初中物理洛伦兹力知识点总结
《探究洛伦兹力》 讲义

《探究洛伦兹力》讲义一、什么是洛伦兹力在物理学中,洛伦兹力是指运动电荷在磁场中所受到的力。
当电荷在磁场中运动时,磁场会对电荷施加一种力的作用,这就是洛伦兹力。
为了更直观地理解洛伦兹力,我们可以想象一个带电粒子在磁场中运动的场景。
比如,一个带正电的粒子以一定的速度在磁场中穿行,它就会受到磁场的作用而改变运动方向。
二、洛伦兹力的大小洛伦兹力的大小与电荷量、速度以及磁感应强度有关。
其计算公式为:F =qvBsinθ,其中 F 表示洛伦兹力,q 表示电荷量,v 表示电荷运动的速度,B 表示磁感应强度,θ 是速度方向与磁感应强度方向的夹角。
从这个公式我们可以看出,如果电荷的速度方向与磁感应强度方向平行,即θ = 0 或 180°时,sinθ = 0,洛伦兹力为零。
这意味着当电荷沿着磁场方向运动时,它不会受到磁场力的作用。
而当θ = 90°时,sinθ = 1,洛伦兹力达到最大值。
三、洛伦兹力的方向洛伦兹力的方向可以用左手定则来判断。
伸开左手,让磁感线穿过掌心,四指指向正电荷运动的方向(如果是负电荷,则四指指向电荷运动的反方向),大拇指所指的方向就是洛伦兹力的方向。
需要注意的是,洛伦兹力始终与电荷的运动方向垂直,所以洛伦兹力永远不会对电荷做功。
这是因为做功需要力在力的方向上有位移,而洛伦兹力只是改变电荷的运动方向,不改变电荷运动的速度大小。
四、洛伦兹力的应用洛伦兹力在许多现代科技中都有重要的应用。
例如,在显像管中,电子枪发射出的电子在磁场的作用下发生偏转,从而能够准确地打在屏幕的指定位置上,形成图像。
质谱仪也是利用洛伦兹力的原理工作的。
不同质量的带电粒子在经过相同的加速电场加速后,进入磁场中偏转的半径不同,通过测量偏转半径,就可以计算出粒子的质量。
此外,回旋加速器中,带电粒子在磁场中做圆周运动,不断被电场加速,从而获得高能量。
五、洛伦兹力与安培力的关系安培力是指通电导线在磁场中所受到的力。
物理洛伦兹力知识点

物理洛伦兹力知识点嘿,朋友们!今天咱来聊聊物理里超有意思的洛伦兹力呀!你说这洛伦兹力,就像是一个神秘又调皮的小精灵。
它呀,只在磁场里才会现身呢!当电荷在磁场中穿梭时,这个小精灵就会跑出来和电荷“玩耍”,给它施加一个力。
咱可以把磁场想象成一个巨大的游乐场,电荷就是在里面玩耍的小朋友。
而洛伦兹力呢,就是游乐场里的各种设施,会让小朋友的运动轨迹发生变化。
你想想看呀,要是没有这个洛伦兹力,电荷就会直直地跑过去,多没意思呀!但有了它,一切就变得有趣多啦。
电荷可能会被它带着转圈,或者改变方向。
那洛伦兹力到底有多大呢?这可就跟电荷的大小、速度以及磁场的强度有关系啦。
就好像小朋友在游乐场里玩不同的设施,受到的“乐趣”程度也不一样呢。
而且哦,洛伦兹力还有个很特别的地方,它永远和电荷的运动方向垂直。
这就好像有个小伙伴总是在你侧面推你,让你改变方向,但又不会让你停下来。
咱生活中也有很多类似洛伦兹力的现象呢!比如说,你有没有见过那种会拐弯的水流?水在流动的时候,要是遇到了磁场之类的影响,是不是就像电荷在磁场中一样会改变方向呀?学习洛伦兹力可不能马虎哦!这可是物理世界里的一个重要角色呢。
要是能把它搞清楚,那对我们理解很多物理现象都有很大的帮助。
你说,要是没有洛伦兹力,那这个世界会变成什么样呢?很多电器设备可能都没法正常工作啦,那多不方便呀!所以呀,我们得好好感谢这个神奇的洛伦兹力,是它让我们的世界变得更加丰富多彩。
洛伦兹力虽然有点复杂,但只要我们用心去学,就一定能掌握它。
就像攻克一个难关,只要我们有决心,有毅力,就一定能成功。
咱可不能被它吓倒,要勇敢地去探索,去发现它的奥秘呀!总之呢,洛伦兹力是个非常有趣又非常重要的物理概念,我们可得好好对待它,让它为我们打开更多物理世界的大门!。
初中物理洛伦兹力知识点总结

初中物理洛伦兹力知识点总结初中物理洛伦兹力知识点总结洛伦兹力左手定则将左手掌摊平,让磁感线穿过手掌心,四指表示正电荷运动方向,则和四指垂直的大拇指所指方向即为洛伦兹力的方向。
