[高中数学知识点总结(最全版)] 高一数学知识点总结全
高一数学知识点总结(15篇)

高一数学知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。
总结怎么写才不会流于形式呢?以下是小编精心整理的高一数学知识点总结,希望能够帮助到大家。
高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。
注意点:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。
主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。
如果对于任意∈A,都有,则称y=f(x)为奇函数。
2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M 上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。
高一数学知识点全部归纳

高一数学知识点全部归纳一、集合1. 集合的概念:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。
2. 集合中元素的特性:确定性、互异性、无序性。
3. 集合的表示方法:列举法、描述法、图示法。
4. 集合间的关系:子集、真子集、相等。
5. 集合的运算:交集、并集、补集。
二、函数1. 函数的概念:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B的一个函数。
2. 函数的三要素:定义域、值域、对应法则。
3. 函数的表示方法:解析法、列表法、图象法。
4. 函数的单调性:设函数 f(x)的定义域为 I,如果对于定义域I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁ x₂时,都有 f(x₁) f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
5. 函数的奇偶性:设函数 f(x)的定义域为 D,如果对于定义域D 内任意一个 x,都有x∈D,且 f(x) = f(x)(或 f(x) = f(x)),那么函数 f(x)就叫做奇函数(或偶函数)。
三、指数函数和对数函数1. 指数函数:一般地,函数 y = a^x(a > 0 且a ≠ 1)叫做指数函数。
指数函数的图象和性质:当 a > 1 时,函数在 R 上单调递增;当 0 a 1 时,函数在 R 上单调递减。
2. 对数函数:一般地,如果 a^x = N(a > 0 且a ≠ 1),那么数 x 叫做以 a 为底 N 的对数,记作 x = logₐN。
函数 y = logₐx (a > 0 且a ≠ 1)叫做对数函数。
对数函数的图象和性质:当 a > 1 时,函数在(0, +∞) 上单调递增;当 0 a 1 时,函数在(0, +∞) 上单调递减。
高中数学知识点大全(完整版)

高中数学知识点大全(完整版)高中数学学问点大全一、集合、简易规律1、集合;2、子集;3、补集;4、交集;5、并集;6、规律连结词;7、四种命题;8、充要条件。
二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。
四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。
五、平面对量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面对量的坐标表示;5、线段的定比分点;6、平面对量的数量积;7、平面两点间的距离;8、平移。
六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含肯定值的不等式。
七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简洁线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。
八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简洁几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简洁几何性质;6、抛物线及其标准方程;7、抛物线的简洁几何性质。
最全高中数学知识点总结归纳

最全高中数学知识点总结归纳一、数与代数1.1 数的基本概念自然数、整数、有理数、无理数、实数和复数的定义及其性质。
掌握实数的分类和复数的基本概念。
1.2 代数表达式理解并运用单项式、多项式、分式和根式的运算规则。
包括因式分解、公式法解方程、分式方程的解法等。
1.3 不等式掌握一元一次不等式、一元二次不等式、绝对值不等式及其解集的表示方法。
理解不等式的性质和解不等式的一般步骤。
1.4 函数函数的定义、性质、运算及常见函数(一次函数、二次函数、指数函数、对数函数、三角函数等)的图像和性质。
了解函数的极限和连续性概念。
1.5 序列与数列等差数列、等比数列的定义、通项公式和求和公式。
掌握无穷等比数列的和的计算方法。
1.6 排列组合与概率排列、组合的基本概念和公式。
概率的定义、性质及计算方法。
理解条件概率和独立事件的概念。
二、几何与测量2.1 平面几何点、线、面的基本性质。
掌握直线、圆、椭圆、双曲线、抛物线等基本图形的性质和方程。
2.2 空间几何空间直线和平面的位置关系。
柱面、锥面、旋转体等常见立体图形的性质和计算。
2.3 解析几何坐标系的建立和应用。
通过坐标和方程研究几何图形的性质,包括距离公式、斜率公式、圆的方程等。
2.4 三角学三角比的概念、三角函数的定义和性质。
掌握正弦定理、余弦定理及其在解三角形中的应用。
2.5 向量向量的基本概念、线性运算、数量积和向量积。
理解向量在几何和代数中的应用。
三、统计与概率3.1 统计基本概念数据的收集、整理和描述。
理解平均数、中位数、众数、方差、标准差等统计量的概念和计算方法。
3.2 概率分布离散型随机变量和连续型随机变量的概念。
熟悉二项分布、正态分布、均匀分布等常见概率分布的特点和公式。
3.3 抽样与估计抽样方法、样本容量的确定。
参数估计的基本概念和方法,包括点估计和区间估计。
3.4 假设检验假设检验的基本思想和步骤。
理解显著性水平、第一类错误和第二类错误的概念。
高一数学所有知识点总结归纳

