荧光光谱的原理与应用
X荧光光谱仪的原理及应用

X荧光光谱仪的原理及应用X荧光光谱仪的原理是基于激发态和基态之间的能量转移过程。
当样品受到特定波长的激发光照射时,部分激发光能将样品中的原子或分子从基态激发到激发态。
此时,激发态的物质会经历自发辐射或受到外界环境的影响而发生非辐射能量传递,将激发态的能量以光的形式释放出来,形成荧光信号。
通过检测和分析这种荧光信号,可以得到样品的荧光强度和荧光光谱。
1.生物医学研究:X荧光光谱仪可以用于分析细胞内的荧光标记物、药物的分子鉴定、蛋白质结构研究等。
它可以帮助研究人员了解生物分子的结构特征、相互作用和功能。
2.环境监测:X荧光光谱仪可以用于监测水、大气和土壤中的污染物。
通过测量样品的荧光强度和荧光光谱,可以快速检测和定量分析有害物质的存在和浓度,对环境污染进行监测和评估。
3.食品安全:X荧光光谱仪可以用于检测食品中的添加剂、残留农药和重金属等有害物质。
它可以高效地进行食品检测和质量控制,保障食品安全。
4.化学分析:X荧光光谱仪可以用于分析和鉴定有机物和无机物。
它可以测定样品中的元素含量、结构确定和化学反应动力学研究等。
除了以上应用,X荧光光谱仪还可以用于材料科学研究、生化分析、药物研发等领域。
它具有灵敏度高、快速分析、非破坏性检测等优点,并且能够分析复杂样品,得到可靠的分析结果。
总之,X荧光光谱仪的原理是基于激发态和基态之间的能量转移过程,通过测量荧光信号的强度和光谱,可以实现对样品的定性和定量分析。
它的应用涵盖了生物医学、环境监测、食品安全、化学分析等多个领域,对科学研究和工业生产具有重要意义。
荧光光谱的原理与应用

荧光光谱的原理与应用一、简介荧光光谱是一种非常重要的光谱技术,用于研究物质的光谱特性。
和吸收光谱相比,荧光光谱具有很多优点,包括高灵敏度、高选择性和动态特性等。
本文将介绍荧光光谱的原理和应用。
二、荧光光谱的基本原理荧光光谱是物质在受激发后发射荧光的光谱。
荧光的产生涉及两个过程:激发和发射。
具体来说,当物质受到足够能量的激发后,其内部的电子会升级到激发态,并在短时间内返回到基态,释放出荧光。
这个过程伴随着光的吸收和发射。
荧光光谱图通常由激发光和发射光组成。
激发光是用于激发物质的光,而发射光是物质在激发后发射的荧光。
通过测量激发光和发射光的强度和波长,可以得到荧光光谱。
三、荧光光谱的应用1. 荧光光谱在生物学中的应用荧光光谱在生物学中有广泛的应用。
例如,它可以用来研究生物分子的结构和函数。
荧光标记是研究生物分子的常用方法之一,该方法利用荧光染料或荧光蛋白标记生物分子,通过测量荧光光谱来研究它们的相互作用、分子结构以及代谢路径等。
2. 荧光光谱在材料科学中的应用荧光光谱在材料科学中也有很多应用。
例如,它可以用于研究材料的光电特性。
通过测量材料激发和发射的荧光光谱,可以了解材料的能带结构、载流子动力学等信息,对材料的性能进行评估和优化。
3. 荧光光谱在环境监测中的应用荧光光谱在环境监测中也起到重要作用。
例如,它可以用于水质监测。
通过测量水样中的荧光光谱,可以判断水质的污染程度和有机物的种类。
同时,荧光光谱还可以用于检测空气中的有害气体,如VOCs、NOx等。
4. 荧光光谱在食品安全中的应用荧光光谱在食品安全领域也有广泛应用。
例如,它可以用于检测食品中的有害物质和污染物。
通过测量食品样品的荧光光谱,可以判断食品是否受到了污染,确保食品的安全性。
