高中数学必修五解三角形测试题及答案

合集下载

人教版必修五“解三角形”精选难题及其答案

人教版必修五“解三角形”精选难题及其答案

人教版必修五“解三角形”精选难题及其答案一、选择题(本大题共12小题,共60.0分)1. 锐角△ABC 中,已知a =√3,A =π3,则b 2+c 2+3bc 的取值范围是( )A. (5,15]B. (7,15]C. (7,11]D. (11,15]2. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sinA =2sinBcosC ,则△ABC的形状为( ) A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形 3. 在△ABC 中,∠A =60∘,b =1,S △ABC =√3,则a−2b+csinA−2sinB+sinC的值等于( )A. 2√393B.263√3C. 83√3D. 2√34. 在△ABC 中,有正弦定理:asinA =bsinB =csinC =定值,这个定值就是△ABC 的外接圆的直径.如图2所示,△DEF 中,已知DE =DF ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,记△DEM 的外接圆面积与△DMF 的外接圆面积的比值为λ,那么( )A. λ先变小再变大B. 仅当M 为线段EF 的中点时,λ取得最大值C. λ先变大再变小D. λ是一个定值5. 已知三角形ABC 中,AB =AC ,AC 边上的中线长为3,当三角形ABC 的面积最大时,AB 的长为( ) A. 2√5 B. 3√6 C. 2√6 D. 3√5 6. 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b =c ,且满足sinBsinA =1−cosB cosA.若点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2OB =2,平面四边形OACB 面积的最大值是( )A. 8+5√34B. 4+5√34C. 3D. 4+5√327. 在△ABC 中,a =1,b =x ,∠A =30∘,则使△ABC 有两解的x 的范围是( )A. (1,2√33) B. (1,+∞)C. (2√33,2) D. (1,2)8. △ABC 的外接圆的圆心为O ,半径为1,若AB⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AO ⃗⃗⃗⃗⃗ ,且|OA ⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,则△ABC 的面积为( )A. √3B. √32C. 2√3D. 19. 在△ABC 中,若sinBsinC =cos 2A2,则△ABC 是( )A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形10. 在△ABC 中,已知∠C =60∘.a ,b ,c 分别为∠A ,∠B ,∠C 的对边,则ab+c +bc+a 为( )A. 3−2√3B. 1C. 3−2√3或1D. 3+2√311. 设锐角△ABC 的三内角A 、B 、C 所对边的边长分别为a 、b 、c ,且 a =1,B =2A ,则b 的取值范围为( ) A. (√2,√3) B. (1,√3) C. (√2,2) D. (0,2)12. 在△ABC 中,内角A ,B ,C 所对边的长分别为a ,b ,c ,且满足2bcosB =acosC +ccosA ,若b =√3,则a +c 的最大值为( )A. 2√3B. 3C. 32D. 9二、填空题(本大题共7小题,共35.0分)13. 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c 且acosC +12c =b ,则角A 的大小为______ ;若a =1,则△ABC 的周长l 的取值范围为______ .14. 在△ABC 中,∠A ,∠B ,∠C 所对边的长分别为a ,b ,c.已知a +√2c =2b ,sinB =√2sinC ,则sin C2= ______ .15. 已知△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a −b =ccosB −ccosA ,则△ABC 的形状是______ . 16. 在△ABC 中,若a 2b 2=tanA tanB,则△ABC 的形状为______ .17. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a −b)sinB =asinA −csinC ,且a 2+b 2−6(a +b)+18=0,则AB⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ = ______ . 18. 如果满足∠ABC =60∘,AC =12,BC =k 的三角形恰有一个,那么k 的取值范围是______ .19. 已知△ABC 的三个内角A ,B ,C 的对边依次为a ,b ,c ,外接圆半径为1,且满足tanA tanB=2c−b b,则△ABC 面积的最大值为______ .三、解答题(本大题共11小题,共132.0分)20. 在锐角△ABC 中,a ,b ,c 是角A ,B ,C 的对边,且√3a =2csinA .(1)求角C 的大小;(2)若a =2,且△ABC 的面积为3√32,求c 的值.21. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知asinB =√3bcosA .(1)求角A 的大小;(2)若a =√7,b =2,求△ABC 的面积.22.已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足asinA−csinC=(a−b)sinB.(1)求角C的大小;(2)若边长c=√3,求△ABC的周长最大值.23.已知函数f(x)=√3sinxcosx−cos2x−1,x∈R.2(1)求函数f(x)的最小值和最小正周期;(2)已知△ABC内角A,B,C的对边分别为a,b,c,且c=3,f(C)=0,若向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线,求a,b的值.24.已知△ABC中,A<B<C,a=cosB,b=cosA,c=sinC(1)求△ABC的外接圆半径和角C的值;(2)求a+b+c的取值范围.25.△ABC中,角A,B,C的对边分别是a,b,c且满足(2a−c)cosB=bcosC,(1)求角B的大小;(2)若△ABC的面积为为3√3且b=√3,求a+c的值.426.已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA−sinB)=(c−b)sinC(1)求角A的大小;(2)求△ABC的面积的最大值.27.已知函数f(x)=2cos2x+2√3sinxcosx(x∈R).(Ⅰ)当x∈[0,π]时,求函数f(x)的单调递增区间;]内恒有两个不相等的实数解,求实数t的取值(Ⅱ)若方程f(x)−t=1在x∈[0,π2范围.28.已知A、B、C是△ABC的三个内角,向量m⃗⃗⃗ =(cosA+1,√3),n⃗=(sinA,1),且m⃗⃗⃗ //n⃗;(1)求角A;=−3,求tanC.(2)若1+sin2Bcos 2B−sin 2B29.在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1−sin C2(1)求sinC的值(2)若a2+b2=4(a+b)−8,求边c的值.30.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足:(a+c)(sinA−sinC)=sinB(a−b)(I)求角C的大小;(II)若c=2,求a+b的取值范围.答案和解析【答案】 1. D 2. A 3. A 4. D 5. A 6. A7. D8. B 9. B 10. B 11. A 12. A13. 60∘;(2,3]14. √2415. 等腰三角形或直角三角形 16. 等腰三角形或直角三角形 17. −27218. 0<k ≤12或k =8√319. 3√3420. 解:(1)△ABC 是锐角,a ,b ,c 是角A ,B ,C 的对边,且√3a =2csinA . 由正弦定理得:√3sinA =2sinC ⋅sinA∵△ABC 是锐角, ∴sinC =√32, 故C =π3;(2)a =2,且△ABC 的面积为3√32, 根据△ABC 的面积S =12acsinB =12×2×b ×sin π3=3√32解得:b =3.由余弦定理得c 2=a 2+b 2−2abcosC =4+9−2×3=7 ∴c =√7.故得c 的值为√7. 21. (本题满分为14分)解:(1)∵asinB =√3bcosA ,由正弦定理得sinAsinB =√3sinBcosA.…(3分) 又sinB ≠0,从而tanA =√3.…(5分) 由于0<A <π, 所以A =π3.…(7分)(2)解法一:由余弦定理a 2=b 2+c 2−2bccosA ,而a =√7,b =2,A =π3,…(9分) 得7=4+c 2−2c =13,即c 2−2c −3=0. 因为c >0,所以c =3.…(11分) 故△ABC 的面积为S =12bcsinA =3√32.…(14分) 解法二:由正弦定理,得√7sin π3=2sinB , 从而sinB =√217,…(9分)又由a >b 知A >B ,所以cosB=2√77.故sinC=sin(A+B)=sin(B+π3)=sinBcosπ3+cosBsinπ3=3√2114.…(12分)所以△ABC的面积为12bcsinA=3√32.…(14分)22. 解:(1)由已知,根据正弦定理,asinA−csinC=(a−b)sinB 得,a2−c2=(a−b)b,即a2+b2−c2=ab.由余弦定理得cosC=a2+b2−c22ab =12.又C∈(0,π).所以C=π3.(2)∵C=π3,c=√3,A+B=2π3,∴asinA =bsinB=√3√32=2,可得:a=2sinA,b=2sinB=2sin(2π3−A),∴a+b+c=√3+2sinA+2sin(2π3−A)=√3+2sinA+2(√32cosA+12sinA)=2√3sin(A+π6)+√3∵由0<A<2π3可知,π6<A+π6<5π6,可得:12<sin(A+π6)≤1.∴a+b+c的取值范围(2√3,3√3].23. 解:(1)由于函数f(x)=√3sinxcosx−cos2x−12=√32sin2x−1+cos2x2−12=sin(2x−π6)−1,故函数的最小值为−2,最小正周期为2π2=π.(2)△ABC中,由于f(C)=sin(2C−π6)−1=0,可得2C−π6=π2,∴C=π3.再由向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线可得sinB−2sinA=0.再结合正弦定理可得b=2a,且B=2π3−A.故有sin(2π3−A)=2sinA,化简可得tanA=√33,∴A=π6,∴B=π2.再由asinA =bsinB=csinC可得asinπ6=bsinπ2=3sinπ3,解得a=√3,b=2√3.24. 解:(1)由正弦定理csinC =2R=1,∴R=12.再由a=cosB,b=cosA,可得cosBsinA =cosAsinB,故有sinAcosA=sinBcosB,即sin2A=sin2B.再由A <B <C ,可得2A +2B =π,∴C =π2.(2)由于a +b +c =cosB +cosA +sinC =sinA +cosA +1=√2sin(A +π4)+1.再由O <A <π4,可得π4<A +π4<π2,∴√22<sin(A +π4)<1,∴2<√2sin(A +π4)+1<√2+1,即a +b +c 的取值范围为(2,√2+1).25. 解:(1)又A +B +C =π,即C +B =π−A , ∴sin(C +B)=sin(π−A)=sinA ,将(2a −c)cosB =bcosC ,利用正弦定理化简得:(2sinA −sinC)cosB =sinBcosC , ∴2sinAcosB =sinCcosB +sinBcosC =sin(C +B)=sinA ,在△ABC 中,0<A <π,sinA >0,∴cosB =12,又0<B <π,则B =π3 (2)∵△ABC 的面积为3√34,sinB =sin π3=√32, ∴S =12acsinB =√34ac =3√34,∴ac =3,又b =√3,cosB =cos π3=12,∴由余弦定理b 2=a 2+c 2−2accosB 得:a 2+c 2−ac =(a +c)2−3ac =(a +c)2−9=3,∴(a +c)2=12,则a +c =2√326. 