但须注意,运动电荷是正的,大拇指的指向即为洛伦兹力的方向。
反之,如果运动电荷是负的,仍用四指表示电荷运动方向,那么大拇指的指向的反方向为洛伦兹力方向。
另一种对负电荷应用左手定则的方法是认为负电荷相当于反向运动的正电荷,用四指表示负电荷运动的反方向,那么大拇指的指向就是洛伦兹力方1.洛伦兹力左手定则2.洛伦兹力公式3.洛伦兹力和安培力将左手掌摊平,让磁感线穿过手掌心,四指表示正电荷运动方向,则和四指垂直的大拇指所指方向即为洛伦兹力的方向。
但须注意,运动电荷是正的,大拇指的指向即为洛伦兹力的方向。
反之,如果运动电荷是负的,仍用四指表示电荷运动方向,那么大拇指的指向的反方向为洛伦兹力方向。
另一种对负电荷应用左手定则的方法是认为负电荷相当于反向运动的正电荷,用四指表示负电荷运动的反方向,那么大拇指的指向就是洛伦兹力方向。
f=qvBq、v分别是点电荷的电量和速度;B是点电荷所在处的磁感应强度。
v与B方向不垂直时,洛伦兹力的大小是f=|q|vBsinθ,其中θ是v和B的夹角。
方程的积分形式为F=∫v(pE+J×B)dr1、洛伦兹力:运动电荷在磁场中所受到的力称为洛伦兹力,即磁场对运动电荷的作用力。
荷兰物理学家洛仑兹(1853-1928)首先提出了运动电荷产生磁场和磁场对运动电荷有作用力的观点,为纪念他,人们称这种力为洛仑兹力。
洛伦兹力的公式是f=qvB(适用条件:磁场是匀强磁场,v与B 方向垂直)。
式中q、v分别是点电荷的电量和速度;B是点电荷所在处的磁感应强度。
v与B方向不垂直时,洛伦兹力的大小是f=|q|vBsinθ,其中θ是v和B的夹角。
洛伦兹力的方向遵循左手定则。
由于洛伦兹力始终垂直于电荷的运动方向,所以它对电荷不作功,不改变运动电荷的速率和动能,只能改变电荷的运动方向使之偏转。
初中磁学公式

初中磁学公式
初中磁学公式是指在初中物理学习中涉及到磁学的一些公式。
这些公式可以帮助我们更好地理解磁学的概念和应用,从而更好地进行实验和解决问题。
下面是一些常见的初中磁学公式:
1. 磁场强度公式
磁场强度是指磁场对单位电荷或者单位电流的力的大小。
其公式为:
H = F / q
其中,H是磁场强度,F是磁场对电荷或电流的力,q是单位电荷或单位电流。
2. 洛伦兹力公式
洛伦兹力是指磁场对运动电荷的力的大小,其公式为:
F = qvBsinθ
其中,F是洛伦兹力,q是电荷量,v是运动电荷的速度,B是磁场强度,θ是磁场与速度的夹角。
3. 磁通量公式
磁通量是磁场穿过一个面积的大小,其公式为:
Φ = B·S·cosθ
其中,Φ是磁通量,B是磁场强度,S是磁场穿过的面积,θ是磁场与法线的夹角。
4. 安培环路定理公式
安培环路定理是指在一个闭合回路上,磁场对电流产生的感应电动势的总和为零。
其公式为:
∮ H·dl = ∑i
其中,∮ H·dl表示磁场沿闭合回路的环积分,i表示通过闭合回路的电流的总和。
这些公式对于初中磁学的学习非常重要,我们应该认真掌握和应用。
同时,在实践中,我们也可以通过这些公式来计算和预测各种问题。
洛伦兹力的概念与计算

洛伦兹力的概念与计算洛伦兹力是电磁学中重要的力之一,它描述了带电粒子在电磁场中受到的相互作用力。
本文将介绍洛伦兹力的概念和计算方法,以帮助读者深入理解电磁学中的基础知识。
概念洛伦兹力是由荷质比、电磁场和运动速度决定的。
当一个带电粒子运动于电磁场中时,会受到两个方向的力:一个是与速度方向垂直且与电荷量、速度和磁场强度有关的洛伦兹力;另一个是与电荷量和电场强度有关、与速度方向一致的库仑力。
洛伦兹力可以用公式表示为:F = q(E + v × B)其中,F是洛伦兹力,q是带电粒子的电荷量,E是电场强度,v是带电粒子的速度,B是磁场强度。
该公式说明了洛伦兹力与带电粒子速度的叉乘和电场、磁场的线性关系。
计算方法为了计算洛伦兹力,必须已知粒子的电荷量、速度以及所受到的电场和磁场。
下面将介绍如何分别计算洛伦兹力的两个分量。
首先,计算洛伦兹力在与速度方向垂直的分量。