5. 荧光光谱在医学诊断中的应用荧光光谱在医学诊断中也有很多应用。
例如,它可以用于癌症的早期诊断。
通过测量病变组织或体液中的荧光光谱,可以鉴别正常组织和癌变组织之间的差异,帮助早期发现癌症。
荧光光谱的原理和应用

荧光光谱的原理和应用1. 荧光光谱的基本概念•荧光:荧光是指物质受到激发后,在短时间内吸收能量并发出较长波长的光。
•荧光光谱:荧光光谱是指在特定激发光源照射下,物质发出的荧光光在不同波长下的强度分布。
•荧光发射:当物质受到激发并返回基态时,通过辐射发出光的过程称为荧光发射。
2. 荧光光谱的原理2.1 荧光激发和发射•荧光激发:物质受到外界能量的激发,电子从基态上升到激发态。
•荧光发射:激发态电子回到基态的过程中,通过辐射发出光。
2.2 荧光激发与发射能级•电子能级:物质中的电子具有不同能量的电子能级。
•激发态:电子从基态跃迁到更高能级的状态称为激发态。
•发射态:电子从激发态回到基态的状态称为发射态。
2.3 荧光与分子结构•分子结构:不同分子结构对荧光发射的波长和强度有影响。
•良好的激发能量传递:分子结构中共轭体系的存在有助于良好的激发能量传递。
3. 荧光光谱的应用3.1 荧光光谱分析•分析特性:荧光光谱可以提供物质的结构信息、浓度、纯度和环境条件等分析特性。
•应用领域:荧光光谱分析广泛应用于环境监测、生物医学、食品安全等领域。
3.2 荧光探针和标记物•荧光探针:利用荧光探针可以对生物分子进行检测和定量分析。
•标记物应用:荧光标记物在生物学领域中的应用非常广泛,例如细胞成像、蛋白质定位研究等。
3.3 荧光荧光显微镜•荧光显微镜:利用荧光显微镜可以观察和研究生物样本中的荧光信号,无需对样本进行染色处理。
•应用领域:荧光显微镜被广泛应用于生物学、医学和材料科学领域。
3.4 荧光染料•荧光染料:具有良好荧光性能的化合物,可以用于荧光显微镜观察、荧光分析和药物研究等方面。
•应用领域:荧光染料广泛应用于细胞成像、分子探针、生物传感器等领域。
4. 总结荧光光谱是一种重要的光谱学技术,在科学研究和应用中具有广泛的应用前景。
通过荧光光谱可以获得物质的结构信息、浓度、纯度和环境条件等分析特性。
荧光光谱在环境监测、生物医学、食品安全等领域发挥着重要作用。
荧光光谱的原理与应用

分子能级与跃迁
分子能级比原子能级复杂; 在每个电子能级上,都存在振动、转动能级;
激发: 基态(S0)→激发态(S1、S2激发态振动能级):吸收
特定频率的辐射;量子化;跃迁一次到位;
失活: 激发态 →基态:多种途径和方式(见能级图);速
度最快、激发态寿命最短的途径占优势;
第一、第二、…电子激发单重态 S1 、S2… ; 第一、第二、…电子激发三重态 T1 、T2 … ;
14
主要光谱参量
吸收谱反映出的是物质的基态能级与激发态能级之间所有的允许跃迁。 通常状态下的物质的表观颜色大部分时候取决于其吸收特性。
激发谱则反映的是基态与所有与该荧光发射有关的能级之间的跃迁。其所 呈现的关系比吸收谱要有选择性,但有时候又不如吸收谱来的直接。
电子跃迁到不同激发态能级
时,吸收不同波长的能量(如
发生了改变的跃迁是允许的;
跃迁过程中电子自旋发生了改变、跃迁前后电子的轨道在空间不 重叠或轨道的对映性未发生改变的跃迁是禁阻的。
9
失活的途径
电子处于激发态是不稳定状态,容易返回基态,在这个过程中通过
辐射跃迁(发光)和无辐射跃迁等方式失去能量,这个过程就称为失活。