解:(1)△ABC 中,∵a =2,且(2+b)(sinA −sinB)=(c −b)sinC , ∴利用正弦定理可得(2+b)(a −b)=(c −b)c ,即b 2+c 2−bc =4,即b 2+c 2−4=bc , ∴cosA =b 2+c 2−a 22bc=bc 2bc=12,∴A =π3.(2)再由b 2+c 2−bc =4,利用基本不等式可得4≥2bc −bc =bc , ∴bc ≤4,当且仅当b =c =2时,取等号,此时,△ABC 为等边三角形,它的面积为12bcsinA =12×2×2×√32=√3,故△ABC 的面积的最大值为:√3.27. 解:(I)f(x)=2cos 2x +2√3sinxcosx =cos2x +√3sin2x +1 2sin(2x +π6)+1令−π2+2kπ≤2x +π6≤+2kπ(k ∈Z) 解得:kπ−π3≤x ≤kπ+π6(k ∈Z) 由于x ∈[0,π]f(x)的单调递增区间为:[0,π6]和[2π3,π]. (Ⅱ)依题意:由2sin(2x +π6)+1=t +1 解得:t =2sin(2x +π6)设函数y1=t与y2=2sin(2x+π6)由于在同一坐标系内两函数在x∈[0,π2]内恒有两个不相等的交点.因为:x∈[0,π2]所以:2x+π6∈[π6,7π6]根据函数的图象:当2x+π6∈[π6,π2]sin(2x+π6)∈[12,1],t∈[1,2]当2x+π6∈[π2,7π6]时,sin(2x+π6)∈[−12,1],t∈[−1,2]所以:1≤t<228. 解:(1)∵m⃗⃗⃗ //n⃗,∴√3sinA−cosA=1,2(sinA⋅√32−cosA⋅12)=1,sin(A−π6)=12,∵0<A<π,−π6<A−π6<5π6,∴A−π6=π6.∴A=π3.(2)由题知1+sin2Bcos 2B−sin 2B=−3,∴(cosB+sinB)2(cosB+sinB)(cosB−sinB)=−3,∴cosB+sinBcosB−sinB=−3,∴1+tanB1−tanB=−3,∴tanB=2.∴tanC=tan[π−(A+B)]=−tan(A+B)=−tanA+tanB1−tanAtanB =8+5√311.29. 解:(1)∵sinC+cosC=1−sin C2∴2sin C2cosC2+1−2sin2C2=1−sinC2∴2sin C2cosC2−2sin2C2=−sinC2∴2sin2C2−2sinC2cosC2=sinC2∴2sin C2(sin C2−cosC2)=sinC2∴sin C2−cos C2=12∴sin2C2−sinC+cos2C2=14∴sinC=3 4(2)由sin C2−cos C2=12>0得π4<C2<π2即π2<C<π∴cosC=−√7 4∵a2+b2=4(a+b)−8∴(a−2)2+(b−2)2=0∴a=2,b=2由余弦定理得c2=a2+b2−2abcosC=8+2√7∴c=1+√730. (本题满分为12分)解:(I)在△ABC中,∵(a+c)(sinA−sinC)=sinB(a−b),∴由正弦定理可得:(a+c)(a−c)=b(a−b),即a2+b2−c2=ab,…(3分)∴cosC=12,∴由C为三角形内角,C=π3.…(6分)(II)由(I)可知2R=c sinC=√32=4√33,…(7分)∴a+b=4√33(sinA+sinB)=4√33[sinA+sin(A+π3)]=4√33(32sinA+√32cosA)=4sin(A+π6).…(10分)∵0<A<2π3,∴π6<A+π6<5π6,∴12<sin(A+π6)≤1,∴2<4sin(A+π6)≤4∴a+b的取值范围为(2,4].…(12分)【解析】1. 解:由正弦定理可得,a sinA=b sinB=c sinC=√3√32=2,∴b=2sinB,c=2sinC,∵△ABC为锐角三角形,∴0∘<B<90∘,0∘<C<90∘且B+C=120∘,∴30∘<B<90∘∵bc=4sinBsin(120∘−B)=4sinB(√32cosB+12sinB)=2√3sinBcosB+2sin2B=√3sin2B+(1−cos2B)=2sin(2B−30∘)+1,∵30∘<B<90∘,∴30∘<2B−30∘<150∘,∴12<sin(2B−30∘)≤1,∴2<2sin(2B−30∘)+1≤4,即2<bc≤3,∵a =√3,A =π3,由余弦定理可得:3=b 2+c 2−bc ,可得:b 2+c 2=bc +3, ∴b 2+c 2+3bc =4bc +3∈(11,15]. 故选:D .由正弦定理可得,asinA=bsinB =csinC =√3√32=2,结合已知可先表示b ,c ,然后由△ABC 为锐角三角形及B +C =120∘可求B 的范围,再把所求的bc 用sinB ,cosB 表示,利用三角公式进行化简后,结合正弦函数的性质可求bc 的范围,由余弦定理可得b 2+c 2+3bc =4bc +3,从而可求范围.本题综合考查了正弦定理和面积公式及两角和与差的正弦、余弦公式及辅助角公式的综合应用,解题的关键是熟练掌握基本公式并能灵活应用,属于中档题. 2. 解:因为sinA =2sinBcosc , 所以sin(B +C)=2sinBcosC ,所以sinBcosC −sinCcosB =0,即sin(B −C)=0, 因为A ,B ,C 是三角形内角, 所以B =C .三角形为等腰三角形. 故选:A .通过三角形的内角和,以及两角和的正弦函数,化简方程,求出角的关系,即可判断三角形的形状.本题考查两角和的正弦函数的应用,三角形的判断,考查计算能力,属于基础题.3. 解:∵∠A =60∘,b =1,S △ABC =√3=12bcsinA =12×1×c ×√32, ∴c =4,∴a 2=b 2+c 2−2bccosA =1+14−2×1×4×12=13,∴a =√13,∴a−2b+csinA−2sinB+sinC =asinA =√13√32=2√393.故选:A .先利用面积公式求得c 的值,进而利用余弦定理可求a ,再利用正弦定理求解比值. 本题的考点是正弦定理,主要考查正弦定理的运用,关键是利用面积公式,求出边,再利用正弦定理求解.4. 解:设△DEM 的外接圆半径为R 1,△DMF 的外接圆半径为R 2, 则由题意,πR 12πR 22=λ,点M 在直线EF 上从左到右运动(点M 不与E 、F 重合),对于M 的每一个位置,由正弦定理可得:R 1=12DE sin∠DME ,R 2=12DFsin∠DMF , 又DE =DF ,sin∠DME =sin∠DMF ,可得:R 1=R 2, 可得:λ=1. 故选:D .设△DEM 的外接圆半径为R 1,△DMF 的外接圆半径为R 2,则由题意,πR 12πR 22=λ,由正弦定理可得:R 1=12DE sin∠DME ,R 2=12DFsin∠DMF ,结合DE =DF ,sin∠DME =sin∠DMF ,可得λ=1,即可得解.本题主要考查了正弦定理在解三角形中的应用,考查了分类讨论思想和转化思想的应用,属于基础题.5. 解:设AB=AC=2x,AD=x.设三角形的顶角θ,则由余弦定理得cosθ=(2x)2+x2−9 2×2x×x =5x2−94x2,∴sinθ=√1−cos2θ=√144−9(x2−5)24x2,根据公式三角形面积S=12absinθ=12×2x⋅2x⋅√144−9(x2−5)24x2=√144−9(x2−5)22,∴当x2=5时,三角形面积有最大值.此时x=√5.AB的长:2√5.故选:A.设AB=AC=2x,三角形的顶角θ,则由余弦定理求得cosθ的表达式,进而根据同角三角函数基本关系求得sinθ,最后根据三角形面积公式表示出三角形面积的表达式,根据一元二次函数的性质求得面积的最大值时的x即可.本题主要考查函数最值的应用,根据条件设出变量,根据三角形的面积公式以及三角函数的关系是解决本题的关键,利用二次函数的性质即可求出函数的最值,考查学生的运算能力.运算量较大.6. 解:△ABC中,∵b=c,sinBsinA =1−cosBcosA,∴sinBcosA+cosBsinA=sinA,即sin(A+B)=sin(π−C)=sinC=sinA,∴A=C,又b=c,∴△ABC为等边三角形.∴S OACB=S△AOB+S△ABC=12⋅OA⋅OB⋅sinθ+12⋅AB2⋅sinπ3=12×2×1×sinθ+√34(OA2+OB2−2OA⋅OB⋅cosθ)=sinθ−√3cosθ+5√34=2sin(θ−π3)+5√34.∵0<θ<π,∴−π3<θ−π3<2π3,故当θ−π3=π2时,sin(θ−π3)取得最大值为1,故S OACB=的最大值为2+5√34=8+5√34,故选:A.依题意,可求得△ABC为等边三角形,利用三角形的面积公式与余弦定理可求得S OACB=2sin(θ−π3)+5√34(0<θ<π),从而可求得平面四边形OACB面积的最大值.题考查三角函数中的恒等变换应用,考查余弦定理的应用,求得S OACB=2sin(θ−π3)+5√34是解题的关键,也是难点,考查等价转化思想与运算求解能力,属于中档题.7. 解:结合图形可知,三角形有两解的条件为b=x>a,bsinA<a,∴b=x>1,xsin30∘<1,则使△ABC有两解的x的范围是1<x<2,故选:D.根据题意画出图形,由题意得到三角形有两解的条件为b =x >a ,bsinA <a ,即可确定出x 的范围.此题考查了正弦定理,以及特殊角的三角函数值,画出正确的图形是解本题的关键.8. 解:由于AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AO ⃗⃗⃗⃗⃗ ,由向量加法的几何意义,O 为边BC 中点,∵△ABC 的外接圆的圆心为O ,半径为1,∴三角形应该是以BC 边为斜边的直角三角形,∠BAC =π2,斜边BC =2,又∵|OA ⃗⃗⃗⃗⃗ |=|AC⃗⃗⃗⃗⃗ |, ∴|AC|=1,|AB|=√BC 2−AC 2=√22−12=√3, ∴S △ABC =12×|AB|×|AC|=12×1×√3=√32. 故选:B .由AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AO ⃗⃗⃗⃗⃗ ,利用向量加法的几何意义得出△ABC 是以A 为直角的直角三角形,又|OA ⃗⃗⃗⃗⃗ |=|AC⃗⃗⃗⃗⃗ |,从而可求|AC|,|AB|的值,利用三角形面积公式即可得解. 本题主要考查了平面向量及应用,三角形面积的求法,属于基本知识的考查.9. 解:由题意sinBsinC =1+cosA 2,即sinBsinC =1−cosCcosB , 亦即cos(C −B)=1, ∵C ,B ∈(0,π), ∴C =B , 故选:B . 利用cos 2A2=1+cosA 2可得sinBsinC =1+cosA 2,再利用两角和差的余弦可求.本题主要考查两角和差的余弦公式的运用,考查三角函数与解三角形的结合.属于基础题.10. 解:cosC =a 2+b 2−c 22ab=12,∴ab =a 2+b 2−c 2,∴ab+c +bc+a =ac+a 2+b 2+bcab+(a+b)c+c 2=a 2+b 2+(a+b)ca 2+b 2+(a+b)c =1,故选B .先通过余弦定理求得ab 和a 2+b 2−c 2的关系式对原式进行通分,把ab 的表达式代入即可.本题主要考查了余弦定理的应用.解题的关键是找到a ,b 和c 的关系式. 11. 解:锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,B =2A , ∴0<2A <π2,且B +A =3A , ∴π2<3A <π. ∴π6<A <π3, ∴√22<cosA <√32, ∵a =1,B =2A ,∴由正弦定理可得:ba =b=sin2AsinA=2cosA,∴√2<2cosA<√3,则b的取值范围为(√2,√3).故选A由题意可得0<2A<π2,且π2<3A<π,解得A的范围,可得cosA的范围,由正弦定理求得ba=b=2cosA,根据cosA的范围确定出b范围即可.此题考查了正弦定理,余弦函数的性质,解题的关键是确定出A的范围.12. 解:2bcosB=ccosA+acosC,由正弦定理,得2sinBcosB=sinCcosA+sinAcosC,∴2sinBcosB=sinB,又sinB≠0,∴cosB=12,∴B=π3.∵由余弦定理可得:3=a2+c2−ac,∴可得:3≥2ac−ac=ac,∴即有:ac≤3,代入:3=(a+c)2−3ac可得:(a+c)2=3+3ac≤12,∴a+c的最大值为2√3.