定积分在生活中的应用

合集下载

定积分求平面图形面积在实际生活中的应用

定积分求平面图形面积在实际生活中的应用

定积分求平面图形面积在实际生活中的应用定积分是数学中重要的概念,定积分可以用来计算函数在一定范围(定义域)内的积分值。

它是一种可以用来计算面积或计算曲线积分问题的一种技术。

在实际生活中,定积分用于求解平面图形面积的问题,广泛应用于水利、建筑、航空航天等各个领域。

首先,定积分可以用于求解椭圆面积的问题。

椭圆面积可以用定积分来计算,其计算公式为:S=[π/2*(a2-b2)],其中a是椭圆的长轴,b是椭圆的短轴。

这个公式能够准确地计算出椭圆的面积,在水利等领域中,椭圆管道的运用非常广泛,可以用定积分计算出椭圆管道的面积,从而帮助水利设计者准确地计算水利结构的尺寸。

其次,定积分可以用于求解三角形面积的问题。

三角形的面积也可以通过定积分进行计算,其计算公式为:S=*a*b*sin(C),其中a 和b是三角形的底边,C是三角形的内角。

这个公式可以准确的计算出三角形的面积,在建筑设计等领域中,三角形结构的运用非常广泛,可以用定积分计算出三角形结构的面积,从而帮助设计者准确地计算建筑结构的尺寸。

此外,定积分还可以用于求解复杂图形的面积。

复杂图形的面积可以用定积分来计算,例如可以用定积分计算圆柱体的表面积、圆柱管的表面积以及球的表面积等。

在航空航天等领域中,复杂图形的运用也非常广泛,例如飞机机身的设计、航天器的设计等,可以用定积分计算出复杂图形的面积,从而帮助设计者准确地计算机构的尺寸。

综上所述,定积分在实际生活中极具价值,它可以用于求解椭圆
面积、三角形面积以及复杂图形的面积等问题,在水利、建筑、航空航天等各个领域都有很广泛的应用,其准确的计算方法可以为实际生活中的设计者提供帮助。

定积分求面积实际案例

定积分求面积实际案例

定积分求面积实际案例
嘿,朋友们!今天咱就来讲讲定积分求面积的实际案例,绝对让你大开眼界!
比如说啊,咱想象一下有个大操场,你要知道这个操场的某个部分的面积。

就像你想知道足球场那一块有多大!这时候定积分就派上用场啦!咱可以沿着操场的边界来划分小部分,然后一点点加起来,这不就求出面积了嘛!
再举个例子,想象你喜欢吃披萨,那圆形的披萨,你怎么知道自己吃了多大一块呢?哈哈,用定积分呀!把披萨想象成被分成很多小块,每一块的面积都可以通过定积分算出来,厉害吧!
还有哦,假如你有一个奇奇怪怪形状的花园,不是那种规规矩矩的,那你怎么知道种满花需要多少土呢?定积分就可以帮你精确计算出那个不规则形状的面积呀!
有一次我和朋友就争论一个不规则图形的面积,大家都各执一词呢!我说用定积分能算出来,他还不信。

结果一算出来,他那惊讶的表情,我现在都记得!这不就证明定积分求面积真的超级有用嘛!
我觉得啊,定积分就像是一把神奇的钥匙,能打开计算各种形状面积的大门!它让我们能更准确地了解和处理现实生活中的各种情况。

无论是操场、披萨还是花园,定积分都能帮我们搞定面积问题,难道不是很棒吗?所以呀,大家一定要好好掌握定积分求面积这个强大的工具,让它为我们的生活服务,为我们的思考助力呀!。

