• 与浅层学习区别: 1)强调了模型结构的深度,通常有5-10多层的隐层
节点; 2)明确突出了特征学习的重要性,通过逐层特征变
换,将样本在原空间的特征表示变换到一个新特 征空间,从而使分类或预测更加容易。与人工规 则构造特征的方法相比,利用大数据来学习特征 ,更能够刻画数据的丰富内在信息。
深度学习
每个特征上就会稀疏。
• 结论:不一定特征越多越好!需要有多少个特征,需要学 习确定。
动 机——为什么采用层次网络结构
• 人脑视觉机理 ✓ 1981年的诺贝尔医学奖获得者 David Hubel和
TorstenWiesel发现了视觉系统的信息处理机制 ✓ 发现了一种被称为“方向选择性细胞的神经元细胞,当瞳
动 机——为什么要自动学习特征
• 实验:LP-β Multiple Kernel Learning
– Gehler and Nowozin, On Feature Combination for Multiclass Object Classification, ICCV’09

深度学习总结

深度学习总结

深度学习总结篇一:Deep Learning深度学习总结Deep Learning深度学习总结一、Deep Learning的基本思想假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为:I =>S1=>S2=>…..=>Sn => O,如果输出O等于输入I,即输入I 经过这个系统变化之后没有任何的信息损失(呵呵,大牛说,这是不可能的。

信息论中有个“信息逐层丢失”的说法(信息处理不等式),设处理a信息得到b,再对b处理得到c,那么可以证明:a 和c的互信息不会超过a和b的互信息。

这表明信息处理不会增加信息,大部分处理会丢失信息。

当然了,如果丢掉的是没用的信息那多好啊),保持了不变,这意味着输入I经过每一层Si都没有任何的信息损失,即在任何一层Si,它都是原有信息(即输入I)的另外一种表示。

现在回到我们的主题Deep Learning,我们需要自动地学习特征,假设我们有一堆输入I(如一堆图像或者文本),假设我们设计了一个系统S(有n层),我们通过调整系统中参数,使得它的输出仍然是输入I,那么我们就可以自动地获取得到输入I的一系列层次特征,即S1,…, Sn。

对于深度学习来说,其思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。

通过这种方式,就可以实现对输入信息进行分级表达了。

另外,前面是假设输出严格地等于输入,这个限制太严格,我们可以略微地放松这个限制,例如我们只要使得输入与输出的差别尽可能地小即可,这个放松会导致另外一类不同的Deep Learning方法。

上述就是Deep Learning的基本思想。

二、Deep learning与Neural Network深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