故选:A.利用正弦定理化边为角,可求导cosB,由此可得B,由余弦定理可得:3=a2+c2−ac,由基本不等式可得:ac≤3,代入:3=(a+c)2−3ac可得a+c的最大值.该题考查正弦定理、余弦定理及其应用,基本不等式的应用,考查学生运用知识解决问题的能力,属于中档题.13. 解:acosC+12c=b变形得:2acosC+c=2b,利用正弦定理得:2sinAcosC+sinC=2sinB=2sin(A+C)=2sinAcosC+2cosAsinC,∴sinC=2cosAsinC,即sinC(2cosA−1)=0,由sinC≠0,得到cosA=12,又A为三角形的内角,则A=60∘;∵a=1,sinA=√32,B+C=120∘,即C=120∘−B,∴asinA =bsinB=csinC=2√33,即b=2√33sinB,c=2√33sin(120∘−B),则△ABC的周长l=a+b+c=1+2√33sinB+2√33sin(120∘−B)=1+2√33(32sinB+√32cosB)=1+2(√32sinB+12cosB)=1+2sin(B+30∘),∵0<B<120∘,∴30∘<B+30∘<150∘,∴12<sin(B+30∘)≤1,即2<1+2sin(B+30∘)≤3,则l范围为(2,3].故答案为:60∘;(2,3]将已知的等式左右两边都乘以2变形后,利用正弦定理化简,再利用诱导公式及两角和与差的正弦函数公式变形,根据sinC不为0,得出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;由A的度数求出sinA的值,及B+C的度数,用B表示出C,由正弦定理表示出b与c,而三角形ABC的周长l=a+b+c,将表示出的b与c,及a的值代入,利用两角和与差的正弦函数公式化简,整理后再利用特殊角的三角函数值及两角和与差的正弦函数公式化为一个角的正弦函数,由B的范围求出这个角的范围,利用正弦函数的图象与性质得出此时正弦函数的值域,即可得到l的范围.此题考查了正弦定理,两角和与差的正弦函数公式,诱导公式,正弦函数的定义域与值域,以及特殊角的三角函数值,利用了转化的思想,熟练掌握定理及公式是解本题的关键.14. 解:∵在△ABC中a+√2c=2b,sinB=√2sinC,∴由正弦定理可得a+√2c=2b,b=√2c,联立可解得a=b=√2c,∴由余弦定理可得cosC=a2+b2−c22ab=222 2×√2c×√2c =34,再由二倍角公式可得cosC=1−2sin2C2=34,解得sin C2=√24或sin C2=−√24,再由三角形内角的范围可得C2∈(0,π2)故sin C2=√24故答案为:√24由题意和正弦定理可得a=b=√2c,代入余弦定理可得cosC,由二倍角公式和三角形内角的范围可得.本题考查解三角形,涉及正余弦定理和二倍角公式,属中档题.15. 解:将cosA=b2+c2−a22bc ,cosB=a2+c2−b22ac代入已知等式得:a−b=c a2+c2−b22ac −c⋅b2+c2−a22bc,整理得:a2+b2−c2a =a2+b2−c2b,当a2+b2−c2=0,即a2+b2=c2时,△ABC为直角三角形;当a2+b2−c2≠0时,得到a=b,△ABC为等腰三角形,则△ABC为等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.利用余弦定理表示出cosA与cosB,代入已知等式,整理后即可确定出三角形形状.此题考查了余弦定理,勾股定理,以及等腰三角形的性质,熟练掌握余弦定理是解本题的关键.16. 解:原式可化为sin 2Asin 2B =sinAcosB cosAsinB ⇒sinA sinB =cosBcosA⇒sin2A =sin2B ∴2A =2B 或2A =π−2B ⇒A =B 或A +B =π2.故答案为等腰三角形或直角三角形左边利用正弦定理,右边“切变弦”,对原式进行化简整理进而可得A 和B 的关系,得到答案.本题主要考查了正弦定理的应用.考查了学生利用正弦定理解决三角形问题的能力. 17. 解:由已知(a −b)sinB =asinA −csinC ,即asinA −csinC =(a −b)sinB ,根据正弦定理,得,a 2−c 2=(a −b)b ,即a 2+b 2−c 2=ab . 由余弦定理得cosC =a 2+b 2−c 22ab =12.又C ∈(0,π).所以C =π3.a 2+b 2−6(a +b)+18=0,可得(a −3)2+(b −3)2=0, 所以a =b =3,三角形是正三角形,AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =3×3×3×cos120∘=−272.故答案为:−272.通过正弦定理化简已知表达式,然后利用余弦定理求出C 的余弦值,得到C 的值.通过a 2+b 2−6(a +b)+18=0,求出a ,b 的值,推出三角形的形状,然后求解数量积的值.本题考查正弦定理与余弦定理的应用,三角函数的值的求法三角形形状的判断,向量数量积的应用,考查计算能力.18. 解:(1)当AC <BCsin∠ABC ,即12<ksin60∘,即k >8√3时,三角形无解; (2)当AC =BCsin∠ABC ,即12=ksin60∘,即k =8√3时,三角形有1解;(3)当BCsin∠ABC <AC <BC ,即ksin60∘<12<k ,即12<k <8√3,三角形有2个解;(4)当0<BC ≤AC ,即0<k ≤12时,三角形有1个解. 综上所述:当0<k ≤12或k =8√3时,三角形恰有一个解. 故答案为:0<k ≤12或k =8√3要对三角形解得各种情况进行讨论即:无解、有1个解、有2个解,从中得出恰有一个解时k 满足的条件.本题主要考查三角形解得个数问题,重在讨论.易错点在于可能漏掉k =8√3这种情况. 19. 解:由r =1,利用正弦定理可得:c =2rsinC =2sinC ,b =2rsinB =2sinB , ∵tanA =sinA cosA,tanB =sinBcosB , ∴tanAtanB =sinAcosBcosAsinB =4sinC−2sinB2sinB=2sinC−sinBsinB,∴sinAcosB =cosA(2sinC −sinB)=2sinCcosA −sinBcosA , 即sinAcosB +cosAsinB =sin(A +B)=sinC =2sinCcosA , ∵sinC ≠0,∴cosA =12,即A =π3, ∴cosA =b 2+c 2−a 22bc=12,∴bc =b 2+c 2−a 2=b 2+c 2−(2rsinA)2=b 2+c 2−3≥2bc −3,∴bc≤3(当且仅当b=c时,取等号),∴△ABC面积为S=12bcsinA≤12×3×√32=3√34,则△ABC面积的最大值为:3√34.故答案为:3√34.利用同角三角函数间的基本关系化简已知等式的左边,利用正弦定理化简已知的等式右边,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0,可得出cosA的值,然后利用余弦定理表示出cosA,根据cosA的值,得出bc=b2+c2−a2,再利用正弦定理表示出a,利用特殊角的三角函数值化简后,再利用基本不等式可得出bc 的最大值,进而由sinA的值及bc的最大值,利用三角形的面积公式即可求出三角形ABC 面积的最大值.此题考查了正弦、余弦定理,同角三角函数间的基本关系,两角和与差的正弦函数公式,诱导公式,三角形的面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键,属于中档题.20. (1)利用正弦定理可求角C的大小(2)直接利用△ABC的面积S=12acsinB求解出b,再用余弦定理可得.本题考查了正弦定理,余弦定理的运用和计算能力.21. (1)由弦定理化简已知可得sinAsinB=√3sinBcosA,结合sinB≠0,可求tanA=√3,结合范围0<A<π,可求A的值.(2)解法一:由余弦定理整理可得:c2−2c−3=0.即可解得c的值,利用三角形面积公式即可计算得解.解法二:由正弦定理可求sinB的值,利用大边对大角可求B为锐角,利用同角三角函数基本关系式可求cosB,利用两角和的正弦函数公式可求sinC,进而利用三角形面积公式即可计算得解.本题主要考查了正弦定理,余弦定理,三角形面积公式,大边对大角,同角三角函数基本关系式,两角和的正弦函数公式在解三角形中的应用,考查了转化思想,属于基础题.22. (1)通过正弦定理化简已知表达式,然后利用余弦定理求出C的余弦值,得到C的值.(2)由已知利用正弦定理可得a=2sinA,b=2sin(2π3−A),利用三角函数恒等变换的应用化简可求a+b+c=2√3sin(A+π6)+√3,根据A+π6的范围,利用正弦函数的图象和性质得到结果.本题考查正弦定理与余弦定理的应用,三角函数的值的求法,以及三角函数恒等变换的应用,考查计算能力和转化思想,属于中档题.23. (1)化简函数f(x)的解析式为sin(2x−π6)−1,可得函数的最小值为−2,最小正周期为2π2.(2)△ABC中,由f(C)=sin(2C−π6)−1=0,求得C=π3.再由向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线可得sinB−2sinA=0,再由B=2π3−A可得sin(2π3−A)=2sinA,化简求得A=π6,故B=π2.再由正弦定理求得a、b的值.本题主要考查两角和差的正弦公式、正弦定理、两个向量共线的性质,属于中档题.24. (1)由正弦定理求得外接圆半径R.再由a=cosB,b=cosA,可得cosBsinA =cosAsinB,化简得sin2A=sin2B.再由A<B<C,可得2A+2B=π,由此可得C的值.(2)由于a+b+c=cosB+cosA+sinC=√2sin(A+π4)+1.再由O<A<π4,利用正弦函数的定义域和值域求得sin(A+π4)+1<√2+1的范围,即可求得a+b+c的取值范围.本题主要考查正弦定理的应用,正弦函数的定义域和值域,属于中档题.25. (1)结合三角形的内角和定理及诱导公式可得sin(C+B)=sinA,再对已知(2a−c)cosB=bcosC,利用正弦定理化简可求B(2)结合三角形的面积公式S=12acsinB,可求ac,由已知b,B,再利用余弦定理b2= a2+c2−2accosB可求a+c本题主要考查了正弦定理、余弦定理在求解三角形中的应用,解决此类问题的关键是要是考生具备综合应用公式的能力26. (1)由条件利用正弦定理可得b2+c2−bc=4.再由余弦定理可得A=π3.(2)利用基本不等式可得bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,从而求得面积的最大值.本题主要考查了正弦定理,余弦定理,三角形面积公式,基本不等式在解三角形中的应用,考查了转化思想,属于中档题.27. (Ⅰ)首先利用三角函数的恒等变换,变形成正弦型函数进一步利用函数的单调性求函数在固定区间内的增减区间.(Ⅱ)把求方程的解得问题转化成求函数的交点问题,进一步利用函数的性质求参数的取值范围.本题考查的知识要点:三角函数的恒等变换,正弦型函数的单调性,在同一坐标系内的利用两函数的交点问题求参数的取值范围问题.28. (1)利用向量共线定理可得:√3sinA−cosA=1,再利用和差公式、三角函数求值即可得出.(2)由题知1+sin2Bcos 2B−sin 2B =−3,利用倍角公式化为cosB+sinBcosB−sinB=−3,因此1+tanB1−tanB=−3,解得tanB.再利用tanC=tan[π−(A+B)]=−tan(A+B),展开代入即可得出.本题考查了向量共线定理、和差公式、三角函数求值、倍角公式,考查了推理能力与计算能力,属于中档题.29. (1)利用二倍角公式将已知等式化简;将得到的式子平方,利用三角函数的平方关系求出sinC.(2)利用求出的三角函数的值将角C的范围缩小,求出C的余弦;将已知等式配方求出边a,b;利用余弦定理求出c本题考查三角函数的二倍角公式、同角三角函数的平方关系、考查三角形中的余弦定理.30. (I)利用正弦正理化简已知等式可得:a2+b2−c2=ab,由余弦定理可得求得cosA=12,结合A的范围,即可求得A的值.(II)由正弦定理用sinA、sinB表示出a、b,由内角和定理求出A与B的关系式,代入a+b利用两角和与差的正弦公式化简,根据A的范围和正弦函数的性质得出a+b的取值范围.本题主要考查了正弦定理,余弦定理的综合应用,考查了两角和差的正弦函数公式,解题时注意分析角的范围,属于中档题.。

