2018-双馈发电机原理简介

合集下载

双馈式风力发电机原理

双馈式风力发电机原理

双馈式风力发电机原理双馈式风力发电机介绍双馈式风力发电机是一种常见的风力发电装置。

它具有较高的效率和良好的适应性,被广泛应用于风力发电场。

下面将逐步解释双馈式风力发电机的原理。

风能转换风是一种自然资源,可以转化为电能。

风力发电机通过转换风能为机械能,再将机械能转化为电能,实现风能的利用。

双馈式风力发电机在风能转换过程中采用了特殊的设计,使得发电效率更高。

基本原理双馈式风力发电机的基本原理如下:1.风能转化为旋转动能:风力发电机的叶片接收到风的动能,产生旋转运动。

2.传递旋转动能:旋转的轴通过齿轮传动等方式,将旋转动能传递给转子。

3.转子的双馈结构:转子包含一对主磁极和一对辅助磁极,其中辅助磁极是可调节的。

4.感应发电原理:主磁极在转子上产生的磁场与定子上的线圈相互作用,产生感应电动势。

5.电能传输:感应电动势经过变频器和其他电气设备进行调节和转换后,传输到电网中。

双馈式结构优势双馈式风力发电机采用双馈结构,具有以下优势:•提高稳定性:通过调整辅助磁极的位置,可以实现对转速和功率的精确控制,提高系统的稳定性。

•减小成本:辅助磁极的可调节性降低了对控制系统的要求,减小了成本。

•适应性强:双馈式风力发电机适应性强,可以适应不同的风速和转速变化。

总结双馈式风力发电机通过利用风能转化为电能,实现了对风力资源的有效利用。

它采用双馈结构,通过调节辅助磁极的位置,实现对转速和功率的精确控制,提高了系统的稳定性和功率输出。

双馈式风力发电机具有较高的效率和适应性,是目前风力发电场常用的装置之一。

双馈发电机工作原理

双馈发电机工作原理

双馈发电机工作原理双馈风力发电机是时下应用比较广泛的风机,它的特殊之处在于其定子绕组和转子绕组都直接或间接地与电网相连,定子侧绕组产生的工频交流电直接馈入电网,转子侧的功率通过整流逆变装置上网。

与一般的异步发电机相比,双馈风机允许发电机转速在一定范围内波动,因为转子侧(相当于励磁绕组)中电流的大小和频率可以通过整流逆变装置进行调节,从而在转速发生变化的情况下,维持定子侧输出功率频率的恒定。

暂态建模资料摘要随着风力发电并网容量的快速增加,风电接入对电网运行性能的影响越加明显。

联网运行双馈感应风电机组的运行特性对电网的安全稳定运行有着重要的影响。

本文对联网运行双馈感应风电机组的仿真建模、运行控制及模型的有效性进行了研究分析,主要包括以下内容:分析了两相同步旋转坐标系下双馈感应风电机组数学模型的特点,建立了双馈感应风电机组联网运行电磁暂态模型,对不同运行条件下双馈感应风电机组的运行特性进行了仿真模拟,深入了解了双馈感应风电机组的联网运行特性。

建立了联网运行双馈感应风电机组运行控制策略,在此基础上,构建了控制系统传递函数模型,分析了PI控制器参数选择对控制系统性能的影响,提出了PI控制器参数设置的方法。

提出了电网发生对称性故障时双馈感应风电机组的短路电流计算简化模型,为评估双馈感应风电机组短路对电网继电保护装置的影响提供了有效的计算模型。

设计了风电机组联网短路试验方案,分析了短路试验数据识别出风电机组厂家未提供的风电机组撬杠保护动作值,并仿真重现了风电机组联网短路试验,仿真数据与试验数据相吻合,验证了所构建系统模型和仿真系统的有效性。

研究现状由于风能是一种随即性很强的一种能源,不能像火力发电、水力发电那样可以预先调度,因此大规模的风力发电的接入对电网的经济、安全、稳定运行带来了诸多不利的影响,对系统调频、调压、调峰带来了困难。

同时由于风电机组大多包含有对运行条件要求很高的电力电子变流器,在一些运行方式下电网的扰动对风电机组的正常运行也会带来一定的影响,严重时可能会引起风电机组跳闸,造成电网功率大幅波动,威胁着电网的运行安全,而从系统持续运行的角度考虑,通常希望风电机组具有一定的故障穿越能力,能够在一定的故障情况下持续联网运行,因此对联网运行风电机组的运行特性,需要进行深入的研究。

