2017新人教版八年级数学下册知识点总结归纳
八下数学知识点总结人教版

八下数学知识点总结人教版数学是一门基础学科,是人们认识和改造自然、推动社会发展的重要工具。
八年级数学是初中数学的一个重要阶段,打下了后续学习的基础。
下面我将对八年级数学人教版的知识点进行总结。
一、有理数有理数是整数和分数的集合,可以表示为a/b的形式,其中a 和b都是整数,b不等于零。
有理数的加法、减法、乘法和除法的定义和性质是我们学习的重点内容。
二、平方根平方根是一个数的平方等于该数的正数根。
对于非负数a,若x^2 = a,其中x≥0,则x称为a的平方根。
开平方运算是求一个数的平方根的过程,我们通过列举平方数和非平方数来探索平方根的性质。
三、图形的相似相似是图形的一个重要性质,两个图形相似意味着它们的形状相似而大小可能不同。
我们学习了相似三角形的判定条件,比如边比例相等、对应角相等等。
四、线性方程组线性方程组是由多个线性方程组成的方程集合,我们学习了如何解线性方程组。
通过消元法、代入法和加减法等方法,我们可以求得线性方程组的解。
五、函数与函数图象函数是一种特殊的关系,在一个集合中的每个自变量都有唯一的函数值。
我们学习了函数的定义、函数图象的性质和函数的表示法等内容。
通过学习函数,我们可以更好地描述和分析问题。
六、平面图形的性质我们学习了多边形、圆的性质和计算方法。
通过研究多边形的内角和、正多边形的面积以及圆的周长和面积等知识点,我们可以解决与平面图形相关的问题。
七、便利与数据统计便利是一种数据收集和整理的方法,我们通过频数、频率、线性图、柱状图等形式来展示和分析数据。
数据统计是我们日常生活和科学研究中常用的一种方法。
总结起来,八年级数学知识点的学习范围非常广泛,涉及了有理数运算、平方根、图形的相似、线性方程组、函数与函数图象、平面图形的性质以及概率与数据统计等内容。
通过学习这些知识点,我们能够提高逻辑思维能力、分析和解决实际问题的能力,为高中数学的学习打下坚实的基础。
希望同学们能够认真学习、积极思考,掌握这些重要的数学知识点,为自己的学习之路打下坚实的基础。
人教版八年级数学下册知识点总结

人教版八年级数学下册知识点总结信息技术的飞速发展,使得数学这门学科也变得愈发重要。
人教版八年级数学下册作为学生学习数学的重要教材,涵盖了许多重要的数学知识点。
本文将对人教版八年级数学下册的知识点进行总结和梳理,以便学生对相关知识有一个全面的了解和掌握。
一、代数运算1. 整式加减法在整式的加减法中,要将同类项进行合并,注意正负号的运算规则。
2. 去括号与合并同类项去括号主要有两种方式:分配律和倍增律。
在合并同类项时,要注意项的系数和指数的变化。
3. 一元一次方程一元一次方程通常使用等式的性质进行变形和解方程。
4. 二元一次方程二元一次方程也是常见的方程形式,通常使用联立方程来求解未知数的值。
二、平面图形1. 平行线与平行四边形在平行线和平行四边形的研究中,重点是利用平行线的性质来解题,如内错角相等等。
2. 三角形的相似性质相似三角形的研究主要集中在角的相等和边的成比例上。
3. 圆的性质圆是数学中重要的几何图形之一,要掌握它的性质,如圆心角、弧长、面积等。
4. 直角三角形与勾股定理直角三角形的研究中,勾股定理是至关重要的。
三、空间图形1. 空间几何体的认识空间几何体主要包括立体图形和几何体的表面积和体积计算。
2. 空间几何体的相交关系相交关系包括两个几何体的位置关系和部分重合的情况。
3. 锥、台与棱柱体锥、台和棱柱体是常见的几何图形,在计算其表面积和体积时要注意几何体的特点。
四、数据统计1. 数据的收集与整理在数据统计中,要学习如何正确地收集和整理数据,以便进行后续的分析和统计。
2. 数据的图示与分析数据的图示和分析主要包括直方图、线形图和饼状图的绘制和解读。
3. 平均数的计算平均数是常见的数据统计方法之一,要掌握其计算方法和应用。
总之,人教版八年级数学下册涵盖了代数运算、平面图形、空间图形和数据统计等多个知识点。
通过对这些知识点的学习和掌握,学生可以在数学学科中有更好的发展。
希望本文对于学生对人教版八年级数学下册的知识点有一个清晰的总结和了解,并能够在学习中运用到实际问题中。
人教版八下数学知识点归纳