完整版高中数学必修5解三角形测试题及答案

完整版高中数学必修5解三角形测试题及答案

高中数学必修5解三角形测试题及答案一、选择题:〔每题 5分,共60分〕1.在VABC 中,AB 3,A 45,C 75,那么BC=A .33 B . 2C .2D .3 32.以下关于正弦定理的表达或变形中错误的选项是..A .在VABC 中,a:b:c=sinA:sinB:sinCB .VABC 中,a=bsin2A=sin2Ba =b+cC .VABC 中,sin AsinB+sinCD .VABC 中,正弦值较大的角所对的边也较大sinAcosB B 的值为3.VABC 中,假设 a,那么bA .30B .45C .60D .90ab c,那么VABC 是4.在VABC 中,假设 =cosCcosAcosBA .直角三角形B .等边三角形C .钝角三角形5.以下命题正确的选项是A .当a=4,b=5,A=30时,三角形有一解。

B .当a=5,b=4,A=60时,三角形有两解。

A 〕B 〕B 〕〔B 〕.等腰直角三角形D 〕C .当a= 3,b=2,B=120时,三角形有一解。

D .当a=3 6,A=60时,三角形有一解。

2,b=26.ABC 中,a=1,b=3,∠A=30°,那么∠B 等于〔 B 〕A .60°B .60°或120°C .30°或150°D .120°7. 符 合 下 列 条 件 的 三 角 形 有 且 只 有 一 个 的 是〔 D〕A .a=1,b=2,c=3B .a=1,b=2,∠A=30°C .a=1,b=2,∠A=100°D .b=c=1,∠B=45°8. 假设 (a+b+c)(b+c - a)=3abc, 且sinA=2sinBcosC, 那 么 ABC 是〔 B〕A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形9.在 ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A=,a= 3,b=1,3c=那么(B)(A)1(B)2(C)3-1(D)3uur10.〔2021 重庆理〕设ABC 的三个内角A,B,C ,向量m ( 3sinA,sinB),ruurr1cos(AB),那么C =〔n(cosB,3cosA),假设mgnC 〕A .B .25C .D .66 3 311.等腰△ABC 的腰为底的2倍,那么顶角A 的正切值是〔 D 〕A. 3B.3C. 15D.1528712.如图:D,C,B 三点在地面同一直线上 ,DC=a,从C,D 两点测得A 点仰角分别是β,α(α<β),那么A 点离地面的高度 AB 等于〔A 〕Aasin sinasin sin A .)B .)sin(cos(asin cosacos sin C .)D .)sin(cos(αβBD C题号 1234567891011 12答案二、填空题:〔每题 5分,共 20分〕13.a 2,那么 abc _______2_______sinAsinBsinA sinC14.在ABC 1 (a 2+b 2-c 2),那么角∠C=______.中,假设S ABC =4415.〔广东2021理〕点A,B,C 是圆O 上的点, 且AB4, ACB450 ,那么圆O 的面积等于8.rrr rrr16.a2,b4,a 与b 的夹角为3,以a,b 为邻边作平行四边形,那么此平行四边形的两条对角线中较短的一条的长度为____2 3________三、解答题:〔 17题10分,其余小题均为 12分〕17.在ABC 中,c 2,b2 3 ,B450,解三角形ABC 。

人教版高中数学必修5第一章解三角形测试题及答案

人教版高中数学必修5第一章解三角形测试题及答案

必修五 第一章解三角形测试(总分150)一、选择题(每题5分,共50分)1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120°2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .30°或120°D . 30°或150°4、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )A .23 B .43 C .23或3 D .43 或23 5、在△ABC 中,已知bc c b a ++=222,则角A 为( )A .3πB .6πC .32πD . 3π或32π6、在△ABC 中,面积22()Sa b c =--,则sin A 等于()A .1517B .817C .1315D .13177、已知△ABC 中三个内角为A 、B 、C 所对的三边分别为a 、b 、c ,设向量(,)p a c b =+ ,(,)q b a c a =-- .若//p q,则角C 的大小为()A .6π B .3π C .2π D .23π8、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )A .()10,8B .()10,8C .()10,8D .()8,109、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 10、在△ABC 中,3,4ABBC AC ===,则AC 上的高为( )A .BC .32D .二、填空题(每小题5分,共20分)11、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 12、已知三角形两边长为11,则第三边长为13、若三角形两边长为1和3,第三边上的中线长为1,则三角形的外接圆半径为 14、在△ABC 中BC=1,3Bπ=,当△ABC tan C =三、解答题(本大题共小题6小题,共80分)15、(本小题14分)在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,3320,5的情况下,求相应角C 。

