定积分在几上的应用
定积分运算法则

• 通过定积分求解经济学中的边际产量、边际消费等边际问题
求解经济学中的总量问题
• 通过定积分求解经济学中的总产量、总消费等总量问题
求解经济学中的平均问题
• 通过定积分求解经济学中的平均产量、平均消费等平均问题
谢谢观看.
Thank you for watching.
Docs
⌛️
06
定积分的数值计算方法
数值积分的基本原理与方法
数值积分的定义
数值积分的方法
• 通过数值方法近似求解定积分的值
• 辛普森法
• 龙贝格法
• 高斯积分法
数值积分的误差分析与控制
误差分析
误差控制
• 分析数值积分方法的误差来源
• 选择合适的数值积分方法
• 估计数值积分方法的误差范围
• 控制积分区间的长度
求解物体的速度
• 通过定积分求解物体在变力作用下的速度
求解物体的加速度
• 通过定积分求解物体在变力作用下的加速度
定积分在工程学中的应用
求解工程问题的面积
求解工程问题的体积
求解工程问题的质心位置
• 通过定积分求解曲线围成的面积
• 通过定积分求解曲面围成的体积
• 通过定积分求解物体的质心位置
定积分在经济学中的应用
积分问题
换元积分法的原理
• 利用换元公式将原积分变量变换为新变量,从而简化积分过程
换元积分法的常见类型与方法
01
幂函数换元法
• 将复杂的幂函数积分问题转化为简单的指数函数积分问
题
02
三角函数换元法
• 将复杂的三角函数积分问题转化为简单的指数函数积分
问题
03
定积分在几何学上的应用研究报告

8 2a 3
2 sin2 udu
0
0
4 3a 3
8 2a 3
1 2
2
6 3a 3
第六章 定积分的应用
16
说明:Vy 也可按柱壳法求出
Vy
2a 2 xydx 2 2 a t sin t
0
0
a2 1 cost 2 dt
8 a3
2 0
t
sint
sin4 t dt 2
16 a3 2u 0
23
例 13 求阿基米德螺线 a a 0相应于0 2 一段的弧长。
解:
弧长元素为
从而,所求弧长
ds 2 2 d
a 2 2 a 2d a 1 2d
s 2 a 1 2d 0
a
2
1 2
1 2
ln
1
2
2 0
a
2
2
1 4 2
ln
2
1
4 2
第六章 定积分的应用
x t y t
给出时,按顺时针方向规定起点和终点的参数值t1 和t2 。
Y
t 1
对应
x
a
Y a
O
bX
O
a
bX
则曲边梯形面积 A
t2
t1
t t dt
t1 对应x b
第六章 定积分的应用
5
例 求由摆线x a t sint ,y a 1 cost a 0 的一拱与x 轴所围
s b 1 y 2dx b 1 f 2 x dx
a
a
第六章 定积分的应用
20
2.曲线弧由参数方程
x y
t t
t
给出
弧长元素(即弧微分)为ds 2 t 2 t dt ,因此
高等数学(上册)-第5章第6讲(定积分的几何应用)[22页]
![高等数学(上册)-第5章第6讲(定积分的几何应用)[22页]](https://img.taocdn.com/s3/m/9c36fcd0783e0912a2162ad6.png)
5
二、 平面图形的面积
1. 直角坐标系中的平面图形的面积
在平面直角坐标系中求由曲线y f (x),y g(x)和直线x a,x b围成图
形的面积A,其中函数f (x),g(x)在区间[a,b]上连续,且f (x) g(x),如图所示.
在区间[a,b] 上任取代表区间[x, x dx],在区间两个端点处做垂直于x 轴的
A 1 r2 ( )d.
2
β
O
α
ρ 10
本讲内容
01 微元法 02 平面图形的面积 03 体积 04 平面曲线的弧长
11
三、 体积
1.旋转体的体积.
由一个平面图形绕这平面内一条直线旋转一 y 周而成的立体称为旋转体,这条直线称为旋转轴.
如圆柱、圆锥、圆台、球体都是旋转体. 设一旋转体由连续曲线 y f (x),直线x a, O a
直线,由于 dx 非常小,这样介于两条直线之间的图形可以近似看成矩形,因
此面积微元可表示为
[ f (x) g(x)]dx,
于是,所求面积A为
b
A a [ f (x) g(x)]dx.