双馈发电机原理讲解完整版

双馈发电机原理讲解完整版

双馈发电机原理讲解 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】一.双馈发电机原理讲解二.风力发电机的主要类型1.异步发电机笼鼠式异步发电机特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。

缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。

一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。

绕线转子异步发电机特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。

风速大的时候多余的能量可以消耗在转子电阻上。

双馈异步发电机特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。

2.同步发电机永磁同步发电机特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。

转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。

一般用于海上风机。

直流励磁同步发电机特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。

三. 双馈异步发电机原理1.旋转磁场旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。

从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。

三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120o 、对称地放置到定子槽内的三个独立的绕组由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负载是对称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。

2.旋转磁场的转速和转向以异步电动机为例,说明旋转磁场的转速和方向同励磁电流的关系。

① ωt=0 o 时,合成磁场方向:向下② ωt=60o 时,合成磁场方向顺时针转过60o 。

双馈风力发电机工作原理

双馈风力发电机工作原理

双馈风力发电机工作原理双馈风力发电机由三个主要部分组成:风轮,机械传动系统和电气系统。

风轮是由叶片和轮毂组成的,它负责将风能转化为旋转能量。

机械传动系统则负责将旋转能量转移到发电机上。

而电气系统则将机械能转化为电能,并送入电网中。

首先,风轮在风速的推动下开始旋转。

当风速足够高时,风轮旋转的速度也相应增加。

旋转的风轮通过主轴将旋转能量传输给发电机的转子。

与传统的固定速度(常规)发电机不同的是,双馈风力发电机是一种变速发电机。

它的转子上设有两组绕组:定子绕组和转子绕组。

定子绕组固定在发电机的圆柱形部分上,而转子绕组则固定在转子上。

定子绕组与电网直接相连,通过电网供电并产生旋转磁场。

转子绕组上也有一个与电网连接并可以提供电能的回路。

这个循环是通过一个双级功率变换器实现的,这也是双馈风力发电机名称的由来。

双级功率变换器是由一个转子侧变频器和一个定子侧变频器组成的。

当风轮旋转的速度发生变化时,定子绕组上的旋转磁场也会发生变化。

这个变化的旋转磁场会产生感应电动势,使转子绕组上的电流发生变化。

这个变化的电流经由双级功率变换器输入到定子绕组上。

由于双级功率变换器的存在,电流可以根据需求进行加减,从而实现功率的控制。

通过双级功率变换器,转子绕组上的电流可以与定子绕组上的电压相互配合,从而实现最佳的功率传输。

定子侧的变频器控制着定子绕组上的电流和频率,保持电网的稳定性和功率质量。

而转子侧的变频器则控制着转子绕组上的电流和频率,提高了发电机的效率和可靠性。

总的来说,双馈风力发电机通过风轮将风能转化为旋转能量,然后将旋转能量通过机械传动系统传输给发电机的转子。

转子上的双级功率变换器帮助将机械能转化为电能,并将其送入电网中。

通过双级功率变换器的灵活控制,双馈风力发电机能够提高整个系统的效率和稳定性,从而更好地利用风能资源。

风力发电技术-第七讲 双馈发电机

风力发电技术-第七讲 双馈发电机
忽略损耗,发电机的能量关系为: P机械=P转差+P电磁 P上网=P转差+P电磁
定子及转子同时向电网馈电。
*
双馈发电机特性
运行转速范围下的特性: ➢ 发电机总功率 ➢ 定子功率 ➢ 转子功率 ➢ 转子电压 ➢ 转子电流
*
双馈发电机维护
电刷维护方法