定积分求平面图形面积在生活上的应用

定积分求平面图形面积在生活上的应用

定积分求平面图形面积在生活上的应用
定积分是一种重要的数学方法,可以求出曲线或平面图形的面积,它可以用来预测及解决许多实际问题。

其实,定积分在我们的生活中也起着广泛的作用,即通过定积分可以求得许多日常中的实际图形图形的面积,再进而用于实际应用。

首先,定积分可以用来求解拟空间图形的体积,如正方体、圆柱体等。

在家装工程、楼宇建筑等工程中,我们往往希望通过计算室内分段图形物体的体积,来确定施工量、进行报价。

因此,定积分可以方便地计算出各自图形的面积,求得一个准确的体积,有利于家装施工工作。

其次,定积分还可以延伸到土木建筑学方面,主要应用在把土堤劈开形成群堤劈口时,需要用定积分来计算滩坝的面积。

在给江河加固筑坝中,也会用定积分帮助计算出河道及整体筑堤的面积,以便进行设计分析标志,精确洪水启动洪水的等级,把握工程参数,使工程质量更有保障。

而且,还可以控制工程造价,提高工程施工质量。

最后,定积分也广泛用于测量地理空间,如绘制剖分图形等。

目前,在社会经济发展过程中,各种自然资源、土地开发成为重要话题,资源管理成为一个完善的管理体系。

地块剖分时,根据图形形状和边缘位置,即以定积分来求出这些图形的面积,从而能很好地管理相应的资源和土地使用。

通过以上叙述,可以很清晰地看出定积分在我们的生活中起着非常重要的作用。

它有助于计算出各种图形的面积,从而可以在家庭清淤、室内装修工程、水利筑坝工程及地块剖分等领域派上用场,它不仅可以提高工程品质,也能控制造价,极大的方便了实际工程的日常管理和分析等。

例谈定积分的应用

例谈定积分的应用

例谈定积分的应用
定积分是利用积分技术来搭建企业系统的一种服务方式,通过定积分,企业可以解决营销,客户追踪,价格管理,订单跟踪等问题,让企业
既有资源利用效率,又能惠及消费者。