人教版八下数学知识点归纳
人教版八年级下册数学知识点主要包括以下内容:
1.平面图形:
•多边形的性质、相似三角形、三角形的面积、平行四边形、梯形、圆的性质等。
2.立体图形:
•空间图形的性质、棱柱、棱锥、棱台、球体等。
3.运算与方程:
•整式的加减乘除、分式的加减乘除、一元一次方程、一元一次方程组、二次根式的化简等。
4.数学实践:
•统计图表、平均数、方差、分布律、样本调查等。
5.函数:
•函数的概念、函数的图像、函数的性质、一次函数、反比例函数、指数函数、二次函数等。
6.几何变换:
•平移、旋转、对称、放缩等几何变换的性质和应用。
7.统计与概率:
•简单事件的概率、概率的性质、互斥事件、独立事件、排列组合等。
8.解决问题:
•利用所学知识解决实际问题的能力培养。
以上是人教版八年级下册数学主要的知识点归纳,具体内容可能因不同的教材版本和教学要求有所不同。
如果需要更详细的内容,建议查阅对应的教材或教学大纲。
人教版八年级下册数学知识点全面总结

人教版八年级下册数学知识点全面总结一、实数与代数式1.1 有理数- 概念:整数和分数的统称,包括正整数、0、负整数、正分数、负分数。
- 加减乘除法则:同号相加(减)取其相加(减)后的结果,并保留原来的符号;异号相加(减)取其相加(减)后的结果,并保留绝对值较大的数的符号。
乘法法则:同号得正,异号得负。
除法法则:除以一个不等于0的数等于乘这个数的倒数。
1.2 代数式- 概念:由数字、字母和运算符号组成的式子。
- 代数式的运算:加减乘除、乘方、开方等。
二、方程(组)与不等式(组)2.1 方程- 概念:含有未知数的等式。
- 一元一次方程:形式为ax+b=0,解法:移项、合并同类项、化系数为1。
- 二元一次方程:形式为ax+by=c,解法:消元法、代入法、矩阵法等。
2.2 不等式- 概念:含有不等号的式子。
- 一元一次不等式:形式为ax+b>0或ax+bc或ax+by<c,解法:同二元一次方程。
2.3 方程(组)与不等式(组)的应用- 线性方程组的解法:代入法、消元法、矩阵法等。
- 不等式组的解法:同线性方程组。
三、函数3.1 一次函数- 概念:形式为y=kx+b(k、b为常数,k≠0)的函数。
- 图像:一条直线。
- 性质:随着x的增大,y的值会按照k的正负和大小变化。
3.2 二次函数- 概念:形式为y=ax²+bx+c(a、b、c为常数,a≠0)的函数。
- 图像:一个开口向上或向下的抛物线。
- 性质:开口方向由a的正负决定,顶点坐标为(-b/2a, c-b²/4a)。
四、几何4.1 平面几何- 点、线、面的基本概念。
- 线段的性质:长度、中点、垂直平分线等。
- 角的性质:度量、分类、补角、对顶角等。
- 三角形的基本性质:边长、角度、高、中线、角平分线等。
- 四边形的基本性质:边长、对角线、内角和等。
4.2 立体几何- 空间点、线、面的基本概念。
- 三角形、四边形、圆锥、球等立体图形的性质和计算。
全】人教版初中数学八年级下册知识点总结