检查周期为运行后一周,以后每六个月维护一次。 ➢ 在发电机停机时把独立的电刷拔出来检查。
对于定子绕组 R1(最低值,20℃时)≥15×Un兆欧 R1(最低值,75℃时)≥ 5×Un兆欧, Un(定子额定电压,kV)
对于转子绕组 R2(最低值,20℃时)≥10×Un兆欧 R2(最低值,75℃时)≥ 2×Un兆欧, Un(转子开口电压,kV)
此处的最低值适用于当整个绕组测量时,而逐相测量时的最 低值则加倍。
*
双馈发电机工作原理
双馈发电机三种运行状态
双馈发电机在稳定运行的时候,定子旋转磁势和转子磁势都是相对静止的、 同步旋转的。对双馈发电机来说有:np/60±f2=f1
式中: f1------定子绕组的电流频率; f2------转子绕组的电流频率; n-------转子的机械转速; p-------电机的极对数。
中的指示。
*
双馈发电机维护
绝缘电阻测试方法
绕组绝缘电阻为绝缘对于直流电压的电阻,此电压产生通过绝缘体及表面的泄漏电流。 绕组的绝缘电阻揭示了绕组有关吸潮及灰尘沉积程度的信息,即使没有达到最低值,也应干 燥或根据需要清洁发电机。
测量绝缘电阻
一个直流电压加在绕组被测部分及接地的机壳之间,在施加电压一分钟以后量取电阻值。 绕组不进行测试的部分以及测温元件都要接地。通常一个三相绕组是作一个整体来测量的。 发电机第一次运行之前或长时间不运行、放置之后再运行,应立即测量绝缘电阻值,原因是 经过不当运输、存放或装机之后,可能会有潮气浸入而造成绝缘电阻降到允许值以下。

双馈发电机的原理

双馈发电机的原理

双馈发电机的原理双馈发电机是一种独特的电动机,在发电和驱动领域得到广泛应用。

它采用了双馈结构,即同时给定定子绕组和转子绕组电源,具有高效率和较好的性能。

本文将详细介绍双馈发电机的原理及其工作过程。

一、双馈发电机的结构双馈发电机由定子绕组、转子绕组和磁路组成。

定子绕组是通过固定在定子上的线圈形成的,而转子绕组是固定在转子上的线圈。

通过将定子和转子绕组分别接入电源,实现对发电机的控制。

二、双馈发电机的原理双馈发电机的原理是基于磁场的相互作用和电流的感应。

当定子绕组通电时,产生的磁场将影响转子绕组中的电流。

反过来,转子绕组中的电流也会产生磁场,进一步影响定子绕组中的电流。

通过这种相互作用,能够实现能量的转换和传输。

三、双馈发电机的工作过程在正常工作状态下,双馈发电机的定子和转子绕组均接通电源。

定子绕组产生旋转磁场,通过与转子绕组的电流相互作用,产生驱动力矩。

转子绕组中的电流会产生磁场,与定子绕组的磁场相互作用,进一步提高发电机的效率和性能。

四、双馈发电机的优势相比传统的发电机,双馈发电机具有以下优势:1. 高效率:双馈发电机能够通过转子绕组中的电流来调节和控制磁场,从而提高发电机的效率。

2. 较好的性能:双馈发电机在低速启动和高速运行时具有较好的性能,能够适应各种工况要求。

3. 灵活性:双馈发电机的结构和控制方式可以根据实际需求进行调整,具有较强的灵活性和适应性。

五、双馈发电机的应用领域双馈发电机广泛应用于风力发电、水力发电和轨道交通等领域。

在风力发电中,双馈发电机能够充分利用风能,并通过优化的控制系统实现最大的发电效率。

在水力发电中,双馈发电机具有低噪音、高效率和可靠性等优点。

在轨道交通中,双馈发电机能够实现高速度和高扭矩的需求。

六、总结双馈发电机作为一种独特的电动机,通过双馈结构实现了高效率和较好的性能。

它的工作原理是基于磁场的相互作用和电流的感应。

双馈发电机的优势包括高效率、较好的性能和灵活性,广泛应用于风力发电、水力发电和轨道交通等领域。

双馈风力发电机的工作原理

双馈风力发电机的工作原理

双馈风力发电机的工作原理
双馈风力发电机是一种常见的风力发电机类型,它具有高效、
稳定的特点,被广泛应用于风力发电行业。

它的工作原理主要包括
风能转换、发电机转换和电能输出三个部分。

首先,风能转换是双馈风力发电机的核心。

当风力转动风轮时,风轮上的叶片受到风力的作用而转动,将风能转化为机械能。

这个
过程需要考虑风力的大小、方向和速度等因素,以确保风能能够有
效地被转换为机械能。

其次,机械能被传递到发电机上进行转换。

双馈风力发电机采
用双馈结构,即转子和定子都能够接受电力的输入和输出。

在这个
过程中,机械能被转化为电能,通过发电机的转子和定子之间的电
磁感应原理,产生交流电。

最后,产生的交流电经过电力系统的调节和控制,最终输出为
电能。

这个过程需要考虑电能的稳定性、频率和电压等因素,以确
保电能能够被有效地输送到电网中,供给用户使用。

总的来说,双馈风力发电机的工作原理是将风能转换为机械能,
再将机械能转换为电能,最终输出为电能供给使用。

它的高效、稳定性使得它成为风力发电行业的重要组成部分,对于推动清洁能源发展具有重要意义。

什么是“双馈”?双馈异步发电机的原理和条件是什么?

