浅谈化学发展史

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈化学发展史

【摘要】:化学的发展,对人类社会的进步至关重要。化学与人们的生活息息相关,了解化学的发展史,有助于我们更好的利用化学。化学的历史渊源非常古老,可以说自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器等等。当时只是一种经验的积累,化学知识的形成和发展经历了漫长而曲折的道路。而它的发展,又极大地促进了当时社会生产力的发展,成为人类进步的标志。

【关键词】:重要意义;定义;发展;化学

【正文】:第一次学习化学发展史,首先要知道它有什么意义,那么我们为什么要学化学发展史呢?首先,学习和研究化学式的重要意义已为化学家和化学史家所重视,甚至已经发展到为教育领导部门所重视,这不是偶然,而是由化学史的内容所决定的。学习化学史,不仅是为史而学,而是史为今用,为了更好地学习和研究现代化学。因此,学习化学史至少有以下几个方面的积极意义。

第一,掌握化学产生和发展全过程的系统历史知识,有利益培养化学人才的良好素质。通过化学史的学习,可以清楚的了解到化学发展到今天的水平并不容易,是广大劳动群众和化学家们经过长期的艰辛努力,甚至不惜付出健康和生命代价,取得这样或那样的成果,汇集成一部化学的历史。

第二,通过对化学的学习,可以正确的理解和处理化学中实验与理论二者的辩证关系,它们是具体的历史的同意,二者相辅相成,不可偏废。它们共同促进了化学学科的发展。

第三,学习化学史,有利于提高化学人才的独立工作能力。在经过二三年的基础课程和专业课程以及实验课程的学习和训练之后,在学习化学史,可以讲全部化学连贯起来通盘考察其发展过程中成功与失败的原因,分析和比较各种方法的优劣,寻求研究问题的方法和规律。

知道了化学发展史的意义,那么什么是化学发展?化学史是科学史的一个分支。什么是科学史呢?科学史的重要奠基人,美国著名科学史家G.萨顿曾经这样定义:“如果把科学定义为系统化的实证知识,或者看做是在不同时期不同地索系统化的这样一种知识,那么科学史就是这种知识发展的描述和说明。”如果我们用更习惯的语言为科学史下定义,可以认为科学史史人类在长期社会实践活动过程中,关于自然知识的系统的历史的描述。

化学史则是人类在长期的社会实践过程中,对大自然的化学知识的系统的历史的描述。因此,化学史不是纯自然科学,而是自然科学与历史科学相互交叉的一门特殊的历史科学。化学史也是化学的一个分支学科,余华的其他分支学科有区别也有联系。化学的其他分支学科,以讲授知识的理论和现状为目的,随着学科的不断发展更新其内容。化学史则不然,他是从化学发展的历史角度,在纵的方向上,阐述从化学萌芽开始,经过漫长的岁月,怎样发展为现代化学史的过程。即化学怎样产生,发展和繁荣起来的全过程的系统阐述。

那么化学是怎样发展的呢?化学在发展过程中,依照所研究的分子类别和研究手段、目的、任务的不同,派生出不同层次的许多分支。在20世纪20年代以前,化学传统地分为无机化学、有机化学、物理化学和分析化学四个分支。20年代以后,由于世界经济的高速发展,化学键的电子理论和量子力学的诞生、电子技术和计算机技术的兴起,化学研究在理论上和实验技术上都获得了新的手段,导致这门学科从30年代以来飞跃发展,出现了崭新的面貌。现在把化学内容一般分为生物化学、有机化学、高分子化学、应用化学和化学工程学、物理化学、无机化学等五大类共80项,实际包括了七大分支学科。那么它们又是如何发展的呢?我们就从分析化学来看。在化学还没有成为一门独立学科的中世纪,甚至古代,人们已开始从事分析检验的实践活动。这一实践活动来源于生产和生活的需要。如为了冶炼各种金属,