这个分量是由速度方向、电荷量和磁场强度共同决定的。
通过将速度向量与磁场强度向量进行叉乘,得到一个新的向量,该向量与速度和磁场垂直。
然后,将这个新向量与电荷量相乘,即可得到洛伦兹力在与速度方向垂直的分量。
其次,计算洛伦兹力在与速度方向一致的分量,即库仑力。
这个分量由电荷量和电场强度共同决定。
将电荷量与电场强度相乘,即可得到洛伦兹力在与速度方向一致的分量。
最后,将两个分量相加,即可得到完整的洛伦兹力。
举例说明为了更好地理解洛伦兹力的计算,考虑一个带电粒子在磁场和电场中运动的情况。
假设带电粒子的电荷量为q = 2C,速度为v = (3,4,0) m/s,电场强度为E = (1,2,0) N/C,磁场强度为B = (0,0,5) T。
首先,计算洛伦兹力在与速度方向垂直的分量。
通过进行叉乘计算:v × B = (3,4,0) × (0,0,5) = (-20,15,0)然后,将上述结果与电荷量相乘:(-20,15,0) · 2 = (-40,30,0) N这就是洛伦兹力在与速度方向垂直的分量。
洛伦兹力

洛伦兹力知识框架知识讲解知识点1 洛伦兹力1.洛伦兹力的大小和方向(1)洛伦兹力大小的计算公式:sin=;F qvBθ=,式中θ为v与B之间的夹角,当v与B垂直时,F qvB当v与B平行时,0F=,此时电荷不受洛伦兹力作用.(2)洛伦兹力的方向:F v B、、方向间的关系,用左手定则来判断.注意:四指指向为正电荷的运动方向或负电荷运动方向的反方向;洛伦兹力既垂直于B又垂直于v,即垂直于B与v决定的平面.(3)洛伦兹力的特征①洛伦兹力与电荷的运动状态有关.当0F=,即静止的电荷不受洛伦兹力.v=时,0②洛伦兹力始终与电荷的速度方向垂直,因此,洛伦兹力只改变运动电荷的速度方向,不对运动电荷做功,不改变运动电荷的速率和动能.2.洛伦兹力与安培力的关系(1)洛伦兹力是单个运动电荷受到的磁场力,而安培力是导体中所有定向移动的自由电荷所受洛伦兹力的宏观表现.(2)洛伦兹力永不做功,而安培力可以做功.3.洛伦兹力和电场力的比较随堂练习【例1】试判断图中所示的带电粒子刚进入磁场时所受的洛伦兹力的方向.【例2】关于带电粒子所受洛仑兹力f、磁感应强度B和粒子速度v三者之间的关系,下列正确的是()A.f B v、、三者必定均相互垂直B.f必定垂直于B v、,但B不一定垂直vC.B必定垂直于f,但f不一定垂直于vD.v必定垂直于f,但f不一定垂直于B【例3】关于运动电荷和磁场的说法中,正确的是()A.运动电荷在某点不受洛仑兹力作用,这点的磁感应强度必为零B.电荷的运动方向、磁感应强度方向和电荷所受洛仑兹力的方向一定互相垂直C.电子射线由于受到垂直于它的磁场作用而偏转,这是因为洛仑兹力对电子做功的结果D.电荷与磁场力没有相对运动,电荷就一定不受磁场的作用力【例4】带电荷量为q+的粒子在匀强磁场中运动,下面说法中正确的是( )A.只要速度大小相同,所受洛伦兹力就相同B.如果把q+改为q-,且速度反向、大小不变,则洛伦兹力的大小不变C.洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直D.粒子只受到洛伦兹力的作用,不可能做匀速直线运动【例5】在只受洛伦兹力的条件下,关于带电粒子在匀强磁场中运动,下列说法正确的有_______ A.只要粒子的速度大小相同,带电量相同,粒子所受洛伦兹力大小就相同B.洛伦兹力只改变带电粒子的运动轨迹C.洛伦兹力始终与速度垂直,所以洛伦兹力不做功D.洛伦兹力始终与速度垂直,所以粒子在运动过程中的动能、动量保持不变【例6】电子以速度v垂直进入磁感应强度为B的匀强磁场中,则()A.磁场对电子的作用力始终不做功B.磁场对电子的作用力始终不变C.电子的动能始终不变D.电子的动量始终不变3 / 18【例7】带电粒子垂直匀强磁场方向运动时,会受到洛伦兹力的作用.下列表述正确的是()A.洛伦兹力对带电粒子做功B.洛伦兹力不改变带电粒子的动能C.洛伦兹力的大小与速度无关D.洛伦兹力不改变带电粒子的速度方向【例8】有关电荷所受电场力和洛伦兹力的说法中,正确的是()A.