什么是“双馈”?双馈异步发电机的原理和条件是什么?

什么是“双馈”?双馈异步发电机的原理和条件是什么?“双馈”是异步电机的一种运行方式,也是一个专用术语。

其中的“馈”字,英语为“Fed ”,在这里,汉语应该理解为电能“交换”,故双馈即是双端馈电。

注意,“Fed ”并不确指电能的交换方向(输出还是输入),所以,双馈既有双馈发电机,亦有双馈电动机。

对于绕线转子的异步电机,除了定子必然和电源相联之外,转子也可以和电源相联,于是,当电机作为发电机时,称之为双馈异步发电机;反之作为电动机时,则称为双馈电动机,而只有一端和电源相联的普通电机则属于“单馈”。

还要指出,双馈发电或双馈电动均属于和外部电源的电能交换,因此,双馈(Double Fed )以及串级(Cascade Control )都应归属于外馈()。

双馈异步发电机的基本原理和普遍的异步发电机原理是一致的,所不同的是,双馈发电机的转子不是单纯地输入机械功率M P ,还有和附加电源交换的电功率K P 。

这样做的目的何在?我们先从普通的异步发电机谈起。

按照异步电机的原理,异步发电机的功率转换流程为转子功率2P —→电磁功率em P —→定子电功率1P考虑到功率转换中的损耗,转子的功率2P 必须大于转子的电磁功率em P ,即有2P >em P这是能量守恒的体现,也是异步发电机的核心原理。

发电机目的是将机械能转化为电能,所以,按理转子功率2P 应该就是机械功率M P ,但是问题出来了,根据电机学和力学原理,旋转电机的机械功率普遍表达为n T P M M 602π= 等于机械转矩M T 和转速n 的乘积;而异步电机的电磁功率表达为1602n T P em π= 即为电磁转矩T 和同步转速1n 的乘积。

同步转速是旋转磁场的转速,且pf n 1160=考虑到电机稳定运行必然遵循转矩平衡原理,也就是机械转矩和电磁转矩大小相等,方向相反,即M T T =结果,在n <1n (亚同步)时,却是M P <em P或者2P <em P转子功率小于电磁功率,异步电机不但不能发电,反而是作电动机运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双馈发电机原理理解
双馈发电机原理上是一种绕线式转子电机,由于定子、转子都可以向电网馈电,所以称之为双馈发电机。

双馈电机虽然属于异步机的范畴,但是由于其具有独立的励磁绕组,可以象同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。

说明(假定风轮1500的转速,正好产生1500的旋转大磁场,解释异步是指转子不可能正好达到同步转速,因为只要电机一定,它的磁极对数都是一定,根据公式60f/p=n,这个同步转速是恒定的,但是实际上风轮转速很少达到稳定的1500转,也产生不了固定1500R的磁场,所以是异步的;同步电机指即使你转子达不到要求的1500转,但是通过励磁电流及调节相序等措施,可以增加或者减少转子周围气隙的磁场。

从而改变让定子始终感应出大小一定的电压,从这一点来讲又是同步的。

一双馈发电机发电简介
双馈发电机的定子绕组直接与电网相连,直接向电网发电。

转子绕组通过变频器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。

由于采用了交流励磁,双馈发电机可以通过调节励磁电流幅值、改变励磁频率以及改变相位来调节功率。

改变励磁频率可以充分利用转子的动能,减少对电网扰动。

改变转子励磁的相位,可以对电机的功率角进行调节,所以交流励磁不仅可调节无功功率,还可以调节有功功率。

(总结:转子若只有1200转,按道理只能产生1200R的磁场,定子只能感应1200R的电压,不符合条件的,此时转子假定正向旋转,它产生的周围磁场也是正向旋转,因为1200R小于规定的周围1500R磁场速度,即转子的产生的磁场转速比实际要求的磁场转速1500R慢300R,故要继续对周围的磁场增加励磁电流,从而增加所缺的300R的磁场。