人教版必修五“解三角形”精选难题及其答案

人教版必修五“解三角形”精选难题及其答案

⼈教版必修五“解三⾓形”精选难题及其答案⼈教版必修五“解三⾓形”精选难题及其答案⼀、选择题(本⼤题共12⼩题,共60.0分)1.锐⾓△ABC中,已知a=√3,A=π3,则b2+c2+3bc的取值范围是( )A. (5,15]B. (7,15]C. (7,11]D. (11,15]2.在△ABC中,⾓A,B,C的对边分别为a,b,c,且满⾜sinA=2sinBcosC,则△ABC的形状为( )A. 等腰三⾓形B. 直⾓三⾓形C. 等边三⾓形D. 等腰直⾓三⾓形3.在△ABC中,∠A=60°,b=1,S△ABC=√3,则a?2b+csinA?2sinB+sinC的值等于( )A. 2√393B. 263√3 C. 83√3 D. 2√34.在△ABC中,有正弦定理:asinA =bsinB=csinC=定值,这个定值就是△ABC的外接圆的直径.如图2所⽰,△DEF中,已知DE=DF,点M在直线EF上从左到右运动(点M不与E、F重合),对于M的每⼀个位置,记△DEM的外接圆⾯积与△DMF的外接圆⾯积的⽐值为λ,那么( )A. λ先变⼩再变⼤B. 仅当M为线段EF的中点时,λ取得最⼤值C. λ先变⼤再变⼩D. λ是⼀个定值5.已知三⾓形ABC中,AB=AC,AC边上的中线长为3,当三⾓形ABC的⾯积最⼤时,AB的长为( )A. 2√5B. 3√6C. 2√6D. 3√56. 在△ABC 中,a ,b ,c 分别为内⾓A ,B ,C 所对的边,b =c ,且满⾜sinB sinA =1?cosB cosA.若点O 是△ABC 外⼀点,∠AOB =θ(0<θ<π),OA =2OB =2,平⾯四边形OACB ⾯积的最⼤值是( )A. 8+5√34B. 4+5√34C. 3D. 4+5√327. 在△ABC 中,a =1,b =x ,∠A =30°,则使△ABC 有两解的x 的范围是( )A. (1,2√33)B. (1,+∞)C. (2√33,2)D. (1,2)8. △ABC 的外接圆的圆⼼为O ,半径为1,若AB +AC =2AO ,且|OA |=|AC |,则△ABC 的⾯积为( )A. √3B. √32C. 2√3D. 19. 在△ABC 中,若sinBsinC =cos 2A2,则△ABC 是( )A. 等边三⾓形B. 等腰三⾓形C. 直⾓三⾓形D. 等腰直⾓三⾓形10. 在△ABC 中,已知∠C =60°.a ,b ,c 分别为∠A ,∠B ,∠C 的对边,则ab+c +bc+a 为( )A. 3?2√3B. 1C. 3?2√3或1D. 3+2√311. 设锐⾓△ABC 的三内⾓A 、B 、C 所对边的边长分别为a 、b 、c ,且 a =1,B =2A ,则b 的取值范围为( )A. (√2,√3)B. (1,√3)C. (√2,2)D. (0,2)12. 在△ABC 中,内⾓A ,B ,C 所对边的长分别为a ,b ,c ,且满⾜2bcosB =acosC + ccosA ,若b =√3,则a +c 的最⼤值为( )A. 2√3B. 3C. 32D. 9⼆、填空题(本⼤题共7⼩题,共35.0分)13. 设△ABC 的内⾓A ,B ,C 所对的边分别为a ,b ,c 且acosC +12c =b ,则⾓A 的⼤⼩为______ ;若a =1,则△ABC 的周长l 的取值范围为______ .14. 在△ABC 中,∠A ,∠B ,∠C 所对边的长分别为a ,b ,c.已知a +√2c =2b ,sinB =√2sinC ,则sin C2= ______ .15. 已知△ABC 中,⾓A 、B 、C 的对边分别是a 、b 、c ,若a ?b =ccosB ?ccosA ,则△ABC的形状是______ . 16. 在△ABC 中,若a 2b 2=tanAtanB ,则△ABC 的形状为______ .17. 在△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,若(a ?b)sinB =asinA ?csinC ,且a 2+b 2?6(a +b)+18=0,则AB?BC +BC ?CA +CA ?AB = ______ . 18. 如果满⾜∠ABC =60°,AC =12,BC =k 的三⾓形恰有⼀个,那么k 的取值范围是______ .19. 已知△ABC 的三个内⾓A ,B ,C 的对边依次为a ,b ,c ,外接圆半径为1,且满⾜tanAtanB=2c?b b,则△ABC ⾯积的最⼤值为______ .三、解答题(本⼤题共11⼩题,共132.0分)20. 在锐⾓△ABC 中,a ,b ,c 是⾓A ,B ,C 的对边,且√3a =2csinA .(1)求⾓C 的⼤⼩;(2)若a =2,且△ABC 的⾯积为3√32,求c 的值.21. 在△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c.已知asinB =√3bcosA .(1)求⾓A 的⼤⼩;(2)若a =√7,b =2,求△ABC 的⾯积.22.已知△ABC中,内⾓A,B,C所对的边分别为a,b,c,且满⾜asinA?csinC=(a?b)sinB.(1)求⾓C的⼤⼩;(2)若边长c=√3,求△ABC的周长最⼤值.23.已知函数f(x)=√3sinxcosx?cos2x?1,x∈R.2(1)求函数f(x)的最⼩值和最⼩正周期;(2)已知△ABC内⾓A,B,C的对边分别为a,b,c,且c=3,f(C)=0,若向量m =(1,sinA)与n?=(2,sinB)共线,求a,b的值.24.已知△ABC中,A(1)求△ABC的外接圆半径和⾓C的值;(2)求a+b+c的取值范围.△ABC中,⾓A,B,C的对边分别是a,b,c且满⾜(2a?c)cosB=bcosC,(1)求⾓B的⼤⼩;(2)若△ABC的⾯积为为3√3且b=√3,求a+c的值.425.已知a,b,c分别为△ABC的三个内⾓A,B,C的对边,a=2且(2+b)(sinA?sinB)=(c?b)sinC(1)求⾓A的⼤⼩;(2)求△ABC的⾯积的最⼤值.26.已知函数f(x)=2cos2x+2√3sinxcosx(x∈R).(Ⅰ)当x∈[0,π]时,求函数f(x)的单调递增区间;]内恒有两个不相等的实数解,求实数t的取值(Ⅱ)若⽅程f(x)?t=1在x∈[0,π2范围.已知A、B、C是△ABC的三个内⾓,向量m =(cosA+1,√3),n?=(sinA,1),且m //n?;(1)求⾓A;(2)若1+sin2B=?3,求tanC.cos?2B?sin?2B27.在△ABC中,⾓A,B,C的对边分别是a,b,c,已知sinC+cosC=1?sin C2(1)求sinC的值(2)若a2+b2=4(a+b)?8,求边c的值.28.在△ABC中,⾓A,B,C所对的边分别为a,b,c,且满⾜:(a+c)(sinA?sinC)=sinB(a?b)(I)求⾓C的⼤⼩;(II)若c=2,求a+b的取值范围.答案和解析【答案】1. D2. A3. A4. D5. A6. A7. D8. B9. B10. B11. A12. A13. 60°;(2,3]14. √2415. 等腰三⾓形或直⾓三⾓形16. 等腰三⾓形或直⾓三⾓形17. ?27218. 019. 3√3420. 解:(1)△ABC是锐⾓,a,b,c是⾓A,B,C的对边,且√3a=2csinA.由正弦定理得:√3sinA=2sinC?sinA ∵△ABC是锐⾓,∴sinC=√32,故C=π3;(2)a=2,且△ABC的⾯积为3√32,根据△ABC的⾯积S=12acsinB=12×2×b×sinπ3=3√32解得:b=3.由余弦定理得c2=a2+b2?2abcosC=4+9?2×3=7∴c=√7.故得c的值为√7.21. (本题满分为14分)解:(1)∵asinB=√3bcosA,由正弦定理得sinAsinB=√3sinBcosA.…(3分)⼜sinB≠0,从⽽tanA=√3.…(5分)由于0所以A=π3.…(7分)(2)解法⼀:由余弦定理a2=b2+c2?2bccosA,⽽a=√7,b=2,A=π,…(9分)3得7=4+c2?2c=13精选,即c 2?2c ?3=0.因为c >0,所以c =3.…(11分) 故△ABC 的⾯积为S =12bcsinA =3√32.…(14分) 解法⼆:由正弦定理,得√7sin π3=2sinB ,从⽽sinB =√217,…(9分) ⼜由a >b 知A >B ,所以cosB =2√77.故sinC =sin(A +B)=sin(B +π3)=sinBcos π3+cosBsin π3=3√2114.…(12分) 所以△ABC 的⾯积为12bcsinA =3√32.…(14分) 22. 解:(1)由已知,根据正弦定理,asinA ?csinC =(a ?b)sinB 得,a 2?c 2=(a ?b)b ,即a 2+b 2?c 2=ab .由余弦定理得cosC =a 2+b 2?c 22ab =12.⼜C ∈(0,π).所以C =π3.(2)∵C =π3,c =√3,A +B =2π3,∴a sinA =b sinB =√3√32=2,可得:a =2sinA ,b =2sinB =2sin(2π3A),∴a +b +c =√3+2sinA +2sin(2π3?A)=√3+2sinA +2(√32cosA +12sinA) =2√3sin(A +π6)+√3 ∵由0=sin(2x ?π6)?1,故函数的最⼩值为?2,最⼩正周期为2π2=π.(2)△ABC 中,由于f(C)=sin(2C ?π6)?1=0,可得2C ?π6=π2,∴C =π3.再由向量m =(1,sinA)与n ? =(2,sinB)共线可得sinB ?2sinA =0.。

(典型题)高中数学必修五第二章《解三角形》检测题(有答案解析)

(典型题)高中数学必修五第二章《解三角形》检测题(有答案解析)