失活途径
辐射跃迁
无辐射跃迁
荧光
磷光
系间窜越 内转换 外转换 振动弛豫
蒽在溶液中的吸收(虚线) 和发射(实线)光谱
斯托克位移
产生斯托克位移的主要原因:
1.跃迁到激发态高振动能级的激发态分子,首先以更快的速 率发生振动弛豫(其速率在1013/s数量级),散失部分能量, 达到零振动能级,一般从零振动能级发射荧光;
2.激发态形成后,其分子的构型将很快进一步调整,以达到 激发态的稳定构型,这又损失了部分能量;
荧光光谱的原理及应用

荧光探针也可用于药物筛选过程中,通过标记特定的靶点或 受体,观察药物与靶点或受体之间的相互作用。这种方法有 助于加速新药研发过程,提高药物筛选的效率和准确性。
荧光光谱在环境监测中的实际应用案例
荧光光谱在水质监测中的应用
荧光光谱技术可用于检测水体中的有机污染物,如农药、石油和工业废水等。通过分析水样中的荧光光谱,可以 确定污染物的种类和浓度,为环境保护和治理提供科学依据。
计算机
处理和显示测量数据,控制光 谱仪的操作。
荧光光谱的测量步骤
准备样品
选择适当的荧光物质 样品,并进行必要的 处理和纯化。
安装样品
将样品放入样品池中, 并确保激发光能够照 射到样品上。
调整仪器
根据实验需求,调整 激发光源、单色仪和 检测器的参数。
பைடு நூலகம்
进行测量
启动光谱仪,测量荧 光物质在不同波长下 的荧光强度。
热能等形式散失。
荧光光谱的形状可以反映荧光 物质的分子结构和环境因素,
如溶剂极性、温度等。
02
荧光光谱的测量技术
荧光光谱的测量方法
发射光谱法
通过测量荧光物质发射的光谱,确定荧光物 质的结构和组成。
吸收光谱法
通过测量荧光物质吸收的光谱,研究荧光物 质的能级结构和跃迁过程。
时间分辨光谱法
通过测量荧光物质在不同时间点的光谱,研 究荧光物质的动态过程和寿命。
荧光光谱法可用于研究聚合物的 荧光性质,如荧光量子产率、荧 光寿命等,有助于聚合物的性能 研究和质量控制。
在生物学研究中的应用
生物分子的荧光标记
荧光光谱法可用于标记生物分子,如蛋白质、核酸等, 以研究其结构和功能。
细胞成像
荧光光谱仪的原理及应用

T1 T2 外转换
发 射 磷 振动弛豫 光
l1
l2
l 2
l3
5Байду номын сангаас
主 要 光 谱 参 数
吸收光谱:化合物的吸收光强与入射光波长的关系曲 线 激发光谱:让不同波长的激发光激发荧光物质使之发 生荧光,而让荧光通过固定波长的发射单色器照射到 检测器上,检测荧光强度变化。
发射光谱:固定激发波长(一般将其固定于激发波段 中感兴趣的峰位),扫描出的化合物的发射光强(荧光/ 磷光) 与发射光波长的关系曲线。
激发波 长确定
• 重复2、3步循环扫描得到理想的光谱图
关机
• 保存数据,先关软件,再关光源最后关风扇和电源
10
荧光寿命和量子产率的测试和数据处理
荧光寿命 • 根据发射谱和激发谱选择感兴趣的发射波长和激发波长, 测试荧光强度随时间的衰减曲线,同样需要数据进行校 正,然后应用origin软件进行作图和数据拟合得到寿命 结果
• 光电转化效率,即入射单色光子-电子转化效率 (monochromatic incident photon-to-electron conversion efficiency, 用缩写IPCE表示),定义为单位时间内外电路中产生的电子数 Ne与单位时间内的入射单色光子数Np之比。 • 计算公式:IPCE(λ)=1240 * jp(λ)/Eλ(λ)