高一数学所有知识点总结归纳高一数学是学生在高中阶段学习数学的第一年,是基础扎实、知识积累的重要阶段。
在这一年里,学生将接触到许多数学的基本概念和方法,并逐渐拓展自己的数学思维。
为了让大家更好地复习和巩固基础知识,本文将对高一数学的所有知识点进行总结归纳。
一、集合与函数1. 集合的基本概念- 集合的定义、元素和特点- 空集、全集和子集- 并集、交集和差集的运算2. 函数与映射- 函数的定义和性质- 函数的分类及其表示法- 函数的运算、复合函数和反函数3. 集合与函数的应用- 关系与函数的区别与联系- 函数在实际问题中的应用二、数列与数列的极限1. 数列的概念与表示- 数列的定义和性质- 等差数列和等比数列2. 数列的通项与前n项和- 递推公式与通项公式- 前n项和的计算和性质3. 数列的极限- 数列极限的概念及性质- 数列极限的计算和判断三、平面向量与解析几何1. 平面向量的基本概念- 平面向量的定义和性质- 平面向量的线性运算和数量积2. 平面向量的应用- 向量的共线与垂直- 向量的模、夹角和投影- 平面向量在几何中的应用3. 解析几何- 平面直角坐标系与向量表示- 直线和圆的方程- 直线与圆的性质和判断条件四、三角函数与三角恒等变换1. 三角函数的定义和性质- 正弦、余弦、正切等基本概念- 三角函数的周期性和奇偶性2. 三角函数的运算- 三角函数的和差、倍角、半角公式 - 三角函数的积化和差化积3. 三角恒等变换- 三角函数的恒等变换及证明- 三角方程的解法和应用五、数系与方程1. 实数与复数- 实数的性质与运算- 复数的定义和运算2. 一次方程和二次方程- 一次方程和一元二次方程的概念- 一次方程和一元二次方程的解法和应用3. 不等式与绝对值- 不等式的性质和解法- 绝对值的定义和性质总结:高一数学涉及的知识点非常广泛,本文对集合与函数、数列与数列的极限、平面向量与解析几何、三角函数与三角恒等变换、数系与方程等方面进行了总结归纳。
新版高一数学知识点全总结

新版高一数学知识点全总结第一章函数基础1.1 函数的概念1.2 函数的图像1.3 函数的性质1.4 函数的运算1.5 反函数第二章三角函数2.1 角度制和弧度制2.2 三角函数的概念2.3 三角函数的基本性质2.4 三角函数的图像2.5 三角函数的变换2.6 三角函数的应用第三章导数与微分3.1 导数的概念3.2 导数的计算3.3 导数的性质3.4 高阶导数3.5 微分的概念3.6 微分的计算3.7 微分的应用第四章不等式与极值4.1 不等式的基本性质4.2 一元一次不等式与二次不等式4.3 绝对值不等式4.4 一元一次方程组4.5 函数的极值与最值4.6 最值及其应用第五章数列与数学归纳法5.1 数列的概念5.2 等差数列5.3 等比数列5.4 通项公式5.5 数学归纳法5.6 数列的应用第六章平面向量6.1 向量的概念6.2 向量的基本运算6.3 向量的数量积6.4 平面向量的坐标表示6.5 向量的线性运算6.6 向量的应用第七章解析几何7.1 直线7.2 圆7.3 圆锥曲线7.4 空间几何7.5 解析几何的应用第八章三角恒等变换8.1 三角函数恒等变换8.2 证明方法8.3 三角方程8.4 三角恒等变换的应用第九章数学证明9.1 数学证明的基本概念9.2 数学归纳法证明9.3 数学归纳法的应用第十章三角函数的反函数10.1 反函数的概念10.2 反函数的求法10.3 反函数的性质10.4 反函数的应用第十一章数学建模11.1 建模的基本概念11.2 建模的步骤11.3 常见数学模型11.4 数学建模的应用第十二章统计12.1 统计的基本概念12.2 统计的数据类型12.3 统计的描述性统计12.4 统计的概率12.5 统计的应用第十三章概率13.1 概率的基本概念13.2 概率的计算13.3 条件概率13.4 事件的独立性13.5 概率的应用以上是高一数学的全部知识点总结,希望能帮助同学们更好地学习数学。
高一数学知识点全面总结(4篇)

高一数学知识点全面总结(优秀4篇)作为一名无私奉献的老师,常常要写一份优秀的教案,借助教案可以提高教学质量,收到预期的教学效果。
那要怎么写好教案呢?小编为朋友们整理了4篇《高一数学知识点全面总结》,可以帮助到您,就是小编我最大的乐趣哦。
高一数学知识点总结篇一立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
高中数学知识点大全(完整版)