一、定积分的应用
1、促销活动:利用定积分可以创建各种丰富多彩的促销活动,满减、
团购、买赠、金币锁定等,激励消费者购买和积累积分。

2、客户管理:定积分能够建立细致复杂的客户档案,包括客户经理内容,购买次数,消费金额,积分余额等,更好地进行客户管理。

3、价格管理:通过定积分,可以根据不同客户的特征,设置特定的价格,比如会员价,大客户价等,更好地提高定价精确度和竞争力。

4、订单追踪:定积分的订单追踪系统可以记录客户的订单信息,有利
于企业更好地追溯客户信息以及及时为客户提供优质服务。

二、定积分的优势
1、可靠性:定积分系统可以提供可靠性能,降低前端和后端系统出现
的异常和故障,防止客户和企业受到损害。

2、安全性:定积分的安全性也得到有效保障,内部数据交换完全采用
加密技术,保证信息不受外部干涉。

3、兼容性:定积分具有可行性和兼容性,它可以按照各种不同环境定
制与企业系统相协调的服务,能够提供企业最适合的解决方案。

4、易用性:定积分使用界面简洁明了,业务流程简单可靠,容易上手,操作简单易懂,为客户提供更贴心的服务。

三、总结
定积分的引入为企业的经营活动带来了更多的便利,有效提高了企业
的经营效率,也让消费者能够从消费上受到更多的好处。

由此可见,
定积分不仅是企业的一种低成本的服务方式,也是一个更加有效的、
更加充分的消费积分服务体系,为企业和消费者都更好地搭建企业系统。

定积分求平面图形面积在实际生活中的应用

定积分求平面图形面积在实际生活中的应用

定积分求平面图形面积在实际生活中的应用把复杂的积分问题求解出来就可以计算出平面图形的面积,在实际生活中也可以看到它的很多应用。

其中有一类是涉及设计的,比如建筑设计中的空间分配、土地开发等;另一类是分析的,比如海洋表面的波浪分析等。

1、建筑设计建筑设计中,定积分可以用来求解空间分配问题。

比如,在房屋设计中,它可以用来确定楼层、楼梯、墙壁、门窗等占用了多少面积。

此外,它还可以用来求解不规则房间布局时,室外墙体和室内墙体的面积分配。

同样,在土地开发中也可以看到定积分的应用,如计算出道路两端的封闭区域面积,以及计算建筑的总面积。

定积分也可以帮助规划者精确计算出规划区域的面积,从而更好地管理规划区域的开发。

2、海洋表面的波浪分析定积分也可以用来求解海洋表面的波浪。

水波的主要性质是在洋流中运动,它的变化符合泊松方程,这是一个带积分的方程,可以用定积分来求解。

这种波浪分析可以更好地解释海洋表面的复杂性,进而指导航管理者和建筑者采取更安全有效的导航措施。

此外,在海岸线上,可以使用定积分来计算海岸线内各子区域的面积,以及海岸线及其各个部分的面积,为海洋管理者提供有形的参考数据。

3、农业此外,定积分在农业中也有非常广泛的应用。

比如,在种植作物时,可以使用定积分来计算出作物地的面积,以及需要灌溉地区的面积;在研究农田开发时,可以利用定积分来计算出耕作面积。

通过计算出具体的面积数据,可以更好地规划农田的分布和种植规模,从而节约农业资源,提高农作物的产量。

总结定积分是一种有用的数学技术,可以把复杂的数学问题转化成计算机可计算的简单形式,在计算平面图形面积上表现出很强的优势。

它在实际生活中有很多应用,比如建筑设计、土地开发、海洋洋面波浪分析,以及农业规划等。

(完整版)定积分在生活中的应用

(完整版)定积分在生活中的应用

PINGDINGSHAN UNIVERSITY院系 : 经济与管理学院题目 : 定积分在生活中的应用年级专业: 11级市场营销班**** : ***定积分在生活中的应用定积分作为大学里很重要的一部分,在生活有广泛的应用。

微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。

一、定积分的概述1、定积分的定义:设函数()f x 在区间[],a b 上有界. ①在[],a b 中任意插入若干个分点011n n a x x x x b -=<<<<=,把区间[],a b 分成n个小区间[][][]01121,,,,,,,n n x x x x x x -且各个小区间的长度依次为110x x x ∆=-,221x x x ∆=-,…,1n n n x x x -∆=-。

②在每个小区间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i x ∆的乘积()i i f x ξ∆(1,2,,i n =), ③作出和 ()1ni i i S f x ξ==∆∑。

记{}12max ,,,n P x x x =∆∆∆作极限()01lim ni i P i f x ξ→=∆∑ 如果不论对[],a b 怎样分法,也不论在小区间[]1,i i x x -上点i ξ怎样取法,只要当0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在区间[],a b 上的定积分(简称积分),记作()ba f x dx ⎰,即()b af x dx ⎰=I =()01lim ni iP i f x ξ→=∆∑,其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],a b ⎡⎣叫做积分区间。

应用数学论文---定积分在生活中的应用

应用数学论文---定积分在生活中的应用

定积分在生活中的应用引 言通过学习了定积分后,我了解到定积分在生活中有很重要的应用。

定积分作为大学里很重要的一部分,在生活有广泛的应用;微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。

一、定积分的概述1、定积分的定义设函数()f x 在区间[],a b 上有界,在[],a b 中任意插入若干个分点011n n a x x x x b -=<<<<=, 把区间[],a b 分成n 个小区间:有[][][]01121,,,,,,,n n x x x x x x -且各个小区间的长度依次为110x x x ∆=-,221x x x ∆=-,…,1n n n x x x -∆=-。

在每个小区间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i x ∆的乘积()i i f x ξ∆(1,2,,i n =),并作出和()1ni i i S f x ξ==∆∑。

记{}12max ,,,n P x x x =∆∆∆,如果不论对[],a b 怎样分法,也不论在小区间[]1,i i x x -上点i ξ怎样取法,只要当0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在区间[],a b 上的定积分(简称积分),记作()baf x dx ⎰,即()baf x dx ⎰=I =()01lim ni iP i f x ξ→=∆∑,其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],a b ⎡⎣叫做积分区间。