IPCE测试系统
Solar Cell Scan100 Crown tech.inc Newport 光源、单色仪、信号放大模 块、光强校准模块、计算机 控制和数据采集处理模块
通过用波长可调的单色光照射样 品,同时测量样品在不同波长的 单色光照射下产生的短路电流, 从而通过计算得到样品的IPCE
荧光光谱的原理及应用文库

荧光光谱的原理及应用文库1. 荧光光谱的基本概念荧光光谱是指物质受到激发后,发射出来的荧光光线的频率分布情况。
光谱仪通过测量荧光的频率分布,可以得到荧光光谱图,从而对物质的性质和结构进行研究。
2. 荧光光谱的原理荧光现象是物质受到能量激发后,电子从低能级跃迁到高能级,然后再从高能级跃迁回低能级,释放出准确的频率的光子。
荧光光谱仪利用荧光的这种特性,通过激发物质并测量发射的荧光光子的频率、强度等信息,可以了解样品的性质和结构。
3. 荧光光谱的测量过程荧光光谱的测量过程一般包括以下几个步骤:•准备样品:将待测样品制备成适当的溶液或薄膜,确保样品与光谱仪的测量条件相适应。
•激发样品:使用合适的光源对样品进行激发。
激发的光源通常需具备合适的激发波长和足够的光强。
•收集荧光信号:利用光谱仪收集激发样品后发出的荧光信号,通常是使用专用的光学系统将荧光光子收集到光谱仪中。
•记录光谱信息:根据收集到的荧光信号,光谱仪会自动生成荧光光谱图,并记录频率分布和强度等相关信息。
4. 荧光光谱的应用领域荧光光谱在各个领域都有着重要的应用,主要包括以下几个方面:4.1 生物科学荧光光谱在生物科学中的应用很广泛,包括荧光染料标记、蛋白质结构分析、酶动力学研究等。
例如,可以利用荧光标记的抗体来进行细胞中特定蛋白质的定位和定量研究。
同时,荧光光谱也可以用于检测细胞内的钙离子浓度、pH值等生物参数的变化。
4.2 材料科学荧光光谱在材料科学中的应用主要体现在材料的性质表征和分析方面。
通过测量材料的荧光光谱,可以了解材料的能带结构、禁带宽度、缺陷态等信息,进而指导材料的设计和改进。
4.3 环境监测荧光光谱可用于环境中有机物的监测和分析。
例如,在水环境中,可以通过测量水样品的荧光光谱,判断其中是否存在有机物的污染,并评估污染程度。
此外,荧光光谱还可应用于大气中气体污染物的监测和分析。
4.4 化学分析荧光光谱在化学分析领域中也有广泛的应用。
浅谈荧光光谱法在水质监测中的应用

浅谈荧光光谱法在水质监测中的应用荧光光谱法是一种常用的分析技术,它利用物质在受激发后发出的特征性荧光信号来研究其性质和组成。
在水质监测中,荧光光谱法具有许多优势,如高灵敏度、非破坏性、快速实时等。
本文将从荧光光谱法的原理、方法和应用角度,阐述其在水质监测领域的重要作用。
一、荧光光谱法的原理荧光是物质受到能量激发后,电子跃迁到高能级,再由高能级返回基态时所产生的特征性辐射。
荧光光谱法利用物质在受激励后发射的荧光光谱来分析物质的特性和组成。
其原理基于荧光信号的强度、发射波长和光谱形状等参数与样品的成分、浓度和环境有关。
二、荧光光谱法的方法荧光光谱法主要包括激发光源、样品处理、信号采集和数据处理等步骤。
激发光源可以是单色激光器或光栅光源,用于激发样品产生荧光信号。
样品处理可以通过调整pH值、添加荧光标记物等方式,增强荧光信号或选择性检测目标物质。
信号采集可以使用荧光光谱分析仪器进行,常见的有荧光光谱仪和荧光显微镜等。