电荷在磁场中一定受磁场力的作用B.电荷在电场中一定受电场力的作用C.电荷受电场力的方向与该处的电场方向一致D.电荷若受磁场力,则受力方向与该处的磁场方向垂直【例9】一个电子穿过某一空间而未发生偏转,则()A.此空间一定不存在磁场B.此空间可能有方向与电子速度平行的磁场C.此空间可能有磁场,方向与电子速度垂直D.以上说法都不对【例10】来自宇宙的电子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些电子在进入地球周围的空间时,将()A.竖直向下沿直线射向地面B.相对于预定地面向东偏转C.相对于预定点稍向西偏转D.相对于预定点稍向北偏转【例11】有一匀强磁场,磁感应强度大小为1.2T,方向由南指向北,如有一质子沿竖直向下的方向进入磁场,磁场作用在质子上的力为9.6×10-14N,则质子射入时速度为多大?将在磁场中向哪个方向偏转?【例12】两个带电粒子以相同的速度垂直磁感线方向进入同一匀强磁场,两粒子质量之比为1:4,电荷量之比为1:2,则两带电粒子受洛伦兹力之比为()A.2:1 B.1:1 C.1:2 D.1:4【例13】长直导线AB附近有一带电的小球,由绝缘丝线悬挂在M点,当AB中通以如图所示的恒定电流时,下列说法正确的是()Array A.小球受磁场力作用,方向与导线垂直指向纸里B.小球受磁场力作用,方向与导线垂直指向纸外C.小球受磁场力作用,方向与导线垂直向左D.小球不受磁场力作用【例14】电子束以一定的初速度沿轴线进入螺线管内,螺线管中通以方向随时间而周期性变化的电流,如图所示,则电子束在螺线管中做()4 / 18A .匀速直线运动B .匀速圆周运动C .加速减速交替的运动D .来回振动【例15】如图所示,M 、N 为两条沿竖直方向放置的直导线其中有一条导线中通有恒定电流,另一条导线中无电流.一带电粒子在M 、N 两条直导线所在平面内运动,曲线ab 是该粒子的运动轨迹.带电粒子所受重力及空气阻力均可忽略不计.关于导线中的电流方向、粒子带电情况以及运动的方向,下列说法中可能正确的是( )A .M 中通有自上而下的恒定电流,带负电的粒子从a 点向b 点运动B .M 中通有自上而下的恒定电流,带正电的粒子从a 点向b 点运动C .N 中通有自上而下的恒定电流,带正电的粒子从b 点向a 点运动D .N 中通有自下而上的恒定电流,带负电的粒子从a 点向b 点运动【例16】在图中,单摆的摆线是绝缘的,长为l ,摆球带正电,单摆悬挂于O 点,当它摆过竖直线OC 时,便进入或离开一个匀强磁场,磁场的方向垂直于单摆的摆动平面,在摆角小于5°时,摆球来回摆动,下列说法中正确的是( )A .A 点和B 点处在同一个水平面上B .在A 点和B 点,摆线的拉力大小是相同的C .单摆的摆动周期gLT π2= D .单摆向右或向左摆过D 点时,摆线的拉力一样大【例17】如图,质量为m ,带电量为+q 的P 环套在水平放置的足够长的固定的粗糙绝缘杆上,整个装置放在方向垂直纸面向里的匀强磁场中,现给P 环一个水平向右的瞬时冲量I ,使环开始运动,则P 环运动后( )A .P 环克服摩擦力做的功一定为22I mB .P 环克服摩擦力做功可能为零C .P 环克服摩擦力做的功可能大于零而小于22I mD .P 环最终所受的合外力不一定为零【例18】如图所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、强度为B 的匀强磁场中.质量为m 、带电量为+Q 的小滑块从斜面顶端由静止下滑.在滑块下滑的过程中,下列判断正确的是A .滑块受到的摩擦力不变B .滑块到达地面时的动能与B 的大小无关C .滑块受到的洛伦兹力方向垂直斜面向下D .B 很大时,滑块可能静止于斜面上知识点2 带电粒子在匀强磁场中的运动 1.