需要鉴别有关的矿石;采取天然矿物做药物治病,需要识别它们。这些鉴别是一个由表及里的过程,古人首先注意和掌握的当然是它们的外部特征。[1]人们初步对不同物质进行概念上的区别,用感官对各种客观实体的现象和本质加以鉴别,就是原始的分析化学。在制陶、冶炼和制药、炼丹的实践活动中,人们对矿物的认识便逐步深化, 于是便能进一步通过它们的一些其他物理特性和化学变化作为鉴别的依据。如中国曾利用“丹砂烧之成水银”来鉴定硫汞矿石。16 世纪,化学的发展进入所谓的“医药化学时期”。关于各地各类矿泉水药理性能的研究是当时医药化学的一项重要任务,这种研究促进了水溶液分析的兴起和发展。1685 年,英国著名物理学家兼化学家波义耳编写了一本关于矿泉水的专著《矿泉的博物学考察》,相当全面地概括总结了当时已知的关于水溶液的各种检验方法和检定反应。[2]波义耳在定性分析中的一项重要贡献是用多种动、植物浸液来检验水的酸碱性。18 世纪以后,由于冶金、机械工业的巨大发展,要求提供数量更大、品种更多的矿石,促进了分析化学的发展。这一时期,分析化学的研究对象主要以矿物、岩石和金属为主,而且这种研究从定性检验逐步发展到较高级的定量分析。到了18 世纪中叶,重量分析法使分析化学迈入了定量分析的时代。

[3]当时著名的瑞典化学家和矿物学家贝格曼在《实用化学》一书中指出:“为了测定金属的含量,并不需要把这些金属转变为它们的单质状态,只要把他们以沉淀化合物的形式分离出来,如果我们事先测定沉淀的组成,就可以进行换算了。”到了19 世纪,新元素如雨后春笋般出现,加之矿物组成复杂,湿法检验若没有丰富的经验和周密的检验方案,想得到确切的检验结果显然是非常困难的。德国化学家汉立希在他1821 出版的一书中指出:为了使湿法定性检验的问题简单化和减少盲目性,应进行初步试验。1829 年,德国化学家罗塞首次明确地提出并制定了系统定性分析法。1841 年德国化学家伏累森纽斯改进了系统定性分析法。较之罗塞的方案使用的试剂较少。[4]后来又得到美国化学家诺伊斯的进一步精细研究和改进,使定性分析趋于完善。1853 年赫培尔应用高锰酸钾标准溶液滴定草酸,这一方法的建立为以后一些重要的间接法和回滴法打下了基础。沉淀滴定法则在盖吕萨克银量法的启发下, 继续有了较大发展,其中最重要的是1856 年莫尔提出的以铬酸钾为指示剂的银量法,这便是广泛应用于测定氯化物的“莫尔法”。滴定分析发展中的另一个方面是仪器的设计和改进,使分析仪器已基本上具备了现有的各种形式。因而,这一时期堪称为滴定分析的极盛时期。直到19 世纪末,分析化学基本上仍然是许多定性和定量的检测物质组成的技术汇集。分析化学作为一门科学,很多分析家认为是以著名的德国物理化学家奥斯特瓦尔德出版《分析化学的科学基础》的1894 年为新纪元的。20 世纪初, 关于沉淀反应、酸碱反应、氧化-还原反应及络合物形成反应的四个平衡理论的建立,使分析化学家的检测技术一跃成为分析化学学科,称之为经典分析化学。因此,20 世纪初这一时期是分析化学发展史上的第一次革命。[5] 20 世纪以来,原有的各种经典方法不断充实、完善。直到目前,分析试样中的常量元素或常量组分的测定,基本上仍普遍采用经典的化学分析方法。20 世纪中叶, 由于生产和科研的发展,分析的样品越来越复杂,要求对试样中的微量及痕量组分进行测定,对分析的灵敏度、准确度、速度的要求不断提高,一些以化学反应和物理特性为基础的仪器分析方法逐步创立和发展起来。这些新的分析方法都是采用了电学、电子学和光学等仪器设备,因而称为“仪器分析”。这一时期的分析化学的发展要受到物理、数学等学科的广泛影响,同时也开始对其它学科作出显著贡献,这是分析化学史上的第二次革命。7 0 年代以后,分析化学已不仅仅局限于测定样品的成分及含量,而是着眼于降低测定下限、提高分析准确度上。并且打破化学与其它学科的界限,利用化学、物理、生物、数学等其它学科一切可以利用的理论、方法、技术对待测物质的组成、组分、状态、结构、形态、分布等性质进行全面的分析。[6]由于这些非化学方法的建立和发展,有人认为分析化学已不只是化学的一部分,而是正逐步转化成为一门边缘学科——分析科学,并认为这是分析发展史上的第三次革命。目前,分析化学处于日新月异的变化之中,它的发展同现代科学技术的总发展是分不开的。一方面,

相关文档
最新文档