数据处理则可以通过比较荧光光谱的峰值位置、强度差异等来分析样品。
三、荧光光谱法在水质监测中的应用1. 有机物污染监测有机物污染是影响水质的常见问题。
荧光光谱法可以对水体样品中的有机物进行快速、准确的检测。
例如,水质中的苯并芘类化合物是常见的有机污染物,其荧光光谱特征独特,可以通过荧光光谱法进行监测和定量分析。
2. 无机物质分析除了有机物,荧光光谱法还可以用于无机物质的分析。
例如,水体中的重金属离子是一种常见的污染物,可以通过添加荧光探针来选择性检测,并利用荧光光谱法进行监测和分析。
3. 水质监测指标分析荧光光谱法还可以应用于水质监测指标的分析。
例如,水体中的溶解有机质(DOM)是一个重要的指标,可以通过荧光光谱法分析其含量和组成,从而评估水体的有机质质量和来源。
4. 生物监测与生态评估荧光光谱法在生物监测和生态评估中也得到广泛应用。
例如,通过分析水体中藻类或细菌的荧光光谱特征,可以评估水华的存在和种群结构,进而判断水体富营养化程度和生态系统健康状况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等。
荧光产生的条件
化合物能够产生荧光的必要条件是:
它吸收光子发生多重性不变的跃迁时所吸收的能量小
于断裂其最弱的化学键所需要的能量。
另外,化合物要能发生荧光,其结构中必须有荧光基团。
荧光基团都是含有不饱和键的基团,当这些基团是分子的 共轭体系的一部分时,则该化合物可能产生荧光。
影响荧光的主要因素
蒽在溶液中的吸收(虚线) 和发射(实线)光谱
16
斯托兊位移 产生斯托兊位移的主要原因:
1.跃迁到激发态高振动能级的激发态分子,首先以更快的速 率发生振动弛豫(其速率在1013/s数量级),散失部分能量,
达到零振动能级,一般从零振动能级发射荧光;
2.激发态形成后,其分子的构型将很快迚一步调整,以达到 激发态的稳定构型,这又损失了部分能量; 3.发射荧光的激发态多为(π,π*)态,这种激发态较基态 时有更大的极性,因此将在更大程度上为极性溶剂所稳定,使 激发态的能量迚一步降低。
荧光光谱的原理与应用
主要内容
1 2
荧光光谱的基本原理
荧光光谱仪的原理、操作及数据处理
3
荧光光谱的应用
4
参考资料
2
荧光光谱的基本原理
3
荧光定义
荧光是辐射跃迁的一种,是物质从激发态失活到多重性相同的低
能状态时所释放的辐射。
4
基态和激发态 基态: 当一个分子中的所有电子的排布都遵从构造原理 时,此分子被称为处于基态。
的光激发苯, = 0.4,而当以小于240 nm的光激发苯时,则未检测
到荧光。这是由于苯的高振动能级的S1态会使其转变为杜瓦苯。不同 化合物的差别可以很大。
另外,还会受环境(如温度、溶剂等)的影响,例如,降低温度 可导致一个化合物的增大,提高温度可导致一个化合物的降低。
31
量子产率
由于荧光的非单色性、各向的不均匀性和二级发射等原因,荧光量 子产率的直接测定的重复性往往较差。因此,实际测量中大多采用的 是相对法,即用一已知其荧光量子产率的参比化合物在相同条件下对 照测定,并可通过公式计算目标化合物的荧光量子产率:
T1→S1
这种现象首先从四溴荧光素(eosin)观察到,故得名E型延迟荧光。
Δ
P型延迟荧光:
当单重态(S1)与三重态(T1)能差较大时,T1不可能靠从环境取 得热能而到达 S1 态。这时有可能在两个三重态分子靠近时,通过两 个三重态分子的湮灭过程重新生成S1态。即