2.定积分的性质.设函数()f x 和()g x 在[],a b 上都可积,k 是常数,则()kf x 和()f x +()g x 都可积,并且性质1 ()b akf x dx ⎰=()bak f x dx ⎰;性质2 ()()b a f x g x dx +⎡⎤⎣⎦⎰=()b a f x dx ⎰+()ba g x dx ⎰ ()()baf xg x dx -⎡⎤⎣⎦⎰=()b a f x dx ⎰-()ba g x dx ⎰.性质3 定积分对于积分区间的可加性设()f x 在区间上可积,且a ,b 和c 都是区间内的点,则不论a ,b 和c 的相对位置如何,都有()caf x dx ⎰=()baf x dx ⎰+()cbf x dx ⎰。

定积分在生活中的应用

定积分在生活中的应用

定积分在生活中的应用定积分在生活中的应用有很多,让我们来举例说明其中一个方面。

假设你经营一家咖啡店,想要知道在某个时间段内卖出咖啡的总杯数。

这个问题就可以用定积分来解答。

首先,我们需要确定卖出咖啡的总杯数和时间之间的关系。

假设每小时卖出咖啡的杯数是一样的,那么卖出咖啡的总杯数就是每小时卖出咖啡的杯数乘以卖出咖啡的小时数。

用数学公式表示为:∫cup/hour dt (从t1到t2)其中cup/hour表示每小时卖出咖啡的杯数,dt表示卖出咖啡的小时数。

将这个公式进行积分运算,就可以得到卖出咖啡的总杯数。

通过这个例子可以看出,定积分可以帮助我们解决生活中各种各样的问题,只需要将问题转化为数学公式进行计算就可以了。

当然,定积分还是一个比较难的概念,需要我们具备一定的数学基础才能正确理解和运用。

定积分是微积分的一个重要概念,它在生活中的应用非常广泛。

在生活和工作中,定积分可以通过数学模型来描述各种现象,从而帮助我们分析和解决问题。

以经济学为例,定积分可以用于研究累计收益和累计成本等经济指标。

在经济学中,累计收益是指一定时间内所获得的总收入,而累计成本则是指为了获得这些总收入而投入的总成本。

通过定积分的方法,可以将这些经济指标进行数学化,从而更好地进行定量分析和比较。

具体而言,假设有一个产品在时间段[t1, t2]内的总收益R(t),那么该产品的累计收益可以通过定积分来计算:∫R(t) dt (从t1到t2)。

其中R(t)表示单位时间内产品的收益随时间变化而变化的函数关系。

同理,对于累计成本也可以采用类似的方法进行计算。

通过定积分的应用,可以帮助经济学家更好地分析和预测未来经济发展的趋势和规律,从而制定更为准确的宏观经济政策和企业经营策略。

除了经济学,定积分还可以应用于其他领域。

例如,在物理学中,定积分可以用于计算物体的质量和重心位置等;在几何学中,定积分可以用于计算曲线围成的面积和立体图形的体积等;在工程学中,定积分可以用于计算机械零件的强度和应力分布等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PINGDINGSHAN UNIVERSITY院系 : 经济与管理学院题目 : 定积分在生活中的应用年级专业: 11级市场营销班**** : ***定积分在生活中的应用定积分作为大学里很重要的一部分,在生活有广泛的应用。

微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。

一、定积分的概述1、定积分的定义:设函数()f x 在区间[],a b 上有界. ①在[],a b 中任意插入若干个分点011n n a x x x x b -=<<<<=,把区间[],a b 分成n 个小区间[][][]01121,,,,,,,n n x x x x x x -且各个小区间的长度依次为110x x x ∆=-,221x x x ∆=-,…,1n n n x x x -∆=-。

②在每个小区间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i x ∆的乘积()i i f x ξ∆(1,2,,i n =), ③作出和 ()1ni i i S f x ξ==∆∑。

记{}12max ,,,n P x x x =∆∆∆作极限()01lim ni i P i f x ξ→=∆∑ 如果不论对[],a b 怎样分法,也不论在小区间[]1,i i x x -上点i ξ怎样取法,只要当0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在区间[],a b 上的定积分(简称积分),记作()ba f x dx ⎰,即()baf x dx ⎰=I =()01lim ni iP i f x ξ→=∆∑,其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],a b ⎡⎣叫做积分区间。