全】人教版初中数学八年级下册知识点总结一、二次根式二次根式是指形如a(a≥0)的式子。
其中,a被称为被开方数。
最简二次根式是指被开方数中不含开方开的尽的因数或因式,且不含分母的二次根式。
如果两个二次根式的被开方数相同,那么它们就是同类二次根式。
二次根式具有一些性质,如a(a>0)的平方根是a,a的平方根和-a的平方根相等。
二、勾股定理勾股定理指的是直角三角形的两直角边长分别为a,b,斜边长为c时,a²+b²=c²。
应用勾股定理可以求出直角三角形的第三边长,或者判断一个三角形是否为直角三角形。
勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。
勾股数是指能够构成直角三角形的三边长的三个正整数,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。
直角三角形还有一些其他的性质,需要我们认真研究和掌握。
1.直角三角形的两个锐角互余,即∠A+∠B=90°。
2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=AB/2.3.直角三角形斜边上的中线等于斜边的一半,即CD=AB=BD=AD,其中D为AB的中点。
4.三角形面积公式为AB•CD=AC•BC。
5.直角三角形的判定有三种:有一个角是直角的三角形是直角三角形;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;勾股定理的逆定理也可以判定直角三角形。
6.命题是对某件事情做出判断的完整句子,分为真命题和假命题。
7.定理是用推理的方法判断为正确的命题,证明是判断命题正确性的推理过程。
8.证明命题的一般步骤是根据题意画出图形,写出已知和求证,找出由已知推出求证的途径并写出证明过程。
9.三角形的中位线平行于第三边,并且等于它的一半,有多种作用和常用结论。
10.数学口诀有助于记忆和理解数学知识,如“勾股三角形,斜边是对角线”等。
新人教版八年级下册数学知识点归纳

新人教版八年级下册数学学问点归纳二次根式【学问回忆】1.二次根式:式子a 〔a ≥0〕叫做二次根式。
2.最简二次根式:必需同时满意以下条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,假设被开方数一样,那么这几个二次根式就是同类二次根式。
4.二次根式的性质:〔1〕〔a 〕2=a 〔a ≥0〕; 〔2〕 5.二次根式的运算:〔1〕因式的外移和内移:假如被开方数中有的因式可以开得尽方,那么,就可以用它的算术根代替而移到根号外面;假如被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.〔2〕二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. 〔3〕二次根式的乘除法:二次根式相乘〔除〕,将被开方数相乘〔除〕,所得的积〔商〕仍作积〔商〕的被开方数并将运算结果化为最简二次根式.a 〔a >0〕==a a 2a -〔a <0〕0 〔a =0〕;ab =a ·b 〔a≥0,b≥0〕;b ba a=〔b≥0,a>0〕. 〔4〕有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的安排律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是〔 〕 A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例5、数a ,b ,假设2()a b -=b -a ,那么 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简及计算 例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把〔a -b 〕-1a -b 化成最简二次根式例4、先化简,再求值:11()ba b b a a b ++++,其中51+,51-.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值 〔1〕、根式变形法当0,0a b >>时,①假如a b >>a b <<例1、比较的大小。
人教版八年级下册数学知识点总结

人教版八年级下册数学知识点总结(一)勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理) 第十九章四边形平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。
平行四边形的对角线互相平分。
平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的平行四边形。
矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。
矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的定义:邻边相等的平行四边形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
人教版八年级下册数学知识点总结(二)数据的分析1.加权平均数:加权平均数的计算公式。
权的理解:反映了某个数据在整个数据中的重要程度。
学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。
2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。
新人教版数学八年级下册知识点汇总