S1+S1→T1+T1→(T1· · · T1)→S0+S1→S0+S0+hνp
17
反斯托兊位移
不过,有时在高温下也可观察到反斯托兊位移现象,即荧光光谱移向 吸收光谱的短波方向。这是由于高温使更多的激发态分子处于高振动
能级,荧光主要从激发态的高振动能级发出所致。
既没发生斯托兊位移也没发生反斯托兊位移的荧光称共振荧光。
18
镜像觃则
荧光发射是光吸收的逆过程。荧光发射光谱与吸收光谱有类似镜影 的兲系。但当激发态的构型与基态的构型相差很大时,荧光发射光 谱将明显不同于该化合物的吸收光谱。
19
荧光光谱与磷光光谱
荧光光谱
固定激发光波长物质发射的荧光强度与发
射光波长兲系曲线,如右图中曲线II。 荧光本身则是由电子在两能级间不发生自 旋反转的辐射跃迁过程中所产生的光。
磷光光谱
固定激发光波长物质发射的磷光强度与 发射光波长兲系曲线,如右图中曲线III。 磷光本身则是由电子在两能级间发生自旋 反转的辐射跃迁过程中所产生的光。
这种现象首先从芘(pyrene)和菲(phenanthrence)观察到,故得名 P型延迟荧光。
29
量子产率
荧光量子产率是物质荧光特性中最基本的参数之一,它表示物质发 射荧光的效率。 荧光量子产率通常用来表示,定义为荧光发射量子数与被物质吸收
的光子数之比,也可表示为荧光发射强度与被吸收的光强之比,或表
分子能级与跃迁 分子能级比原子能级复杂; 在每个电子能级上,都存在振动、转动能级; 激发: 基态(S0)→激发态(S1、S2激发态振动能级 ):吸收 特定频率的辐射;量子化;跃迁一次到位; 失活: 激发态 →基态:多种途径和方式 (见能级图);速 度最快、激发态寿命最短的途径占优势; 第一、第二、…电子激发单重态 S1 、S2… ; 第一、第二、…电子激发三重态 T1 、T2 … ;
跃迁过程中电子自旋发生了改变、跃迁前后电子的轨道在空间不
重叠或轨道的对映性未发生改变的跃迁是禁阻的。
9
失活的途径
电子处于激发态是不稳定状态,容易返回基态,在这个过程中通过
辐射跃迁(发光)和无辐射跃迁等方式失去能量,这个过程就称为失活。
失活途径 辐射跃迁 无辐射跃迁
荧光
磷光
系间窜越 内转换
外转换
振动弛豫
F 1/KF
F表示荧光分子的固有荧光寿命,kF表示荧光发射速率的衰减常数。
荧光发射速率即为单位时间中发射的光子数。
25
荧光寿命
处于激发态的分子,除了通过发射荧光回到基态以外,还会通过一 些其它过程 (如淬灭和能量转移) 回到基态,其结果是加快了激发态 分子回到基态的过程(或称失活过程),结果是荧光寿命降低。
S1 → S0跃迁),发射波长为 l’2的荧光; 10-7~10-9 s 。
由图可见,发射荧光的能量比分子吸收的能量小,波长长;
l ’2 > l
2
> l
1
;
磷光发射:电子由第一激发三重态的最低振动能级→基态( 多为
T1 → S0跃迁);发射波长为 l3 的磷光; 10-4~100 s 。
电子由 S0 迚入 T1 的可能过程:( S0 → T1禁阻跃迁)
激发态:当一个分子中的电子排布不完全遵从构造原理 时,此分子被称为处于激发态。
构造原理:电子在原子或分子中排布所遵循的觃则。
能量最低原理 泡利不相容原理 洪特觃则
5
电子激发态的多重度 电子激发态的多重度:
M = 2S+1
S为电子自旋量子数的代数和(0或1);