几个重要的关系式:①向心力公式:2v qvB m r=②轨道半径公式:mv r Bq= ③周期公式:2m T Bq π=;频率12Bqf T mπ== ④角速度2qB T mπω==由此可见:A 、T 与v 及r 无关,只与B 及粒子的比荷有关;B 、荷质比qm相同的粒子在同样的匀强磁场中,T f 、和ω相同. 2.圆心的确定方法:①已知入射方向和出射方向:分别画出入射点和出射点的洛伦兹力方向,其延长线的交点即为圆心; ②已知入射方向和出射点:连接入射点和出射点,画出连线的中垂线,再画出入射点的洛伦兹力方向,中垂线和洛伦兹力方向的交点即为圆心.3.半径的确定和计算:圆心找到以后,自然就有了半径(一般是利用粒子入、出磁场时的半径).半径的计算一般是利用几何知识,常用解三角形的方法及圆心角等于圆弧上弦切角的两倍等知识. 4.运动时间的确定:利用圆心角与弦切角的关系,或者是四边形内角和等于360︒计算出圆心角θ的大小,由公式360t Tθ=可求出运动时间.有时也用弧长与线速度的比.如图所示:知识讲解5.还应注意到:①速度的偏向角ϕ等于弧AB 所对的圆心角θ.②偏向角ϕ与弦切角α的关系为:180ϕ<︒,2ϕα=;180ϕ>︒,3602ϕα=︒-;③对称规律:A 、从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等;B 、在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.【带电粒子在磁场中的运动】【例1】如图所示,在通电直导线下方有一质子沿平行导线方向以速度v 向左运动,则下列正确的是( )A .质子将沿轨迹Ⅰ运动,半径越来越小B .质子将沿轨迹Ⅰ运动,半径越来越大C .质子将沿轨迹Ⅱ运动,半径越来越小D .质子将沿轨迹Ⅱ运动,半径越来越大【例2】一电子以垂直于匀强磁场的速度A v ,从A 处进入长为d 宽为h 的磁场区域如图,发生偏移而从B 处离开磁场,若电量为e ,磁感应强度为B ,弧AB 的长为L ,则( ) A .电子在磁场中运动的时间为A dt v = B .电子在磁场中运动的时间为AL t v =C .洛仑兹力对电子做功是A Bev hD .电子在A B 、两处的速度相同【例3】如图,abcd 为矩形匀强磁场区域,边长分别是ab H =,bc ,某带电粒子以速度v 从a 点沿ad方向射入磁场,恰好从c 点射出磁场.求这个带电粒子通过磁场所用的时间.【例4】如图所示,在00x y >>、的空间中有恒定的匀强磁场,磁感应强度方向垂直于xOy 平面向里,大小为B .现有一质量为m 、电荷量为q 的带电粒子,在x 轴上到原点的距离为0x 的P 点,以平行于y 轴的初速度射入此磁场,在磁场作用下沿垂直于y 轴方向射出此磁场.不计重力影响,由这些条件可知:( )随堂练习A .不能确定粒子通过y 轴时的位置B .不能确定粒子速度的大小C .不能确定粒子在磁场中运动所经历的时间D .以上三个判断都不对【例5】图中MN 表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B .一带电粒子从平板上狭缝O 处以垂直于平板的初速v 射入磁场区域,最后到达平板上的P 点.已知B 、v 以及P 到O 的距离l ,不计重力,求此粒子的电荷e 与质量m 之比.【例6】一束电子(电荷量为e )以速度v 垂直射入磁感应强度为B 、宽度为d 的匀强磁场中,穿透磁场时,速度方向与电子原来的入射方向的夹角是30°,则 (1)电子的质量是多少? (2)穿过磁场的时间是多少?【例7】一个负离子,质量为m ,电量大小为q ,以速率v 垂直于屏S 经过小孔O 射入存在着匀强磁场的真空室中,如图所示.磁感应强度B 的方向与离子的运动方向垂直,并垂直于图中纸面向里. (1)求离子进入磁场后到达屏S 上时的位置与O 点的距离.(2)如果离子进入磁场后经过时间t 到达位置P ,证明:直线OP 与离子入射方向之间的夹角θ跟t的关系是2qBt mθ=.【例8】如图所示,一电子以速度1.0×107m/s与x轴成30°的方向从原点出发,在垂直纸面向里的匀强磁场中运动,磁感应强度B=1T,那么圆运动的半径为m,经过时间s,第一次经过x 轴.