一、选择题1.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,c =S =( )A .4B C .16D .122.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则ABC 的面积S =根据此公式,若cos (2)cos 0a B b c A +-=,且2224b c a ,则ABC 的面积为( )AB .CD .3.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若3,60a b A ===︒,则边c =( ) A .1B .2C .4D .64.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin sin A C B A C +-=,1b =,则2a -的最小值为( )A .4-B .-C .2-D .5.已知锐角ABC 的内角,,A B C 的对边分别为,,a b c .若()2c a a b =+,则2cos cos()AC A -的取值范围是( )A .,12⎛⎫⎪⎪⎝⎭B .12⎛⎝⎭ C .,22⎛⎫⎪⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭6.在ABC 中,若2a =,b =30A =︒,则B 等于( ) A .30B .30或150︒C .60︒D .60︒或120︒7.已知点O 为ABC 的外心,且3A π=,CO AB BO CA ⋅=⋅,则ABC 的形状是( ) A .直角三角形 B .等边三角形C .直角三角形或等边三角形D .钝角三角形 8.在ABC 中,tansin 2A BC +=,若2AB =,则ABC 周长的取值范围是( )A .(2,B .(4⎤⎦C .(4,2+D .(2⎤+⎦9.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35m ,则此电视塔的高度是( )A .35mB .10mC .490013m D .10.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒11.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC 的面积为S ,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭( )A .1B .2C D 12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( )A .BC .32D 二、填空题13.已知在锐角ABC ,且212tan tan sin A B A +=,其内角A ,B ,C 所对边分别为a ,b ,c ,则边c 的 最小值为_____________.14.在ABC 中,2AB =,4AC =,则C ∠的取值范围为______.15.在ABC 中,内角A 、B 、C 所对应的边分别是a ,b ,c .若()224c a b =-+,23C π=,则ABC 的面积是________. 16.设角,,A B C 是ABC ∆的三个内角,已知向量()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥.则角C 的大小为_____________.17.如图,A ,B 两点都在河的对岸(不可到达),在所在的河岸边选取相距30m 的C ,D 两点,测得75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒,45ADB ∠=︒,其中A ,B ,C ,D 四点在同一平面内,则A ,B 两点之间的距离是_______m .18.如图,为了测量山坡上灯塔CD 的高度,某人从高为40h =的楼AB 的底部A 处和楼顶B 处分别测得仰角为60β=︒,30α=︒,若山坡高为32a =,则灯塔高度是________.19.在平面四边形ABCD 中,∠A =∠B =∠C =α(0<α<2π),已知AB 的取值范围是(1,2),则cos α的值为_____.20.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,3b =2a c +的最大值为______.三、解答题21.在①222b c a bc +-=;②4AB AC ⋅=;③2sin 22cos 122A A π⎛⎫++=⎪⎝⎭这三个条件中任选一个,补充在下面问题中,求ABC 的面积.问题:已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2sin C B =,2b =, ?注:如果选择多个条件分别解答,按第一个解答计分.22.在ABC 中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5a =,6c =,3sin 5B =.(1)求b 和sin A 的值;(2)求三角形BC 边的中线AD 长; (3)求πsin(2)4A +的值. 23.已知在△ABC 中,a ∶b ∶c =2∶6∶3+1),求角A 的大小.24.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin c bC -=tan cos A C -. (1)求角A 的大小;(2)若b =,2c =,点D 在边BC 上,且2CD DB =,求a 及AD .25.在ABC 中,角,,A B C 所对的边分别为,,,a b c 已知1b =,面积28sin a S A=,再从以下两个条件中选择其中一个作为已知,求三角形的周长.(1)6B π=;(2)B C =.注:如果选择多个条件分别解答,按第一个解答计分.26.在ABC 中,内角,,A B C 的对边长分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C = ,求b【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以1cos ,sin 22C C ==. 由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =,所以1sin 212S ab C ==故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.2.C解析:C【分析】首先根据正弦定理化简已知,求得1cos 2A =,再根据余弦定理求bc ,最后代入面积公式求解. 【详解】由正弦定理边角互化可知cos (2)cos 0a B b c A +-=化简为()sin cos sin 2sin cos 0A B B C A +-=, sin cos sin cos 2sin cos A B B A C A +=即()sin sin 2sin cos A B C C A +==sin 0C ≠,1cos 2A ∴=, 222141cos 2222b c a A bc bc +-==⇔=,解得:4bc =,根据面积公式可知S === 故选:C 【点睛】关键点点睛,本题考查数学文化,理解面积公式,对于面积公式可变形为S =3.C解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.4.A解析:A 【分析】由222sin sin sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到2a -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin sin A C B A C +-=,∴222a c b +-=,∴22222a cb ac +-=,∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B a c π====, ∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 22C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos sin 22C C ⎛⎫=- ⎪ ⎪⎝⎭ 4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<, 所以当3C ππ+=时,2a -取得最小值,且最小值为4-.故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.5.C解析:C 【分析】由余弦定理和正弦定理进行边化角,结合诱导公式和两角和与差的正弦公式可得2C A =,由锐角三角形得出A 角范围,再代入化简求值式,利用余弦函数性质可得结论. 【详解】∵2()c a a b =+,∴22222cos c a ab a b ab C =+=+-,∴(12cos )b a C =+, 由正弦定理得sin sin (12cos )B A C =+,∴sin()sin (12cos )sin cos cos sin A C A C A C A C +=+=+,整理得sin sin cos cos sin sin()A C A C A C A =-=-,∵,A C 是三角形的内角,∴A C A =-,即2C A =,又三角形是锐角三角形,∴2222A A A πππ⎧<⎪⎪⎨⎪--<⎪⎩,解得64A ππ<<,由2C A =得22cos cos cos cos()cos A A A C A A ==∈-⎝⎭. 故选:C . 【点睛】本题考查正弦定理和余弦定理的边角转换,考查两角与差的正弦公式,余弦函数的性质,考查学生分析问题解决问题的能力,属于中档题.6.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC 中,由正弦定理可得sin sin a bA B=,即sin sin sin 3022b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.7.B解析:B 【分析】取AB 、AC 的中点E 、F ,利用向量加法的平行四边形法则以及向量得减法的几何意义可得2222a b c =+,再利用余弦定理得2bc a =,由正弦定理得边角互化以及两角差得正弦公式求出3B π=,即证.【详解】取AB 、AC 的中点E 、F ,则()CO AB CE EO AB CE AB ⋅=+⋅=⋅()()()221122CB CA CB CA a b =+⋅-=-, 同理()2212BO CA c a ⋅=-,所以2222a b c =+, 又3A π=,由余弦定理,得222a b c bc =+-,即222b c a bc +=+,所以2bc a =,由正弦定理,得23sin sin sin 4B C A ==, 即23sin sin 34B B π⎛⎫-=⎪⎝⎭, 所以23131cos 23sin sin sin cos sin 2322444B B B B B B B π⎛⎫-⎛⎫-=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 32cos 22B B -=,所以2sin 226B π⎛⎫-= ⎪⎝⎭, 即sin 216B π⎛⎫-= ⎪⎝⎭,因为20,3B π⎛⎫∈ ⎪⎝⎭,72,666B πππ⎛⎫-∈- ⎪⎝⎭, 所以262B ππ-=,解得3B π=,所以3A B C π===, 所以ABC 是等边三角形. 故选:B 【点睛】本题考查了向量加法、减法的运算法则,正弦定理、余弦定理、三角恒等变换,综合性比较强,属于中档题.8.C解析:C 【解析】由题意可得:cos2tan tan 2sin cos 22222sin 2CA B C C C Cπ+⎛⎫=-== ⎪⎝⎭, 则:21sin22C =,即:1cos 1,cos 0,222C C C π-=∴==. 据此可得△ABC 是以点C 为直角顶点的直角三角形,则:()()222224222a b a b a b ab a b +⎛⎫=+=+-≥+-⨯ ⎪⎝⎭,据此有:a b +≤△ABC的周长:2a b c ++≤+ 三角形满足两边之和大于第三边,则:2,4a b a b c +>∴++>, 综上可得:ABC周长的取值范围是(4,2+. 本题选择C 选项.9.D解析:D 【分析】设塔底为O ,设塔高为h ,根据已知条件求得,OA OB 的长,求得AOB ∠的大小,利用余弦定理列方程,解方程求得h 的值. 【详解】设塔底为O ,设塔高为h,由已知可知,OA OB h ==,且150AOB ∠=,在三角形AOB中,由余弦定理得222352cos15033h h ⎛⎫=+-⨯⨯⨯ ⎪ ⎪⎝⎭,解得h =.故选D.【点睛】本小题主要考查解三角形的实际应用,考查利用余弦定理解三角形,属于基础题.10.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.11.D解析:D 【分析】根据()2243S a b c =+-3cos 1C C -=,结合三角函数的性质,求得C 的值,最后利用两角和的正弦函数,即可求解. 【详解】由()22a b c =+-,可得2221sin 22ab C a b c ab =+-+,因为2222cos a b c ab C +-=,所以sin 2cos 2C ab C ab =+,cos 1C C -=,可得π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭, 又因为0πC <<,则ππ5π666C -<-<,所以ππ66C -=,解得π3C =, 所以πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭122224=+⨯=. 故选:D. 【点睛】 本题主要考查了两角和的正弦函数的化简、求值,以及余弦定理的应用,其中解答中根据题设条件和余弦定理,求得C 的值,结合三角函数的性质求解是解答的关键,着重考查推理与运算能力.12.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长, ∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a>0,c >0,∴12=2a +3c ≥ac ≤6. 当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 622ABCSac B =≤⨯=∴△ABC 故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.二、填空题13.2【分析】先化切为弦结合正余弦定理将角化边再由面积公式求得构造函数再用导数求得最值【详解】由得即结合正弦定理得再由余弦定理可得整理又由余弦定理可得代入上式得又锐角的面积所以时所以设函数求导可得由得所解析:2 【分析】先化切为弦,结合正、余弦定理将角化边,再由面积公式求得)22cos 3sin A c A-=,构造函数()2cos 0sin 2x f x x x π-⎛⎫=<< ⎪⎝⎭,再用导数求得最值.【详解】 由212tan tan sin A B A +=,得2cos sin cos sin 2sin sin sin A B B A A B A+=, 即2cos sin cos sin 2sin A B B A B +=,结合正弦定理得2cos cos 2b A a B b +=,再由余弦定理可得2222222222b c a a c b b a b bc ac+-+-⋅+⋅=,整理22234c b a bc +-=.又由余弦定理可得2222cos b a bc A c -=-,代入上式得()22cos c bc A =-,又锐角ABC 的面积1sin 2bc A =bc =)22cos 3sin A c A-=, 设函数()2cos 0sin 2x f x x x π-⎛⎫=<< ⎪⎝⎭,求导可得()212cos sin xf x x-'=,由()212cos 0sin x f x x -'==,得3x π=,所以在0,3π⎛⎫ ⎪⎝⎭上单调递减,在,32ππ⎛⎫⎪⎝⎭上单调递增,所以()3f x f π⎛⎫≥= ⎪⎝⎭于是24c =≥,即2c ≥,当且仅当3A π=时,等号成立. 故答案为:2 【点晴】结合正、余弦定理将角化边,构造函数求最值是本题解题的关键.14.【分析】先根据三角形任意两边之和大于第三边求出的范围再结合余弦定理可以用表示求出的范围进而求得的取值范围【详解】解:在中内角的对边分别是由题意得即令所以所以根据导数与函数单调性的关系得:函数在上单调解析:π0,6⎛⎤⎥⎝⎦【分析】先根据三角形任意两边之和大于第三边求出a 的范围,再结合余弦定理可以用a 表示cos C ,求出cos C 的范围,进而求得C ∠的取值范围. 【详解】解:在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c , 由题意得2c =,4b =, b c a b c -<<+,即26a <<,2222123cos 2882a b c a a C ab a a+-+===+, 令()382x f x x =+,所以()2221312'828x f x x x-=-=, 所以根据导数与函数单调性的关系得:函数()f x 在(2,上单调递减,在()上单调递增,所以当26x <<时,()f x 的取值范围为2⎫⎪⎢⎪⎣⎭.所以cos C ⎫∈⎪⎪⎣⎭又因为0πc <<, 所以π0,6C ⎛⎤∈ ⎥⎝⎦.故答案为:π0,6⎛⎤⎥⎝⎦.【点睛】本题考查余弦定理解三角形,三角形的性质,考查运算能力与化归转化思想,是中档题.15.【分析】利用余弦定理结合求出利用即可求出三角形的面积【详解】由可得:在中由余弦定理得:即所以即所以故答案为:【点睛】本题主要考查了余弦定理面积公式的应用属于中档题解析:3【分析】利用余弦定理,结合()224c a b =-+,23C π=求出43ab =,利用1sin 2ABCS ab C =,即可求出三角形的面积.【详解】由()224c a b =-+可得:22224c a b ab =+-+, 在ABC 中,由余弦定理得:2222cos c a b ab C =+-, 即222c a b ab =++, 所以24ab ab -+=, 即43ab =,所以114sin 223ABCSab C ==⨯=,【点睛】本题主要考查了余弦定理,面积公式的应用,属于中档题.16.【分析】先利用得到三角正弦之间的关系再根据正余弦定理求出即得角【详解】因为且所以即根据正弦定理得故根据余弦定理知又因为得故答案为:【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用是常考的综合题 解析:3π【分析】先利用0m n ⋅=得到三角正弦之间的关系,再根据正、余弦定理求出cos C ,即得角C . 【详解】因为()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥ 所以()()()sin sin sin sin sin sin sin 0m n A C A C B A B ⋅=+-+-= 即222sin sin sin sin sin A B C A B +-= 根据正弦定理得222a b c ab +-=故根据余弦定理知222cos 122a b c C ab +-==,又因为()0,C π∈得3C π=故答案为:3π. 【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用,是常考的综合题,属于中档题.17.【分析】本题先在中得出得的值然后在中由正弦定理得出的长最后在中由余弦定理算出即可得到AB 之间的距离【详解】解:如图所示∵∴∴在中∴∵在中∴由正弦定理得可得在中由余弦定理得∴(米)即AB 之间的距离为米解析:1015. 【分析】本题先在ACD △中,得出30CAD ADC ∠=∠=︒,得CD 的值,然后在BCD 中由正弦定理得出BC 的长,最后在ABC 中由余弦定理,算出21500AB =,即可得到A ,B 之间的距离. 【详解】解:如图所示,∵75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒, ∴7545120ACD ACB BCD ︒︒∠=∠+∠=+=︒,∴在ACD △中,18030CAD ACD ADC ADC ∠=︒-∠-∠=︒=∠, ∴30AC CD ==.∵在BCD 中,60CBD ∠=︒, ∴由正弦定理,得30sin 75sin 60BC =︒︒,可得sin 7530203sin 75sin 60BC ︒=⋅=︒︒. 在ABC 中,由余弦定理,得()222222cos 30203sin 75230203sin 75cos 75AB AC BC AC BC ACB =+-⋅∠=+︒-⨯⨯︒︒1500=,∴1015AB =(米),即A ,B 之间的距离为1015米. 故答案为:1015.【点睛】本题考查利用正余弦定理解决实际应用问题,是中档题.18.28【分析】作于延长线交地面于则由求得从而可得然后即得【详解】如图于延长线交地面于则而所以即所以故答案为:28【点睛】本题考查解三角形的应用掌握仰角概念是解题基础测量高度问题常常涉及到直角三角形因此解析:28 【分析】作BN DC ⊥于N ,DC 延长线交地面于M ,则AM BN =,AM DM ⊥,tan DM AM β=,tan DN BN α=,由40DM DN -=求得BN ,从而可得DM ,然后即得DC . 【详解】如图,BN DC ⊥于N ,DC 延长线交地面于M ,则tan DN BN α=,tan DM AM β=,而BN AM =,所以tan tan BN BN h βα-=,即(tan 60tan 30)40BN ︒-︒=,40203tan 60tan 30BN ==︒-︒,所以tan 60tan 603220333228DC AM CM BN =︒-=︒-=⨯-=. 故答案为:28.【点睛】本题考查解三角形的应用,掌握仰角概念是解题基础.测量高度问题常常涉及到直角三角形,因此掌握直角三角形中的三角函数定义是解题关键,有时还需要用三角函数恒等变换公式.19.【分析】延长交与点过点C 作交与F 点可得由AB 的取值范围是可得设在与中分别运用正弦定理可得关于的方程联立可得答案【详解】解:如图延长交与点过点C 作交与F 点可得由AB 的取值范围是可得设在中由正弦定理可得 解析:24【分析】延长BA ,CD 交与E 点,过点C 作CFAD 交与F 点,可得BF AB BE <<,由AB 的取值范围是(1,2),可得1,2BF BE ==,设BC x =,在BCE ∆与BCF ∆中,分别运用正弦定理可得关于cos α的方程,联立可得答案. 【详解】解:如图,,延长BA ,CD 交与E 点,过点C 作CF AD 交与F 点,可得BF AB BE <<,由AB 的取值范围是(1,2),可得1,2BF BE ==, 设BC x =,在BCE ∆中,由正弦定理可得:sin sin BC BEE BCE=∠∠,即:2sin(2)sin x παα=-,可得22cos xα=, 同理,在BCF ∆中,由正弦定理可得:sin sin BC BFBFC BCF=∠∠,即:1sin sin(2)x απα=-,可得2cos 1x α=, 故可得:2124cos α=,可得21cos 8α=,又02<<πα,故2cos α=, 故答案为:24. 【点睛】本题主要考查利用正弦定理解三角形,考查学生数学建模的能力与运算能力,属于中档题.20.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中 解析:7【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值. 【详解】因为222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C ====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+⎪⎝⎭()A ϕ=+,其中tan ϕ=. 所以2a c +的最大值为2A πϕ=-时取得.故答案为: 【点睛】本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.答案见解析 【分析】利用边角互化可得24c b ==,选①:利用余弦定理以及三角形的面积公式即可求解;选②:利用向量数量积的定义可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解;选③:利用诱导公式以及二倍角的余弦公式可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解.【详解】因为sin 2sin C B =,2b =,所以24c b ==,选①:因为222b c a bc +=+,所以2221cos 22b c a A bc +-==, 又因为()0,A π∈,所以3A π=.所以ABC的面积11sin 24222S bc A ==⨯⨯⨯=. 选②:若4AB AC ⋅=,故cos 4AB AC A ⋅⋅=,则1cos 2A =,故3A π=, 所以ABC的面积11sin 24222S bc A ==⨯⨯⨯=. 选③:若2sin 22cos 122A A π⎛⎫++=⎪⎝⎭,则cos2cos 0A A +=,故22cos cos 10A A +-=,解得1cos 2A =(cos 1A =-舍去),故3A π=. 所以ABC的面积11sin 24222S bc A ==⨯⨯⨯=. 22.(113;(2)2;(3)26. 【分析】(1)确定B 锐角,求得cos B ,由余弦定理求得b ,再由正弦定理得sin A ; (2)在ABD △中由余弦定理求得中线AD ,(3)确定A 是锐角,求得cos A ,由二倍角公式求得sin 2,cos 2A A ,然后由两角和的正弦公式求值. 【详解】(1)在ABC 中,因为a b >,故由3sin 5B =,可得cos 45B =.由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b = 由正弦定理sin sin a b A B =,得sin sin a B A b ==. 所以,bsin A(2)设BC 边的中点为D ,在ABD △中,cos 45B = 由余弦定理得:2AD ===, (3)由(1)及a c <,得cos A =,所以12sin 22sin cos 13A A A ==,25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 444A A A +=+=.【点睛】关键点点睛:本题考查正弦定理、余弦定理解三角形,解题时根据已知条件选用正弦定理或余弦定理求解,注意在用平方关系求得角的余弦时,先确定角的范围,然后计算.23.45A =︒【分析】利用余弦定理可求A 的大小. 【详解】由题设可设)2,,1(0)a k b c k k ===>,由余弦定理得,222222644cos 2k k k b c aA bc+-+-===, 而A 为三角形内角,故45A =︒. 24.(1)π4A =;(2)a =AD = 【分析】(1()sin sin sin tan cos C BA C A C -=-,再化简计算即可求出cos A =(2)由余弦定理求得a =,求得cos B =3a BD ==,再由余弦定理即可求出AD . 【详解】解:(1()sin sin sin tan cos C BA C A C -=-, ()()sin sin sin tan cos C A CA C A C -+=-, ∴2sin sin cos cos sin sin sin cos cos AC A C A C C A C A--=-,∵sin 0C ≠,∴2sincos cos AA A+=∴cos 2A =0πA <<,∴π4A =.(2)由余弦定理可得:2222cos 1841210a b c bc A=+-=+-=, ∴a =∵点D 在边BC 上,且2CD DB =,∴33a BD ==, 又222cos 2a c b B ac +-==∴222582cos 9AD AB BD AB BD B =+-⋅⋅=,∴AD = 【点睛】 关键点睛:本题考查正余弦定理的应用,解题的关键是正确利用正弦定理化边为角处理条件,再结合三角恒等变换化简运算.25.2+【分析】 利用三角形的面积公式,结合已知面积变形可得1sin sin 4B C =,再利用所选条件结合正弦定理求出另外两边,可得三角形的周长.【详解】 由三角形的面积公式可知,1sin 2S ab C =, 21sin 28sin a ab C A∴=, 整理得4sin sin ,b A C a =由正弦定理得:4sin sin sin sin ,B A C A =因为sin 0A ≠,4sin sin 1,B C ∴=1sin sin 4B C ∴=, 若选择条件(1)由6B π=:得1sin 2B =,则1sin 2C =, 又,,A B C 为三角形的内角,6B C π∴==,2,3A π∴= 由正弦定理得sin sin sin a b c A B C==代入1,b c ==解得a =∴三角形的周长为2若选择条件(2)B C =,则由B C =,得sin sin ,B C = 又1sin sin 4B C =,1sin sin 2B C ∴== 又,,A B C 为三角形的内角,,6B C π∴==23A π∴=. 由正弦定理得:sin sin sin a b c A B C ==,代入1,b c ==解得a =∴三角形的周长为2【点睛】关键点点睛:利用三角形的面积公式和正弦定理求出三角形的另外两边是解题关键. 26.4【分析】根据题意,在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,结合已知条件222a c b -=,联立即可得解.【详解】在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,又由已知222a c b -=,所以24b b =,解得4b =或0b =,由0b ≠,所以4b =.。