若f (x) g(x),则有
A
b
[ f (x) g(x)]dx.
a
综合以上两种情况,由曲线 y f (x),y g(x)
y x 1(y)
d
c O
x 2(y) x
7
二、 平面图形的面积 例 1 求由两抛物线y x2与x y2 所围成图形的面积A .
解
解方程组
y x
x2,得到两抛物线的交点为(0,0),(1,1), y 2,
y
两抛物线围成的图形如图所示.
则所求面积 A 为
A
高中数学 1.7 1定积分的应用教案 新人教A版选修2-2

2013年高中数学 1.7 1定积分的应用教案新人教A版选修2-2一、主要内容:1.面积:了解定积分的元素法,掌握用两条、三条、四条简单曲线所围平面图形的面积,并能根据图形选用以y作积分变量以简化计算过程;会用参数方程求解常用图形(圆、星形线)的面积,能用极坐标求用极坐标表示的圆、阿基米德螺线的图形的面积2.体积:掌握简单图形分别绕x轴、y轴旋转所得旋转体体积,能在平行截面面积为已知时求立体的体积3.弧长:掌握用参数方程所表示的常用曲线(圆、星形线等)的弧长4.功:会求在变力沿直线所作的功5.习题课2学时二、具体的内容分配如下:习题6-1:定积分的元素法,平面图形的面积, 旋转体体积(1)习题6-2:旋转体体积(2),平面曲线的弧长,变力沿直线所作的功总习题六:三、习题内容:习题6—1一、填空题1、曲线x e y =,x 轴及直线()ln ,ln 0.x a x b b a ==,围成图形面积 是_____2、由曲线θcos 2a r =所围成图形的面积是 二、选择题1、曲线3x y =与直线1,0==y x 围成的面积是( ) A .43 B .1 C .34 D .32 2、由x 轴、曲线2x y =和直线32=x 围成的图形面积被直线k x =分成两个相等的面积,则 k 应为( )A .322- B .612 C .1 D .312-三、求解题1、用定积分计算下列图形的面积 (1)由曲线222,1x y x y =+=围成(2)由曲线21y x=与直线4,==y x y 围成(3)由曲线x y 42=与圆()4122=+-y x 围成2、求星形线{33cos sin x a ty a t==所围成0.的面积 3、求以下极坐标所表示的图形的面积 (1)心形线()θcos 1-=a r 围成(2)对数螺线a r e θ=对应θ从0到2π的一段与极轴所围成 (3)伯努利双纽线θ2cos 22a r =右边一支(即对应θ从4π-到4π的一段)习题 6—2 一、填空题1、连续曲线()x f y = ()()0≥x f ,直线b x a x ==,()b a 及x 轴所围成图形绕x 轴旋转而成的旋转体的体积是______2、曲线2x y =及直线1=y 所围成图形绕y 轴旋转而成的旋转体的体积是_______ 二、选择题1、由曲线2x y =与直线x y =围成平面图形绕y 轴旋转所得的旋转体的体积是( )A .()dx x x ⎰-102π B.)21d y y π-⎰C.()⎰-1042dx x x π D.()dy y y ⎰-102π2、底面为圆422=+y x ,垂直于x 轴的所有截面都是正方形的立体体积为( )A. 3121 B. 3210 C. 3242 D. 3185 三、解答题1、求下列旋转体的体积(1)曲线x y sin = ()π≤≤x 0与x 轴所围成的图形分别绕x 轴、y 轴旋转(2)曲线x y =与直线2-=x y ,0=y 所围成的图形分别绕x 轴、y轴旋转(3)星形线{ta y t a x 33sin cos == ()π≤≤t 0绕x 轴旋转2、求底面为园222R y x =+,而垂直于x 轴的所有截面都是等边三角形的立体的体积习题6—3一、求下列弧线段的长度1、星形线{ta y ta x 33sin cos ==的全长 2、抛物线x y 2= 从()2,1到()4,4的一段二、根据虎克定律,弹簧的倔强系数为k ,把弹簧拉长x 的拉力为kx f =,求将一根弹簧从原长拉伸x 的长度,外力做的功三、在一个半径为R 的半球形容器里盛放着密度为ρ的液体,求为将液体吸出容器至少应做多少功四、水渠的截面为一等腰梯形,上、下底分别为2m 和1m ,深为2m ,水渠上有一闸门,求渠水满时对闸门的压力(水的密度31000m kg=ρ)。
高中数学同步教学 第4章 §3 定积分的简单应用

0
0
=π(12x2-15x5)|01=π(12-15)=π×130=130π.