(电子质量m=9.1×10-31kg)【例9】如图所示,一个带负电的粒子以速度v由坐标原点射入磁感应强度为B的匀强磁场中,速度方向与x 轴、y轴均成45°.已知该粒子电量为-q,质量为m,则该粒子通过x轴和y轴的坐标分别是多少?【例10】如图所示,在xoy平面内,电荷量为q、质量为m的电子从原点O垂直射入磁感应强度为B的匀强磁场中,电子的速度为v,方向与x轴正方向成30 角,则:(1)电子第一次到达x轴所用的时间是多少?(2)此时电子在x轴的位置距原点的距离是多少?【例11】一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限.求匀强磁场的磁感应强度B和射出点的坐标.【不同带电粒子在磁场中的运动】【例1】质子和α粒子在同一匀强磁场中做半径相同的圆周运动,由此可知,质子的动能1E 和α粒子的动能2E 之比12:E E 等于( ) A .4:1B .1:1C .1:2D .2:1【例2】质子和α粒子以相同的动能垂直于磁场方向射入同一匀强磁场,它们的运动轨迹半径之比:____P R R α=,运动周期之比:____P T T α=.【例3】质子(11H )和α粒子(42He )以相同的速度垂直进入同一匀强磁场中,它们在垂直于磁场的平面内都做匀速圆周运动,它们的轨道半径和运动周期的关系是( ) A .:1:2H R R α=,:1:2H T T α= B .:2:1H R R α=,:2:1H T T α= C .:1:2H R R α=,:2:1H T T α= D .:1:4H R R α=,:1:4H T T α=【例4】质子(p )和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为p R 和R α,周期分别为p T 和T α,则下列说法正确的是( ) A .p p :1:2:1:2R R T T αα==,B .p p :1:1:1:1R R T T αα==, C .p p :1:1:1:2R R T T αα==, D .p p :1:2:1:1R R T T αα==,【例5】如图所示的匀强磁场中有一束质量不同、速率不同的一价正离子,从同一点P 沿同一方向射入磁场,它们中能够到达屏上同一点Q 的粒子必须具有( )A .相同的动量B .相同的速率C .相同的质量D .相同的动能【例6】两个粒子,带电荷量相等,在同一匀强磁场中只受磁场力而做匀速圆周运动,则( )A .若速度相等,则半径必相等B .若质量相等,则周期必相等C .若动量大小相等,则半径必相等D .若动能相等,则周期必相等【例7】如图所示,α粒子和质子从匀强磁场中同一点出发,沿着与磁感应强度垂直的方向以相同的速率开始反向运动.若磁场足够大,则它们再相遇时所走过的路程之比是(不计重力)( )A .1:1B .1:2C .2:1D .4:1【例8】如图所示,在垂直纸面向里的匀强磁场的边界上,有两个质量和电量均相同的正、负离子,从O 点以相同的速度射入磁场中,射入方向均与边界成θ角.若不计重力,关于正、负离子在磁场中的运动,下列说法正确的是( )A .运动的轨道半径不相同B .重新回到边界的速度大小和方向都相同C .重新回到边界的位置与O 点距离不相同D .运动的时间相同【例9】如图所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速度沿与x 轴成30°角从原点射入磁场,则正、负电子在磁场中运动时间之比为 .【带电粒子在圆形磁场中的运动】【例1】圆形区域内有垂直于纸面的匀强磁场,三个质量和电荷量都相同的带电粒子a 、b 、c ,以不同的速率沿着AO 方向对准圆心O 射入磁场,其运动轨迹如图2所示.若带电粒子只受磁场力的作用,则下列说法正确的是( )A .a 粒子速率最大B .c 粒子速率最大C .a 粒子在磁场中运动的时间最长D .