2.定积分的性质设函数()f x 和()g x 在[],a b 上都可积,k 是常数,则()kf x 和()f x +()g x 都可积,并且性质1 ()b a kf x dx ⎰=()ba k f x dx ⎰;性质2 ()()ba f x g x dx +⎡⎤⎣⎦⎰=()ba f x dx ⎰+()ba g x dx ⎰()()ba f x g x dx -⎡⎤⎣⎦⎰=()ba f x dx ⎰-()ba g x dx ⎰. 性质3 定积分对于积分区间的可加性设()f x 在区间上可积,且a ,b 和c 都是区间内的点,则不论a ,b 和c 的相对位置如何,都有()ca f x dx ⎰=()ba f x dx ⎰+()cb f x dx ⎰。

性质 4 如果在区间[],a b 上()f x ≡1,则1ba dx ⎰=ba dx ⎰=b a -。

性质 5 如果在区间[],a b 上()f x ≥0,则()ba f x dx ⎰≥0()ab <。

性质 6 如果在],[b a 上,M x f m ≤≤)(,则⎰-≤≤-baa b M dx x f a b m )()()(性质 7(定积分中值定理)如果)(x f 在],[b a 上连续,则在],[b a 上至少存一点ξ使得 ⎰-=baa b f dx x f ))(()(ξ3.定理定理1 微积分基本定理如果函数()f x 在区间[],a b 上连续,则积分上限函数()x φ=()xa f t dt ⎰在[],ab 上可导,并且它的导数是 ()'x φ=()xad f t dtdx⎰=()f x ()a x b ≤≤.定理 2 原函数存在定理如果函数()f x 在区间[],a b 上连续,则函数()x φ=()xa f t dt ⎰就是()f x 在[],a b 上的一个原函数.定理3 如果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数, 则 ()ba f x dx ⎰=()()Fb F a -称上面的公式为牛顿-莱布尼茨公式. 二 、定积分的应用1、定积分在几何中的应用(1)设连续函数)(x f 和)(x g 满足条件)(x g ≤)(x f ,∈x ],[b a .求曲线=y )(x f ,=y )(x g 及直线b x a x ==,所围成的平面图形的面积S .(如图1) 解法步骤:第一步:在区间],[b a 上任取一小区间],[dx x x +,并考虑它上面的图形的面积,这块面积可用以)]()([x g x f -为高,以dx 为底的矩形面积近似,于是dx x g x f dS )]()([-=.第二步:在区间],[b a 上将dS 无限求和,得到⎰-=ba dx x g x f S )]()([.(2)上面所诉方法是以x 为积分变量进行微元,再求得所围成图形的面积;我们还可以将y 作为积分变量进行微元,再求围成的面积。

由连续曲线)(y x ϕ=、)(y x ψ=其中)()(y y ψϕ≥与直线c y =、d y =所围成的平面图形(图2)的面积为:⎰-=dc dy y y S )]()([ψϕ例1 求由曲线x y sin =,x y cos =及直线0=x ,π=x 所围成图形的面积A .解 (1)作出图形,如图所示.易知,在],0[π上,曲线x y sin =与x y cos =的交点为)22,4(π;图2(2)取x 为积分变量,积分区间为],0[π.从图中可以看出,所围成的图形可以分成两部分;(3)区间]4,0[π上这一部分的面积1A 和区间],4[ππ上这一部分的面积2A 分别为⎰-=401)sin (cos πdx x x A , ⎰-=ππ42)cos (sin dx x x A ,所以,所求图形的面积为21A A A +==⎰-40)sin (cos πdx x x +⎰-ππ4)cos (sin dx x x[][]22sin cos cos sin 440=--++=πππx x x x .例2 求椭圆22221x y a b+=的面积.解 椭圆关于x 轴,y 轴均对称,故所求面积为第一象限部分的面积的4倍,即1044a S S ydx ==⎰ 利用椭圆的参数方程 cos sin x a ty b t=⎧⎨=⎩ 应用定积分的换元法,sin dx a tdt =-,且当0x =时,,2t x a π==时,0t =,于是222024sin (cos )4sin 1cos24214sin 22240S b t a t dtab tdttab dt t ab t abπππππ=-=-=⎛⎫=-= ⎪⎝⎭⎰⎰⎰2.求旋转体体积用类似求平面图形面积的思想我们也可以求一个立体图形的体积,例如一个木块的体积,我们可以将此木块作分割b x x x a T n =<<<= 10:划分成许多基本的小块,每一块的厚度为),,2,1(n i x i =∆,假设每一个基本的小块横切面积为),,2,1)((n i x A i =,)(x A 为[]b a ,上连续函数,则此小块的体积大约是i i x x A ∆)(,将所有的小块加起来,令0→T ,我们可以得到其体积:⎰∑=∆==→bani iiT dx x A x x A V )()(lim1。