• 4.由曲线y=x2,直线x=1,x=2与x轴所围成的平面图形绕x
31π 5
轴[解旋析转] 一设周所得所旋得转旋体的转体体积的为 体V,积为________.
则 V=2π(x2)2dx=2πx4dx=5πx5|12=315π.
1
1
互动探究学案
命题方向1 ⇨不分割型平面图形面积的求解
• 典例 1 曲线y=x2与直线y=x所围成的封闭图形16 的面积 为____.
• [思路分析] 从图形上可以看出,所求图形的面积可以转化 为一个三角形与一个曲边三角形面积的差,进而可以用定积 分求出面积.为了确定出积分的上、下限,我们需要求出直 线[解和析抛] 物解线方程的组交yy点==xx的,2,横坐标.
第四章 定积分
• 本章知识概述:本章的主要内容是定积分的概念,计算和简 单应用.
• 教科书通过曲边梯形面积问题,变速直线运动物体的路程问 题,变力做功等问题,充分演示了定积分概念产生的背景以 及定积分概念形成过程中的思路.微积分基本定理为我们 处理积分的计算问题提供了有力工具,教科书主要介绍了求 简单图形的面积和求简单旋转体的体积.
1.平面图形的面积 如果函数 y=f(x)在区间[a,b]上连续且恒有 f(x)≥0,那么定积分b f(x)dx 表
a
示由__直__线__x_=__a_,x_=__b_(_a_≠_b_)_,y_=__0_和__曲__线__y_=__f_(_x)_______所围成的曲边梯形的面积. 2.简单几何体的体积
得 x1=0,x2=1. 故所求图形的面积为
S=1xdx-1x2dx
0
0
高中数学人教A版选修2-2课件 1-7 定积分的简单应用 第13课时《定积分的简单应用》

解析:(1)由v(t)=8t-2t2≥0,得0≤t≤4,
即当0≤t≤4时,P点向x轴正方向运动,
当t>4时,P点向x轴负方向运动.
故t=6时,点P离开原点的路程为
s1=4(8t-2t2)dt-6(8t-2t2)dt
0
4
=4t2-23t3|40-4t2-23t3|64=1328.
a
成的曲边梯形的面积.
【练习1】 曲线y=cosx0≤x≤32π与坐标轴所围成的图形面积是
() A.2
B.3
5 C.2
D.4
3
3
解析:S= 2 a
cosxdx+|
2
cosxdx|=
2
0
cosxdx-
2
cosxdx=sinx|
2 0
-
(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度 在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间, 然后分别计算,否则会出现计算失误.
变式探究2 (1)一物体沿直线以v=3t+2(t单位:s,v单位:m/s)
的速度运动,则该物体在3 s~6 s间的运动路程为( )
A.46 m
3
(3t2-2t+4)dt=()-(8
2
-4+8)=18.
答案:(1)B (2)D
考点三 利用定积分计算变力做功 例3 设有一长25 cm的弹簧,若加以100 N的力,由弹簧伸长到
30 cm,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使 弹簧由25 cm伸长到40 cm所做的功.