它们做圆周运动的周期T a <T b <T c【例2】在半径为r 的圆形空间内有一匀强磁场,一带电粒子以速度v 从A 沿半径方向入射,并从C 点射出,如图所示(O 为圆心).已知120AOC ∠=︒.若在磁场中,粒子只受洛伦兹力作用,则粒子在磁场中运行的时间:( )A .23rvπ B C .3r vπ D【例3】如图所示,在半径为r的圆形区域内,有一个匀强磁场,一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心,∠MON=120°时,求:带电粒子在磁场区域的偏转半径R 及在磁场区域中的运动时间.【例4】如图所示,分布在半径为r的圆形区域内的匀强磁场,磁感应强度为B,方向垂直纸面向里.电量为q、质量为m的带正电的粒子从磁场边缘A点沿圆的半径AO方向射入磁场,离开磁场时速度方向偏转了60°角.试确定:(1)粒子做圆周运动的半径;(2)粒子的入射速度;(3)若保持粒子的速度不变,从A点入射时速度的方向顺时针转过60°角,求粒子在磁场中运动的时间.【例5】如图半径r=10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切;磁场B=0.33T 垂直于纸面向内,在O处有一放射源S可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子;已知α粒子质量为m=6.6×10-27kg,电量q=3.2×10-19c,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t各多少?【例6】在真空中,半径r=3×10-2m 的圆形区域内有匀强磁场,方向如图所示,磁感强度B=0.2T ,一个带正电的粒子,以初速度0v =106m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子的比荷qm=108C/kg ,不计粒子重力,求:(1)粒子在磁场中作匀速圆周运动的半径是多少?(2)若要使粒子飞离磁场时有最大偏转角,求入射时v 0方向与ab 的 夹角θ及粒子的最大偏转角β.【带电粒子在磁场中的临界问题】【例1】如图所示,比荷为em的电子从左侧垂直于界面、垂直于磁场射入宽度为d 、磁感受应强度为B 的匀强磁场区域,要从右侧面穿出这个磁场区域,电子的速度至少应为( )A .2BedmB .Bedm C .2BedmD【例2】如图所示,宽为d 的有界匀强磁场的边界为PQ 、MN ,一个质量为m ,带电量为-q 的微粒子沿图示方向以速度v 0垂直射入磁场(磁感线垂直于纸面向里),磁感应强度为B ,要使粒子不能从边界MN 射出,粒子的入射速度v 0的最大值是多大?【例3】长为L 的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感强度为B ,板间距离也为L ,板不带电,现有质量为m ,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度4BqLv m< B .使粒子的速度54BqLv m > C .使粒子的速度BqLv m> D .使粒子速度544BqL BqLv m m<<【例4】一个质量为m ,电荷量为q +的粒子(不计重力),从O 点处沿y +方向以初速度0v 射入一个边界为矩形的匀强磁场中,磁场方向垂直于xy 平面向里,它的边界分别是0y =,y a =, 1.5x a =-, 1.5x a =如图所示.改变磁感应强度B的大小,粒子可从磁场的不同边界射出,那么当B 满足条件_______时,粒子将从上边界射出;当B 满足条件_______时,粒子将从左边界射出;当B 满足条件_______时,粒子将从下边界射出.【例5】如图所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光.MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里.P 为屏上的一小孔,PQ 与MN 垂直.