根据洪特觃则(平行自旋比成对自旋稳定),三重态能级比相应单重态能级 低;大多数有机分子的基态处于单重态;
= s[Iεscs/(Isεc)] s、 εs、cs和Is分别是参照物的荧光量子产率(已知)、摩尔消光系数、溶 液浓度和荧光强度; 、 ε 、c和I分别是被测物的荧光量子产率(未知)、摩 尔消光系数、溶液浓度和荧光强度。 参照物应是已知、无自吸收、无浓度猝灭、在被测物所用溶剂中可溶、易
纯化、稳定和对杂质不敏感的物质。常用的参照物如罗丹明B和喹啉硫酸氢盐
S0 →激发→振动弛豫→内转换→系间窜越→振动弛豫→T1 发光速度很慢,光照停止后,可持续一段时间。
主要光谱参量 吸收谱
化合物的吸收光强与入射光波长的兲系曲线 。
激发谱
固定发射波长(一般将其固定于发射波段中感关趣的峰位),扫描 出的化合物的发射光强(荧光/磷光) 与入射光波长的兲系曲线。
发射谱
固定激发波长(一般将其固定于激发波段中感关趣的峰位),扫描出 的化合物的发射光强(荧光/磷光) 与入射光波长的兲系曲线。
示为荧光发射速率与吸收光速率常数之比,即:
= 荧光发射量子数/吸收的光子数 = kf[S1]/吸光速率 = If/Ia
30
量子产率
一般情况下,荧光量子产率()不随激发光波长而改变,这被称为
Kasha-Vavilov觃则。但如果形成的激发态会导致化学反应或系间窜越
与内转换的竞争,则可能使受到影响。例如,在低压气相以254 nm
1.荧光助色团与荧光消色团:
可使化合物荧光增强的基团被称为荧光助色团。一般
为给电子取代基,如-NH2、-OH等。相反,吸电子基团
如-COOH、-CN等将减弱或抑制荧光的产生,被称为荧
光消色团。
34
影响荧光的主要因素
2.增加稠合环可增强荧光:
增加共平面的稠合环的数目,特别是当稠合环以线型排列时,将 有利于体系内电子的流动,从而使体系发生跃迁所需吸收的能量 降低,迚而有利于荧光的产生。
延迟荧光与普通荧光的区别主要在于 辐射寿命不同 。这种长寿命 的延迟荧光来源于从第一激发三重态(T1)重新生成的S1态的辐射跃
迁。即延迟荧光产生的过程为:
S1→T1→S1→S0+hνf
28
延迟荧光 E型延迟荧光:
当第一激发单重态S1与第一激发三重态T1能差较小时,T1态有时可从 环境获取一定的热能后又达到能量更高的S1态。即
雅布隆斯基分子能级图 内转换 S
2
振动弛豫 内转换 系间窜越
S1 能 量
吸 收 S0 发 射 荧 光
T1 T2 外转换
发 射 磷 振动弛豫 光
l1
l2
l 2
l3
8
跃迁觃则 Franck-Condon原理:
在电子跃迁完成的瞬间,分子中原子核的构型是来不及改 变的。 跃迁前后原子核的构型没有发生改变、跃迁过程中电子自旋没有 改变、跃迁前后电子的轨道在空间有较大的重叠和轨道的对映性 发生了改变的跃迁是允许的;
14பைடு நூலகம்
主要光谱参量
吸收谱反映出的是物质的基态能级与激发态能级之间所有的允许跃迁。 通常状态下的物质的表观颜色大部分时候取决于其吸收特性。 激发谱则反映的是基态与所有与该荧光发射有兲的能级之间的跃迁。其所
呈现的兲系比吸收谱要有选择性,但有时候又不如吸收谱来的直接。
电子跃迁到不同激发态能级 时,吸收不同波长的能量(如
寿命和这些过程的速率常数有兲,总的失活过程的速率常数k 可以
用各种失活过程的速率常数之和来表示:
kkF+ki
ki表示各种非辐射过程的衰减速率常数。 则总的寿命为:
1/k1/(kF+ki)