高中数学必修5解三角形测试题及答案

高中数学必修5解三角形测试题及答案

8高中数学必修5解三角形测试题及答案、选择题:(每小题5分,共60分)1 .在 L ABC 中,AB =、3, A = 45 , C = 75,则 BC=D . 3 .3在 LI ABC 中,a:b:c 二sinA:sinB:sinC|_|ABC 中,a=b = si n2A=s in2BLABC中,盒= s^SnCLI ABC 中,正弦值较大的角所对的边也较大a=、一3 ,b=2 ,B= 120 时,三角形有一解。

B .等边三角形 D .等腰直角三角形D .当 a =[2,b =GA=60时,三角形有一解。

6. A ABC 中,a=1,b=/ A=30 °,则/ B 等于 60° B . 60° 或 120°符合下列条件的30° 或150 ° 形有且D . 120° 有一a=1,b=2 ,c=3 a=1,b= .2,/ A=30 ° C . a=1,b=2, / A=100 ° 若(a+b+c)(b+ca)=3abc,且b=c=1, / B=45 °sin A=2s in BcosC,ABC(B . ,2 2. F 列关于正弦定理的叙述或变形中 错误的是3. sin A cosBABC 中,若-aB . 304. 在LI ABC 中,若 b 45a,则.B 的值为C . 60 b c —,则L ABC 是D . 90 A .直角三角形 5.下列命题正确的是A .当B .当 cosA cosB cosCB .等边三角形C .钝角三角形D .等腰直角三角形(a=4,b=5,A= 30时,三角形有一解。

a=5,b=4,A= 60时,三角形有两解。

C .当 A .直角三角形 C .等腰三角形317.在厶 ABC 中 ,已知 c 二■ 2,bB = 45°,解三角形 ABCjr .—9.在△ ABC 中,角 A 、B 、C 的对边分别为a 、b 、c ,已知A 二二,a=. 3 ,b=1,3则 c=( B)(A)1(B)2(C) '.3 — 1(D) .310 . ( 2009 重庆理)设 ABC 的三个内角 A, B, C ,向量 m = (、、3sin A,sin B),n = (cos B, .. 3 cos A),若 m|_n = 1 cos(A B),则 C = ( C )二 二2 二 5 二A .B .C .D .6 3 3 611.已知等腰△ ABC 的腰为底的2倍,则顶角 A 」2题号12345678910 11 12答案13.已知—=2,则 -------------- a +b-------------- = _______ 2 ______sin A si nA sin B si n C—1 2 22応14 .在△ ABC 中,若 S A ABC = — (a +b — c ),那么角/ C=_— ________ .4415.(广东2009理)已知点 代B,C 是圆0上的点, 且AB = 4, • ACB = 45°,则圆0的 面积等于—8二.16.已知a =2, b =4, a 与b 的夹角为孑,以a,b 为邻边作平行四边形,则此平行四边形的 两条对角线中较短的一条的长度为 ______ 2 J3 _______ 三、解答题:(17题10分,其余小题均为12分)A 的正切值是12 .如图:D,C,B 三点在地面同一直线上 ,DC=a,从3C,D 两点测得C .a sin _:sin : a sin : sin : cosC --) a sin : cos :acos : sin : cos 程壯)A 点仰角分别是 3,已知 a = 2、. 3, c = . 6 2, B = 45,求 b 及A 。