需要明白一点,转子由风轮控制,转子的速度不是由励磁控制只能外部风的大小控制,励磁电流增加只是转子周围的磁场转速。


二双馈发电机原理
设双馈电机的定转子绕组均为对称绕组,电机的极对数为p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速称为同步转速,它与电网频率及电机的极对数p的关系如下:(说明,双馈电机的定子和转子都是对称的,定子感应到的磁场始终是1500转,即同步转速n1,与电网频率的关系f1。

60f1/P=n1)
(3-1)
同样在转子三相对称绕组上通入频率为的三相对称电流,所产生旋转磁场相对于转子本身的旋转速度为:(说明:在转子三相对称绕组通入频率F2三相对称电流,即通过交流励磁电流产生的旋转磁场转速,这个旋转速度,可能是增加也可能是减少,看实际转子速度有没有达到同步转速1500R,这个磁场主要是相对于转子本身的旋转速度,假定转子1200R,通入励磁电后,周围磁场转速达到了1500R,那么这个磁场转速相对转子本身旋转速度快300R.即n2=60f2/p
(3-2)
由式3-2可知,改变频率,即可改变,而且若改变通入转子三相电流的相序,还可以改变此转子旋转磁场的转向。

因此,若设为对应于电网频率为50Hz时双馈发电机的同步转速,而n为电机转子本身的旋转速度,则只要维持,见式3-3,则双馈电机定子绕组的感应电势,如同在同步发电机时一样,其频率将始终维持为不变。

(说明:若改变转子三相电流相序,则励磁电流
加入的方向改变,即可减少转子产生的磁场转速。

只要保证转子转速N(1200R)+N2(300R)=N1(1500R)或者N(1800R)-N2(300R)=N1(1500R)=电机固定的话,同步转速肯定是定值=常数。

固只要上述条件满足,定子始终感应到的是1500R磁场转速产生的电势,即在同步发电的状态,频率f1=n1.p/60也始终不变)
(3-3)
双馈电机的转差率,则双馈电机转子三相绕组内通入的电流频率应为:
(3-4)
公式3-4表明,在异步电机转子以变化的转速转动时,只要在转子的三相对称绕组中通入转差频率(即)的电流,则在双馈电机的定子绕组中就能产生50Hz的恒频电势。

所以根据上述原理,只要控制好转子电流的频率就可以实现变速恒频发电了。

说明:S=(N1-N)/N1,即转速差/同步转速,相当于一个百分比,如果实际转速1500R,此时1200R,那么还要增加1500-1200/1500=20%,即只要通入转差频率50*20%频率的电流,则在定子侧就能产生50HZ的恒频电势。

三双馈发电机的运行状态
根据双馈电机转子转速的变化,双馈发电机可有以下三种运行状态:
01亚同步运行状态
在此种状态下,由f2转差频率为的电流产生的旋转磁场转速n2与转子的转速方向相同,因此有。

(转子速度小于同步转速时,1200R小于1500R时,需要增加F2频率的电流产生的旋转磁场n2,必须与转子转速同向,才能保证定子有1500R的感应电势输出。

假定本来转子1200R的速度正向转,产生的周围的磁场肯定也是正向转。

需要增加周围的磁场时,当然也是与转子方向保持一致才行)
02超同步运行状态
在此种状态下,改变通入转子绕组的频率为f2的电流相序,则其所产生的旋转磁场的转速n2与转子的转速方向相反,因此有。

(转子速度大于同步转速时,1800R小于1500R时,需要减少F2频率的电流产生的旋转磁场n2,必须与转子转速反向,才能保证定子有1500R的感应电势输出。

假定本来转子1800R的速度正向转,反向通过励磁电流后,励磁产生的300R磁场肯定是往相反方向转,才能让定子侧感应出1500R旋转速度形成的感应电势)300转再交流变直流,直流变交流调整符合电网条件后发到电网中,300转肯定一开始是低频交流电,必须要整流然后变成直流,再由直流变交流,变成50H 电才能送到电网中。

03同步运行状态
在此种状态下,转差频率,这表明此时通入转子绕组的电流频率为0,也即直流电流,与普通的同步电机一样。

(转子速度等于同步转速时,即就是1500R,差值为0,此时相当于转子励磁绕组没有加任何电流,不会有任何变化)。

相关文档
最新文档