高中数学知识点大全(完整版)1. 实数和复数:实数是数轴上的所有数,包括有理数和无理数;复数由实部和虚部组成,可以表示为a+bi的形式,其中a和b 为实数。
2. 幂和根:幂是指数运算,如a的n次幂表示为an;根是幂的逆运算,开x次方根表示为x√a。
3. 代数运算:加法、减法、乘法和除法是代数运算的基本运算,它们遵循相应的运算法则。
4. 贝叶斯定理:条件概率和全概率公式的应用,用于计算事件的概率。
5. 几何:包括平面几何和立体几何,涉及到图形的性质,如平行、垂直、相似、全等等。
6. 向量:具有大小和方向的量,在代数中用坐标表示,可以进行向量的加法、减法和数量乘法等运算。
7. 函数:函数是自变量与因变量之间的依赖关系,常见的函数有线性函数、二次函数、指数函数、对数函数等。
8. 三角函数:包括正弦、余弦、正切、余切等,广泛应用于几何、物理等领域。
9. 极限与连续性:极限是指当自变量趋近于某个特定值时,函数的变化趋势;连续性是指函数在其定义域上无断点。
10. 导数与微分:导数表示函数在某一点处的变化率,微分是导数的几何意义。
11. 积分与不定积分:积分表示函数在一定区间上的面积或曲线长度,不定积分是积分的逆运算。
12. 概率与统计:概率是描述随机事件发生的可能性,统计是收集、整理和分析数据的方法。
13. 矩阵与行列式:矩阵是一个按照一定规则排列的数的矩形阵列,行列式是矩阵的一种特殊表示形式。
14. 数列与数级数:数列是由一个或多个数按一定规律排列而成的序列,数级数是数列的无穷求和。
15. 数论:研究整数性质和整数之间的关系,包括质数、最大公约数、同余等。
16. 解析几何:利用坐标表示几何图形的性质和关系。
17. 空间几何:研究三维空间中图形的性质和关系。
18. 数学证明:用严密的推理和逻辑方法证明数学命题的正确性。
19. 数学建模:将实际问题转化为数学模型,利用数学方法进行求解和分析。
20. 科学计算:利用计算机和数值方法解决数学问题,如差值、插值、数值积分等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[高中数学知识点总结(最全版)] 高一数学知识点总结全数学知识点总结第 - 1 - 页共 105 页引言1.课程内容:必修课程由 5 个模块组成:必修 1:集合、函数概念与基本初等函数(指、对、幂函数)必修 2:立体几何初步、平面解析几何初步。
必修 3:算法初步、统计、概率。
必修 4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修 5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有 4 个系列:系列 1:由 2 个模块组成。
选修 1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修 1—2:统计案例、推理与证明、数系的扩充与复数、框图系列 2:由 3 个模块组成。
选修 2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修 2—2:导数及其应用,推理与证明、数系的扩充与复数选修 2—3:计数原理、随机变量及其分布列,统计案例。
系列 3:由 6 个专题组成。
选修 3—1:数学史选讲。
选修 3—2:信息安全与密码。
选修 3—3:球面上的几何。
选修 3—4:对称与群。
选修 3—5:欧拉公式与闭曲面分类。
选修 3—6:三等分角与数域扩充。
系列 4:由 10 个专题组成。
选修 4—1:几何证明选讲。
选修 4—2:矩阵与变换。
选修 4—3:数列与差分。
选修 4—4:坐标系与参数方程。
选修 4—5:不等式选讲。
选修 4—6:初等数论初步。
选修 4—7:优选法与试验设计初步。
选修 4—8:统筹法与图论初步。
选修 4—9:风险与决策。
选修 4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数第 - 2 - 页共 105 页难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算高中数学必修 1 知识点第一章集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.NN ZQR (3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一 .aMa aM(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{ | 具有的性质},其中为集合的代表元素 .xx第 - 3 - 页共 105 页④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集( ).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图子集BA(或 ) A 中的任一元素都属于B(1)A A(2)(3)若且,则BCA(4)若且,则 B A(B)或B A 真子集A B(或B A),且 B 中至少有一元素不属于 A (1)(A 为非空子集)(2)若且,则BC B A集合相等A 中的任一元素都属于 B,B 中的任一元素都属于 A(1)A B(2)B AA(B)(7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有(1)n2n21n21n非空真子集.2n【1.1.3】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图交集 AB且{|,xA}(1) A(2)(3) BBA并集 AB或{|,xA}(1) A(2)(3) B BA补集UAð{|,}xA且1 ()UAð2 A()()UUð第 - 4 - 页共 105 页【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集|(0)xa{|}xa|或| -,|(0)axbcc把看成一个整体,化成,axb|xa型不等式来求解|(0)(2)一元二次不等式的解法判别式 24bac0 0二次函数 2(0)yx的图象O =OL O一元二次方程20()axbca的根21,24bacx(其中 12)x12bxa无实根2()的解集或1{|x2}{|x}2R20()axbca的解集12|x〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有ABfAxB唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合()fx Bf到的一个函数,记作.:fAB②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足,abab xb x[,]ab第 - 5 - 页共 105 页的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开axb x(,)abxb axb x半闭区间,分别记做,;满足的实数的集合分别记做[,)ab(,],x.