深度学习是无监督学习的一种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 稀疏自动编码器(Sparse AutoEncoder)
Input Patch Filters Features Sparse Coding
深度学习的具体模型及方法
• 稀疏自动编码器(Sparse AutoEncoder)
Sparse Features
z
Encoder filters W
L1 Sparsit y
深度学习训练过程
• 第一步:采用自下而上的无监督学习 1)逐层构建单层神经元。 2)每层采用wake-sleep算法进行调优。每次 仅调整一层,逐层调整。 这个过程可以看作是一个feature learning 的过程,是和传统神经网络区别最大的部 分。
深度学习训练过程
• wake-sleep算法: 1)wake阶段: 认知过程,通过下层的输入特征(Input)和向上的认知( Encoder)权重产生每一层的抽象表示(Code),再通过当前的 生成(Decoder)权重产生一个重建信息(Reconstruction), 计算输入特征和重建信息残差,使用梯度下降修改层间的下行 生成(Decoder)权重。也就是“如果现实跟我想象的不一样, 改变我的生成权重使得我想象的东西变得与现实一样”。 2)sleep阶段: 生成过程,通过上层概念(Code)和向下的生成(Decoder)权 重,生成下层的状态,再利用认知(Encoder)权重产生一个抽 象景象。利用初始上层概念和新建抽象景象的残差,利用梯度 下降修改层间向上的认知(Encoder)权重。也就是“如果梦中 的景象不是我脑中的相应概念,改变我的认知权重使得这种景
类别标签
属性 图像特征
动 机——为什么采用层次网络结构
• 特征表示的粒度
具有结构性(或者语义) 的高层特征对于分类更有 意义
动 机——为什么采用层次网络结构
• 初级(浅层)特征表示
高层特征或图像,往往是由一些基本结构(浅层特征)组成的
动 机——为什么采用层次网络结构
• 结构性特征表示
动 机——为什么采用层次网络结构
深度学习训练过程
AutoEncoder:
Class label
Decoder
e.g.
Encoder
Features
Decoder
Features
Encoder
Decoder
Encoder
Input Image
深度学习训练过程
• 第二步:自顶向下的监督学习 这一步是在第一步学习获得各层参数进的基础 上,在最顶的编码层添加一个分类器(例如罗杰 斯特回归、SVM等),而后通过带标签数据的监督 学习,利用梯度下降法去微调整个网络参数。 深度学习的第一步实质上是一个网络参数初始 化过程。区别于传统神经网络初值随机初始化, 深度学习模型是通过无监督学习输入数据的结构 得到的,因而这个初值更接近全局最优,从而能 够取得更好的效果。
Decoder filters D
Dz
e.g.
σ (Wx) x
Sigmoid function σ (.)
Input Patch
Training
深度学习的具体模型及方法
• 稀疏自动编码器(Sparse AutoEncoder)
1)Training阶段:给定一系列的样本图片[x1, x 2, „],我 们需要学习得到一组基[Φ1, Φ2, „],也就是字典。
Decoder filters WT
e.g.
Sigmoid function σ (.)
σ (WTz)
σ (Wx)
(Binary) Input
x
深度学习的具体模型及方法
• 稀疏自动编码器(Sparse AutoEncoder)
限制每次得到的表达code尽量稀疏
限制每次得到的表达code尽量稀疏
深度学习的具体模型及方法
动 机——为什么采用层次网络结构
• 人脑视觉机理
人的视觉系统的信息处理是分级的 高层的特征是低层特征的组合,从低层到高层的特征表示越来越抽象 ,越来越能表现语义或者意图 抽象层面越高,存在的可能猜测就越少,就越利于分类
动 机——为什么采用层次网络结构
• 视觉的层次性
属性学习,类别作为属性的一种组合映射 Lampert et al. CVPR’09
可使用K-SVD方法交替迭代调整a [k],Φ [k],直至收敛,从 而可以获得一组可以良好表示这一系列x的字典。
深度学习的具体模型及方法
• 稀疏自动编码器(Sparse AutoEncoder)
2)Coding阶段:给定一个新的图片x,由上面得到的字典,利 用OMP算法求解一个LASSO问题得到稀疏向量a。这个稀疏向 量就是这个输入向量x的一个稀疏表达。
• 浅层学习的局限 人工神经网络(BP算法) —虽被称作多层感知机,但实际是种只含有一层隐层 节点的浅层模型 SVM、Boosting、最大熵方法(如LR,Logistic Regression) —带有一层隐层节点(如SVM、Boosting),或没有 隐层节点(如LR)的浅层模型 局限性:有限样本和计算单元情况下对复杂函数的表 示能力有限,针对复杂分类问题其泛化能力受限。
• Decoder-only
– Sparse coding [Yu] – Deconvolutional Nets [Yu]
• Encoder-only
深度学习的具体模型及方法
• 结论:不一定特征越多越好!需要有多少个特征,需要学 习确定。
动 机——为什么采用层次网络结构
• 人脑视觉机理 1981年的诺贝尔医学奖获得者 David Hubel和 TorstenWiesel发现了视觉系统的信息处理机制 发现了一种被称为“方向选择性细胞的神经元细胞,当瞳 孔发现了眼前的物体的边缘,而且这个边缘指向某个方向 时,这种神经元细胞就会活跃
深度学习的具体模型及方法
• Autoencoder (most Deep Learning methods)
– RBMs / DBMs [Lee / Salakhutdinov] – Denoising autoencoders [Ranzato] – Predictive sparse decomposition [Ranzato]
深度学习
• 本质:通过构建多隐层的模型和海量训练数据( 可为无标签数据),来学习更有用的特征,从而 最终提升分类或预测的准确性。 “深度模型”是 手段,“特征学习”是目的。 • 与浅层学习区别: 1)强调了模型结构的深度,通常有5-10多层的隐层 节点; 2)明确突出了特征学习的重要性,通过逐层特征变 换,将样本在原空间的特征表示变换到一个新特 征空间,从而使分类或预测更加容易。与人工规 则构造特征的方法相比,利用大数据来学习特征 ,更能够刻画数据的丰富内在信息。
深度学习的基本理论与方法
目 录
• • • • • • • • • • 概述 动机 深度学习简介 深度学习的训练过程 深度学习的具体模型及方法 深度学习的性能比较 深度学习的应用 展望 参考文献 相关程序软件及链接
概 述
• 深度学习:一种基于无监督特征学习和特征 层次结构的学习方法 • 可能的的名称:
深度学习 vs. 神经网络
• 神经网络的局限性:
1)比较容易过拟合,参数比较难调整,而且 需要不少技巧; 2)训练速度比较慢,在层次比较少(小于等 于3)的情况下效果并不比其它方法更优;
深度学习训练过程
• 不采用BP算法的原因 (1)反馈调整时,梯度越来越稀疏,从顶层越往下 ,误差校正信号越来越小; (2)收敛易至局部最小,由于是采用随机值初始化 ,当初值是远离最优区域时易导致这一情况; (3)BP算法需要有标签数据来训练,但大部分数据 是无标签的;
深度学习
• 2006年,加拿大多伦多大学教授、机器学习领域 的泰斗Geoffrey Hinton在《科学》上发表论文提 出深度学习主要观点: 1)多隐层的人工神经网络具有优异的特征学习能力 ,学习得到的特征对数据有更本质的刻画,从而 有利于可视化或分类; 2)深度神经网络在训练上的难度,可以通过“逐层 初始化”(layer-wise pre-training)来有效克 服,逐层初始化可通过无监督学习实现的。
深度学习的具体模型及方法
• 稀疏自动编码器(Sparse AutoEncoder)
深度学习的具体模型及方法
• 降噪自动编码器(Denoising AutoEncoders)
• 在自动编码器的基础上,对训练数据加入噪声,自动编码器 必须学习去去除这种噪声而获得真正的没有被噪声污染过的 输入。因此,这就迫使编码器去学习输入信号的更加鲁棒的 表达,这也是它的泛化能力比一般编码器强的原因。
– 深度学习 – 特征学习 – 无监督特征学习
动 机
传统的模式识别方法:
Inference: prediction, recognition
Low-level sensing
Preprocessing
Feature extract.
Feature selection
• 良好的特征表达,对最终算法的准确性起了非常关键的作用; • 识别系统主要的计算和测试工作耗时主要集中在特征提取部分; • 特征的样式目前一般都是人工设计的,靠人工提取特征。
e.g.
Decoder
Encoder
Feed-forward bottom-up pat
Input (Image/ Features)
深度学习的具体模型及方法
• 自动编码器( AutoEncoder )
(Binary) Features
z
Encoder filters W Sigmoid function σ (.)
深度学习
• 好处:可通过学习一种深层非线性网络结 构,实现复杂函数逼近,表征输入数据分 布式表示。
相关文档
最新文档