∴W=∫00.1250xdx=25x2|00.12=0.36(J). 答案:0.36 J
高数课件第六章定积分的应用:第二节定积分的几何应用

y
c
b O
x
bx
x
x x 1 sh dx ch dx c c b x xb s 2 ch dx 2c sh 0 c c 0 x b 1 x 2c sh ( c ch ) c sh c c c c
2
e e ch x 2 x x e e sh x 2 (ch x) sh x
Hale Waihona Puke 2 (t ) 2 (t ) d t
因此所求弧长
s
2 (t ) 2 (t ) d t
(3) 曲线弧由极坐标方程给出:
令 x r ( ) cos , y r ( ) sin , 则得
dx [r ( ) cos r ( ) sin ]d dy [r ( ) sin r ( ) cos ]d
2
选 x 为积分变量 (1) x [2, 0], dA1 ( x 3 6 x x 2 )dx 于是所求面积 A A1 A2
特别注意:
各积分区间 A ( x 3 6 x x 2 )dx 0 (x x 6 x)dx 上被积函数的 2 253 形式不同. . 12
0
3
2
3
x2 1 练习:1.求曲线 y , y 与直线 x 3 2 1 x 2
x 3 所围成的图形的面积。
2.求曲线 xy 1 与直线
x y 0 y 2
x y 2
P1
2
所围成的图形的面积。 2014考研题
提示:1
P2
y
1
32 1 0 2 1 1 3 x 1 x 1 1 s 2[ ( )d x ( ( 3 3 2) ) d x ] 2 0 1 x 1 3 2 2 1 x2
高等数学第六章第二节定积分在几何学上的应用课件.ppt

解:
cos x 0,
2
x
2
s
2
2
2 2 0
1 y2 dx 1 ( cos x)2 dx
2 2
2 cos x dx
0
2
2
2
2
sin
x 2
2
0
4
的弧长.
例11. 计算摆线
一拱
的弧长 .
y
解: ds
(dd
x t
)2
(
d d
y t
)
2
d
t
o
a2 (1 cos t)2 a2 sin2 t d t
1 y2 dx
因此所求弧长
s b 1 y2 dx a
b
a
1 f 2(x) dx
y
y f (x)
ds
o a xxdxb x
(2) 曲线弧由参数方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
2 (t) 2 (t) dt
因此所求弧长
s
2 (t) 2 (t) d t
(3) 曲线弧由极坐标方程给出:
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)
2
b2 a2
a
(a
2
x2
)
dx
0
2
b2 a2
a2 x
1 3
x3
a 0
4 ab2
3
方法2 利用椭圆参数方程
则 V 20a y2 dx 2 ab2 sin3t d t
2 ab2 2 1
3
4 ab2
3
特别当b
=
a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019/3/10
第六章 定积分的应用
y x2 y2 b a2 ? b2 ? 1
o
ax
图6-2-5
9
2.极坐标情形
? ? d?
设由曲线? ? ? (? )及射线 ? ? ? 、? ? ? 围成一曲边扇 ? ? ?
? ? ? (? )
d?
形,求其面积.这里,? (? )
在[? , ? ]上连续,且? (? ) ? 0.
成的图形的面积.
解 解方程组
? y2 ? 2x ? ?y? x? 4
得两曲线的交点为
(2,? 2), (8,4).
选 y 为积分变量 y ? [ ? 2, 4]
?
y2 ?
dA ? ? y ? 4 ? ?dy
?
2?
2019/3/10
第六章 定积分的应用
6
所求面积为
? A ?
4 ?2
????
y
?
4
?
y2 2
第二节
定积分在几何上的应用
(Application of the Definite Integral to Geometry)
一、平面图形的面积 二、体积 三、平面曲线的弧长 四、小结
2019/3/10
第六章 定积分的应用
1
一、平面图形的面积
1.直角坐标情形
y ? f (x)
y
y ? f2(x)
y ? f1(x)
2019/3/10
第六章 定积分的应用
8
例4
求椭圆 x 2 a2
?
y2 b2
?
1的面积.
解
椭圆的参数方程
?x
? ?
y
? ?
a cos t bsin t
由对称性知总面积等于 4倍第一象限部分面积.
? A
?
a
4?0
ydx ?
4
0
bsin td(a cos t)
?
2
?
? ? 4ab 2 sin 2 tdt ? ? ab. 0
? 面积元素 dA ? 1[? (?
2
曲边扇形的面积 A ?
)]2
?
d? 1[?
(?
o
)]2
?
d?
?
.
??
图6-2-6
?2
x
2019/3/10
第六章 定积分的应用
10
例 5 求双纽线 ? 2 ? a 2 cos 2? 所围平面图形
的面积.
解 由对称性知总面积 =4倍第 一象限部分面积
A ? 4A1
第六章 定积分的应用
12
二、体积
1.旋转体的体积
旋转体就是由一个平面图形绕这平面内 一条直线旋转一周而成的立体.这直线叫做 旋转轴.
圆柱
2019/3/10
圆锥
图6-2-9
第六章 定积分的应用
圆台
13
一般地,如果旋转体是由连续曲线 y ? f ( x ) 、
直线 x ? a 、 x ? b及x 轴所围成的曲边梯形绕
x 轴旋转一周而成的立体,体积为多少?