[,)(,]注意:对于集合与区间,前者可以大于或等于,而后者必须{|}x (,)abb,(前者可以不成立,为空集;而后者必须成立).ab(3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数.()fx②是分式函数时,定义域是使分母不为零的一切实数.③是偶次根式时,定义域是使被开方式为非负值时的实数的集合.()fx④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.⑤中,.tany()2kZ⑥零(负)指数幂的底数不能为零.⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义()fx域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义()fx[,]ab[()]fgx域应由不等式解出.()agxb⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数可以化成一个系数含有的关于的二次方程,()yfx yx2()()0ayxbcy则在时,由于为实数,故必须有,从而确定函数的值域或最值.()0ay, 2()4()0bac④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.第 - 6 - 页共 105 页【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的ABfAB元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,ABfA记作.:f②给定一个集合到集合的映射,且.如果元素和元素对应,那么我们把元素叫做元AB,ab abb 素的象,元素叫做元素的原象.ab〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的性质定义图象判定方法如果对于属于定义域 I内某个区间上的任意两个自变量的值 x1、x 2,当x1f(x2),那么就说 f(x)在这个区间上是减函数.y=f(X)yxo x x2f(x ) f(x )1(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数,令,若为增,为增,则为增;若[()]yfgx()ugx()yfu()gx[()]yfgx为减,为减,则为增;若为增,为减,则()yfu[]ff()u为减;若为减,为增,则为减.[]gx()yf()x[()]yx第 - 7 - 页共 105 页(2)打“√”函数的图象与性质()(0)afx分别在、上为增函数,分别在()fx,][,、上为减函数.[,0a((3)最大(小)值定义①一般地,设函数的定义域为,如果存在实数()yfx I满足:(1)对于任意的,都有;M()fxM(2)存在,使得.那么,我们称是0 xI0()fx函数的最大值,记作.()fma②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有()yfxImxI;( 2)存在,使得.那么,我们称是函数的最小值,记作()fxm 0I0()fx()f.a【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的性质定义图象判定方法如果对于函数 f(x)定义域内任意一个 x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)函数的奇偶性如果对于函数 f(x)定义域内任意一个 x,都有f(-x)=f(x),那么函数f(x)叫做偶函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于 y 轴对称)②若函数为奇函数,且在处有定义,则.()fx0 x(0)f③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反.y y④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象yxo第 - 8 - 页共 105 页(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换 0,|() ()hyfxyfxh左移个单位右移个单位0,|() ()kyfxyfxk上移个单位下移个单位②伸缩变换1,()()ff伸缩0,Ayxyx缩伸③对称变换()()xff轴 ()()yfxfx轴yyx原点 1直线() (|)yfx yfx去掉轴左边图象保留轴右边图象,并作其关于轴对称图象|()|xy fx保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,且,那么叫做的次方根.当是奇数时,的次方根,,1nxaRxn N xanan用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;an 0 的次方根是 0;负数没有次方根.②式子叫做根式,这里叫做根指数,叫做被开方数.当为奇数时,为任意实数;当为偶nannan数时,.③根式的性质:;当为奇数时,;当为偶数时, ()na na第 - 9 - 页共 105 页. (0)| na(2)分数指数幂的概念①正数的正分数指数幂的意义是:且.0 的正分数指数幂等于 0.(0,,mnanN1)②正数的负分数指数幂的意义是:且.0 的负分数指数 1))(,,mna)n幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①②(0,)rsrsaR()(0,)rsrasR③ ()rrbbr【2.1.2】指数函数及其性质(4)指数函数函数名称指数函数定义函数且叫做指数函数(0 xya1)101a图象定义域 R值域 (0,)过定点图象过定点,即当时,.,1x1y奇偶性非奇非偶单调性在上是增函数R在上是减函数R函数值的变化情况1(0)()xxa(0)1()xxa变化对图象的影响a在第一象限内,越大图象越高;在第二象限内,越大图象越低.aa〖2.2〗对数函数01xyx(,)O101xx(,)Oy。