例2 求由曲线4=xy , 直线 1=x ,4=x ,0=y 绕x 轴旋转一周而形成的立体体积.解 先画图形,因为图形绕x 轴旋转,所以取x 为积分变量,x 的变化区间为[1,4],相应于[1,4]上任取一子区间[x ,x +x d ]的小窄条,绕x 轴旋转而形成的小旋转体体积,可用高为x d ,底面积为2πy 的小圆柱体体积近似代替,即体积微元为V d =2πy x d =π2)4(xx d ,于是,体积V =π⎰412d )4(x x=16π⎰412d 1x x -=16π411x=12π.3.求曲线的弧长(1)设曲线)(x f y =在[]b a ,上有一阶连续导数(如下图),利用微元法,取x 为积分变量,在[]b a ,上任取小区间[]x x x d ,+,切线上相应小区间的小段MT 的长度近似代替一段小弧MN 的长度,即ds l MN ≈.得弧长微元为:dx y y x MT s 222)(1)d ()d (d '+=+==,再对其积分,则曲线的弧长为:dx x f dx y ds s ba b a b a ⎰⎰⎰'+='+==22)]([1)(1 (2)参数方程表示的函数的弧长计算,设曲线⎩⎨⎧==)()(t y t x ψϕ上[],t αβ∈一段的弧长.这时弧长微元为:()()2222dx dy ds dx dy dt dt dt ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭即()()22ds t t dt ϕψ''=+则曲线的弧长为dt t t ds s ⎰⎰'+'==βαβαψϕ22)]([)]([例3 (1)求曲线 2332x y =上从0到3一段弧的长度解 由公式 s =x y ba d 12⎰'+ (b a <)知,弧长为s =x y d 1302⎰'+=x x ⎰+30d 1=323023)1(x +=31632-=314. (2)求摆线 (sin ),(1cos )x a t t y a t =-⎧⎨=-⎩在π20≤≤t 上的一段弧的长度(0>a ).解 取t 为积分变量,积分区间为]2,0[π.由摆线的参数方程,得)cos 1(t a x -=',t a y sin =',t a t a y x 222222sin )cos 1(+-='+' |2sin|2)cos 1(2ta t a =-=. 于是,由公式(16-13),在π20≤≤t 上的一段弧的长度为22002|sin |2sin 22t t s a dt a dt ππ==⎰⎰ 204cos 82t a a π⎡⎤=-=⎢⎥⎣⎦ 2、定积分在经济中的应用(1)、由经济函数的边际,求经济函数在区间上的增量根据边际成本,边际收入,边际利润以及产量x 的变动区间[,]a b 上的改变量(增量)就等于它们各自边际在区间[,]a b 上的定积分:()()()ba Rb R a R x dx '-=⎰ (1)()()()baC b C a C x dx '-=⎰ (2)()()()baL b L a L x dx '-=⎰ (3)例1 已知某商品边际收入为0.0825x -+(万元/t ),边际成本为5(万元/t ),求产量x 从250t 增加到300t 时销售收入()R x ,总成本C ()x ,利润()I x 的改变量(增量)。

相关文档
最新文档