新人教版数学八年级下册知识点汇总本文档汇总了新人教版数学八年级下册的知识点。
第一章函数与线性方程1. 函数的概念与性质2. 线性方程与函数3. 一次函数4. 函数图像与线性方程的解5. 函数关系与线性方程的解6. 函数的运算第二章四边形1. 任意四边形2. 平行四边形3. 矩形4. 正方形5. 菱形6. 梯形7. 三角形的面积第三章几何变换1. 平移与错切2. 原点对称与轴对称3. 尺规作图第四章图形的相似与尺寸1. 相似的概念与性质2. 相似三角形的判定3. 相似三角形与相似比例4. 对应边成比例与对应角相等第五章数据及其概率1. 数列的概念与表示2. 等差数列3. 概率的概念与计算第六章方程1. 方程的解2. 一元一次方程3. 一元一次方程的应用4. 两个变量的线性方程组5. 二次方程的概念与解法第七章平面直角坐标系中的图形1. 直角坐标系2. 线段的中点3. 相交线与平分线4. 解析几何中的实线和虚线5. 圆第八章有理数和实数1. 有理数2. 实数的简介第九章三角形1. 三角形的元素及其关系2. 三角形的相似判定3. 中线、垂线与高线4. 全等三角形及其判定5. 合同三角形的性质第十章配方法等式1. 用配方法解方程2. 一元二次方程第十一章平面图形的性质1. 线段的垂直平分线2. 过点作圆3. 正多边形4. 螺旋线第十二章多边形的面积1. 平行四边形的面积2. 三角形的面积3. 高度与四边形的面积第十三章浓度和密度1. 浓度与密度的计算第十四章投影与视图1. 平行投影2. 视图第十五章集合1. 集合的概念与表示2. 集合间的关系以上是数学八年级下册的知识点汇总。
请根据具体需求查阅相关章节,以帮助研究和复。
(此文档内容仅适用于新人教版数学八年级下册,不包含其他版本的内容)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 二次根式1.二次根式:一般地,式子)0a (,a ≥叫做二次根式. 注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=.(3)积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求. 4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅. 5.二次根式比较大小的方法: (1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小; (3)分别平方,然后比大小. 6.商的算术平方根:)0b ,0a (ba b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则: (1))0b ,0a (bab a >≥=; (2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.常用分母有理化因式: a a 与,b a b a +-与, b n a m b n a m -+与,它们也叫互为有理化因式.9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.第十七章勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a, b, c满足a2+b2=c2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)4.直角三角形的性质(1)、直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90°(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°1AB可表示如下:∠C=90°⇒BC=2(3)、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: D 为AB 的中点 ⇒CD=21AB=BD=AD 5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD•=2⇒ AB AD AC•=2CD ⊥AB AB BD BC •=26、常用关系式由三角形面积公式可得:AB •CD=AC •BC 7、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
8、命题、定理、证明 1、命题的概念判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义: (1)命题必须是个完整的句子; (2)这个句子必须对某件事情做出判断。
2、命题的分类(按正确、错误与否分) 真命题(正确的命题) 命题 假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
4、定理用推理的方法判断为正确的命题叫做定理。
5、证明判断一个命题的正确性的推理过程叫做证明。
6、证明的一般步骤(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
9、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
10数学口诀.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
第十八章四边形一基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.二定理:中心对称的有关定理※1.关于中心对称的两个图形是全等形.※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高)2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线)四 常识:※1.若n 是多边形的边数,则对角线条数公式是:2)3n (n.2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.※5.梯形中常见的辅助线: 平行四边形矩形菱形正方形第十八章一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。
)注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:(1)列表法(2)图像法(3)解析式法七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b (k,b为常数,且k≠0)的函数叫做一次函数.当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。
(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。
九、求函数解析式的方法:待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
1.一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.2.求ax+b=0(a,b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与x 轴交点的横坐标3.一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b 的值大于0.4.解不等式ax+b>0(a,b是常数,a≠0) .从“形”的角度看,求直线y= ax+b 在x 轴上方的部分(射线)所对应的的横坐标的取值范围.十、一次函数与正比例函数的图象与性质一次函数重点知识归纳:1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。