取积分变量为 x , y
y ? f (x)
x ? [ a,b]
在[ a, b]上任取小区 o
x x ? dx
x
间[ x , x ? dx ],
图6-2-10
取以dx 为底的窄边梯形绕x 轴旋转而成的薄
片的体积为体积元素, dV ? ?[ f ( x )]2 dx
A?
?
?4 4 0
1 a2 cos 2?d?
2
?
a2.
y? x
A1
? 2 ? a2 cos 2?
图6-2-7
2019/3/10
第六章 定积分的应用
11
例 6 求心形线 ? ? a(1 ? cos? )所围平面图形的
面积(a > 0).
解 dA ? 1 a2(1 ? cos? )2 d?
2
利用对称性知
的图形的面积.
解 解方程组
? y ? x3 ? 6x
? ?y
?
x2
得到 两曲 线的 交点为
(0 ,0 ), ( ? 2,4 ), ( 3 ,9 ).
选 x 为积分变量 x ? [ ? 2, 3]
(1) x ? [ ? 2, 0], dA1 ? ( x 3 ? 6 x ? x 2 )dx
(2) x ? [ 0,3], dA2 ? ( x 2 ? x 3 ? 6 x )dx
a x x ? ? xb
图6-2-1(1)
o a x? x b x
图6-2-1(2)
曲边梯形的面积
b
A ? ?a f ( x )dx
曲边梯形的面积
A ? ?ab[ f 2 ( x ) ? f1( x )]dx
2019/3/10
第六章 定积分的应用
2
例 1 计算由两条抛物线 y 2 ? x 和 y ? x 2 所围成的
2019/3/10
第六章 定积分的应用
4
于是所求面积 A ? A1 ? A2
A
?
?0 ( x 3
?2
?
6x
?
x 2 )dx
?
?3(x 2
0
?
x3
?
6x )dx
? 253 . 12
说明:注意各积分区间上被积函数的形式.
问题:积分变量只能选 x吗?
2019/3/10
第六章 定积分的应用
5
例 3 计算由曲线 y 2 ? 2 x 和直线 y ? x ? 4 所围
图形的面积.
解 两曲线的交点
(0,0) (1,1) 选 x 为积分变量 x ? [0,1]
面积元素 dA ? ( x ? x 2 )dx
? A ?
1
(
0
x
?
x 2 )dx
?
?2 3 ??3 x 2
?
x
3
1
?
3 ??0 ?
1. 3
2019/3/10
第六章 定积分的应用
3
例 2 计算由曲线 y ? x 3 ? 6 x 和y ? x 2 所围成
????dy
?y
y
6
4
?
?
? ?
2
?
4y?
6
? ?? 2
?
18
2019/3/10
第六章 定积分的应用
7
如果曲边梯形的曲边为参数方程
? ? ?
x yቤተ መጻሕፍቲ ባይዱ
? ?
? ?
(t) (t)
? 曲边梯形的面积 A ? ?t2 (t )? ?(t )dt . t1
(其中t1 和t2 对应曲线起点与终点的参数值)
在[t1,t2 ](或[t2 ,t1 ])上x ? ? (t ) 具有连续导数, y ? ? (t )连续.
y? rx
o
h
r
h
x
取积分变量为 x ,x ? [ 0, h]
图6-2-11
在[ 0, h]上任取小区间[ x , x ? dx ] ,
? ? a ?1 ? cos ? ?
d?
?
o
x
? A ? 2 ?1 a2 ? (1 ? cos? )2 d? 20
图6-2-8
? ? a2 ? (1 ? 2cos? ? cos2 ? )d? 0
?
a2
?3 ??2
?
?
2 sin ?
?
1 sin 2?
4
?? ?? 0
?
3 ?a2. 2
2019/3/10
? 旋转体的体积为
V?
b
?[
f ( x )]2 dx
a
2019/3/10
第六章 定积分的应用
14
例 7 连接坐标原点 O 及点 P(h, r)的直线、直线
x ? h及 x 轴围成一个直角三角形.将它绕 x 轴旋
转构成一个底半径为 r 、高为 h 的圆锥体,计算
圆锥体的体积.
y
P
解 直线 OP方程为