高一必修5解三角形练习题及答案 必修5_新课标人教版

高一必修5解三角形练习题及答案 必修5_新课标人教版

第一章 解三角形一、选择题1.在ABC ∆中,a =,03,30;c C ==(4)则可求得角045A =的是( ) A .(1)、(2)、(4) B .(1)、(3)、(4) C .(2)、(3) D .(2)、(4) 2.在ABC ∆中,根据下列条件解三角形,其中有两个解的是( ) A .10=b , 45=A , 70=C B .60=a ,48=c , 60=B C .14=a ,16=b , 45=A D . 7=a ,5=b , 80=A 3.在ABC ∆中,若, 45=C , 30=B ,则( )A ; BC D4.在△ABC ,则cos C 的值为( )A. D. 5.如果满足 60=∠ABC ,12=AC ,k BC =的△ABC 恰有一个,那么k 的取值范围是( )A B .120≤<k C .12≥k D .120≤<k 或二、填空题6.在ABC ∆中,5=a ,60A =, 15=C ,则此三角形的最大边的长为 .7.在ABC ∆中,已知3=b ,,30=B ,则=a _ _.8.若钝角三角形三边长为1a +、2a +、3a +,则a 的取值范围是 .9.在△ABC 中,AB=3,AC=4,则边AC 上的高为10. 在中,(1)若,则的形状是 .ABC △A A B C 2sin )sin(sin =-+ABC △(2)若的形状是 .三、解答题11. 已知在ABC ∆中,cos A =,,,a b c 分别是角,,A B C 所对的边. (Ⅰ)求tan 2A ; (Ⅱ)若sin()23B π+=,c =求ABC ∆的面积. 解:12. 在△ABC 中,c b a ,,分别为角A 、B 、C 的对边,58222bcb c a -=-,a =3, △ABC 的面积为6, D 为△ABC 内任一点,点D 到三边距离之和为d 。

⑴求角A 的正弦值; ⑵求边b 、c ; ⑶求d 的取值范围 解:ABC △13.在ABC ∆中,,,A B C 的对边分别为,,,a b c 且cos ,cos ,cos a C b B c A 成等差数列. (I )求B 的值; (II )求22sin cos()A A C +-的范围。

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(数学5必修)第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D .Atan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。

2.在△ABC 中,若=++=A c bc b a 则,222_________。

3.在△ABC 中,若====a C B b 则,135,30,20_________。

4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。

5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。

三、解答题1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。

4.在△ABC 中,设,3,2π=-=+C A b c a 求B sin 的值。

(数学5必修)第一章:解三角形[综合训练B 组] 一、选择题1.在△ABC 中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .2D .2 2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( ) A .大于零 B .小于零 C .等于零 D .不能确定 3.在△ABC 中,若B A 2=,则a 等于( )A .A b sin 2B .A b cos 2C .B b sin 2D .B b cos 24.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( ) A .直角三角形 B .等边三角形 C .不能确定 D .等腰三角形 5.在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( ) A .090 B .060 C .0135 D .01506.在△ABC 中,若1413cos ,8,7===C b a ,则最大角的余弦是( ) A .51- B .61- C .71- D .81-7.在△ABC 中,若tan 2A B a ba b--=+,则△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形二、填空题1.若在△ABC 中,060,1,ABC A b S ∆∠===则CB A cb a sin sin sin ++++=_______。

2.若,A B 是锐角三角形的两内角,则B A tan tan _____1(填>或<)。

3.在△ABC 中,若=+=C B C B A tan tan ,cos cos 2sin 则_________。

4.在△ABC 中,若,12,10,9===c b a 则△ABC 的形状是_________。

5.在△ABC 中,若=+===A c b a 则226,2,3_________。

6.在锐角△ABC 中,若2,3a b ==,则边长c 的取值范围是_________。

三、解答题1. 在△ABC 中,0120,,ABCA c b a S =>==,求c b ,。

2. 在锐角△ABC 中,求证:1tan tan tan >⋅⋅C B A 。

3. 在△ABC 中,求证:2cos 2cos 2cos 4sin sin sin C B A C B A =++。

4. 在△ABC 中,若0120=+B A ,则求证:1=+++ca b c b a 。

5.在△ABC 中,若223cos cos 222C A ba c +=,则求证:2a c b +=(数学5必修)第一章:解三角形[提高训练C 组] 一、选择题1.A 为△ABC 的内角,则A A cos sin +的取值范围是( ) A .)2,2( B .)2,2(- C .]2,1(- D .]2,2[-2.在△ABC 中,若,900=C 则三边的比cba +等于( ) A .2cos 2B A + B .2cos 2B A - C .2sin 2B A + D .2sin 2BA -3.在△ABC 中,若8,3,7===c b a ,则其面积等于( ) A .12 B .221C .28D .36 4.在△ABC 中,090C ∠=,00450<<A ,则下列各式中正确的是( )A .sin cos A A >B .sin cos B A >C .sin cos A B >D .sin cos B B >5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( ) A .090 B .060 C .0120 D .01506.在△ABC 中,若22tan tan ba B A =,则△ABC 的形状是( ) A .直角三角形 B .等腰或直角三角形 C .不能确定 D .等腰三角形二、填空题1.在△ABC 中,若,sin sin B A >则A 一定大于B ,对吗?填_________(对或错) 2.在△ABC 中,若,1cos cos cos 222=++C B A 则△ABC 的形状是______________。

3.在△ABC 中,∠C 是钝角,设,cos cos ,sin sin ,sin B A z B A y C x +=+== 则z y x ,,的大小关系是___________________________。

4.在△ABC 中,若b c a 2=+,则=+-+C A C A C A sin sin 31cos cos cos cos ______。

5.在△ABC 中,若,tan lg tan lg tan lg 2C A B +=则B 的取值范围是_______________。

6.在△ABC 中,若ac b =2,则B B C A 2cos cos )cos(++-的值是_________。

三、解答题1.在△ABC 中,若)sin()()sin()(2222B A b a B A b a +-=-+,请判断三角形的形状。

2. 如果△ABC 内接于半径为R 的圆,且,sin )2()sin (sin 222B b a C A R -=-求△ABC 的面积的最大值。

3. 已知△ABC 的三边c b a >>且2,2π=-=+C A b c a ,求::a b c4. 在△ABC 中,若()()3a b c a b c ac ++-+=,且tan tan 3A C +=+AB 边上的高为,,A B C 的大小与边,,a b c 的长(数学5必修)第一章 [基础训练A 组]一、选择题1.C 00tan 30,tan 302bb ac b c b a=====-=2.A 0,sin 0A A π<<> 3.C cos sin()sin ,,22A AB A B ππ=->-都是锐角,则,,222A B A B C πππ->+<>4.D 作出图形5.D 012sin ,sin 2sin sin ,sin ,302b a B B A B A A ====或0150 6.B 设中间角为θ,则22200005871cos ,60,180601202582θθ+-===-=⨯⨯为所求 二、填空题1.12 11sin sin sin cos sin 222A B A A A ==≤2.0120 22201cos ,12022b c a A A bc +-==-=3.26- 00sin 215,,4sin 4sin154sin sin sin 4a b b A A a A A B B ======⨯ 4. 0120 a ∶b ∶c =sin A ∶sin B ∶sin C =7∶8∶13,令7,8,13a k b k c k === 22201cos ,12022a b c C C ab +-==-= 5. 4,,sin sin sin sin sin sin AC BC AB AC BC ABB AC B A C+===+AC BC +sin )cos22A B A BA B +-=+= max 4cos 4,()42A BAC BC -=≤+=三、解答题1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+=sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+=cos 0A =或cos 0B =,得2A π=或2B π=所以△ABC 是直角三角形。

2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 222-+=代入右边得右边2222222222()222a c b b c a a b c abc abc ab+-+--=-=22a b a b ab b a-==-=左边,∴)cos cos (aA bB c a b b a -=- 3.证明:∵△ABC 是锐角三角形,∴,2A B π+>即022A B ππ>>->∴sin sin()2A B π>-,即sin cos A B >;同理sin cos B C >;sin cos C A >∴C B A C B A cos cos cos sin sin sin ++>++4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sincos 4sin cos 2222A C A CB B+-=,∴1sincos 222B A C -==,而0,22B π<<∴cos 2B =∴sin 2sincos 222B B B ===839参考答案(数学5必修)第一章 [综合训练B 组]一、选择题1.C 12,,,::sin :sin :sin ::1:2632222A B C a b c A B C πππ====== 2.A ,A B A B ππ+<<-,且,A B π-都是锐角,sin sin()sin A B B π<-= 3.D sin sin 22sin cos ,2cos A B B B a b B === 4.D sin sin lglg 2,2,sin 2cos sin cos sin cos sin A AA B C B C B C===sin()2cos sin ,sin cos cos sin 0,B C B C B C B C +=-= sin()0,B C B C -==,等腰三角形5.B 22()()3,()3,a b c b c a bc b c a bc +++-=+-=222222013,cos ,6022b c a b c a bc A A bc +-+-==== 6.C 2222cos 9,3c a b ab C c =+-==,B 为最大角,1cos 7B =-7.D 2cossinsin sin 22tan 2sin sin 2sin cos 22A B A BA B a b A B A B A Ba b A B +----===+-++, tan2tan ,tan 022tan 2A B A B A B A B ---==+,或tan 12A B += 所以A B =或2A B π+=二、填空题1.3392211sin 4,13,22ABC S bc A c c a a ∆======sin sin sin sin a b c a A B C A ++===++2.> ,22A B A B ππ+>>-,即sin()2tan tan()2cos()2B A B B πππ->-=-cos 1sin tan B B B ==,1tan ,tan tan 1tan A A B B>>3. 2 sin sin tan tan cos cos B CB C B C+=+sin cos cos sin sin()2sin 1cos cos sin sin 2B C B C B C AB C A A +++===4. 锐角三角形 C 为最大角,cos 0,C C >为锐角5. 0602228231cos 22b c a A bc ++-+-====6.222222222222213,49,594a b c c a c b c c c c b a c ⎧⎧+>>⎪⎪+>+><<<<⎨⎨⎪⎪+>+>⎩⎩三、解答题1.解:1sin 4,2ABC S bc A bc ∆=== 2222cos ,5a b c bc A b c =+-+=,而c b >所以4,1==c b2. 证明:∵△ABC 是锐角三角形,∴,2A B π+>即022A B ππ>>->∴sin sin()2A B π>-,即sin cos A B >;同理sin cos B C >;sin cos C A >∴sin sin sin sin sin sin cos cos cos ,1cos cos cos A B CA B C A B C A B C>>∴1tan tan tan >⋅⋅C B A3. 证明:∵sin sin sin 2sin cos sin()22A B A BA B C A B +-++=++ 2sin cos 2sin cos2222A B A B A B A B+-++=+ 2sin (cos cos )222A B A B A B +-+=+2cos 2cos cos 222C A B =⋅4cos cos cos 222A B C=∴2cos 2cos 2cos 4sin sin sin CB AC B A =++4.证明:要证1=+++ca bc b a ,只要证2221a ac b bc ab bc ac c +++=+++, 即222a b c ab +-=而∵0120,A B +=∴060C =2222220cos ,2cos 602a b c C a b c ab ab ab+-=+-==∴原式成立。

相关文档
最新文档