一群质量为m 、带电荷量q +的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用.则以下说法正确的是( )A .在荧光屏上将出现一个圆形亮斑,其半径为mvqB B .在荧光屏上将出现一个半圆形亮斑,其半径为mvqBC .在荧光屏上将出现一个条形亮线,其长度为2(1cos )mvqBθ- D .在荧光屏上将出现一个条形亮线,其长度为2(1sin )mvqBθ-【例6】如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小0.60T B =.磁场内有一块平面感光板ab ,板面与磁场方向平行.在距ab 的距离为16cm l =处,有一个点状的α放射源S ,它向各个方向发射α粒子,α粒子的速度都是v =63.010m /s ⨯.已知α粒子的电荷量与质量之比75.010C /kg qm=⨯.现只考虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的长度.【带电粒子在磁场中的综合应用】【例1】一初速度为零的电子经电场加速后,垂直于磁场方向进入匀强磁场中,此电子在匀强磁场中做圆周运动可等效为一环状电流,其等效电流的大小 A .与电子质量无关 B .与电子电荷量有关 C .与电子进入磁场的速度有关 D .与磁场的磁感应强度有关【例2】质量为m ,带电荷量为q 的粒子,在磁感应强度为B 的匀强磁场中做匀速圆周运动,其圆周半径为r ,则粒子受到的洛伦兹力为 ,表示这个带电粒子运动而形成的环形电流的电流大小为 .【例3】图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小,在x 轴上距坐标原点0.50m L =的P 处为离子的入射口,在y 上安放接收器,现将一带正电荷的粒子以43.510m/s v =⨯的速率从P 处射入磁场,若粒子在y 轴上距坐标原点0.50m L =的M 处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m ,电量为q ,不计其重力.32.010T B -=⨯(1)求上述粒子的比荷qm;(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形.【例4】在半径为r的圆筒中,有沿筒的轴线方向的匀强磁场,磁感应强度为B,一个质量为m、带电荷量为q的粒子以速度v从筒壁A处沿半径方向垂直于磁场射入筒中(如图),若它在筒中只受洛伦兹力作用且与筒壁发生弹性碰撞,欲使粒子与筒壁连续相碰撞绕筒壁一周仍从A处射出,则B必须满足什么条件?【例5】据有关资料介绍,受控核聚变装置中有极高的温度,因而带电粒子没有通常意义上的“容器”可装,而是由磁场约束带电粒子运动使之束缚在某个区域内.现按下面的简化条件来讨论这个问题:如图所示是一个截面为内径R 1=0.6 m 、外径R 2=1.2 m 的环状区域,区域内有垂直于截面向里的匀强磁场.已知氦核的比荷/q m =4.8×107C/kg ,磁场的磁感应强度B =0.4T ,不计带电粒子的重力. (1)实践证明,氦核在磁场区域内沿垂直于磁场方向运动速度v 的大小与它在磁场中运动的轨道半径r 有关,试导出v 与r 的关系式.(2)若氦核沿磁场区域的半径方向平行于截面从A 点射入磁场,画出氦核在磁场中运动而不穿出外边界的最大圆轨道示意图.(3)若氦核在平行于截面从A 点沿各个方向射入磁场都不穿出磁场外边界,求氦核的最大速度.【例6】如图所示,在0x <与0x >的区域中,存在磁感应强度分别为1B 与2B 的匀强磁场,磁场方向垂直于纸面向里,且12B B >.一个带负电荷的粒子从坐标原点O 以速度v 沿x 轴负方向射出,要使该粒子经过一段时间后又经过O 点,1B 与2B 的比值应满足什么样的条件?【例7】如图所示,绝缘劈两斜面光滑且足够长,它们的倾角分别为α、β(α<β),处在垂直纸面向里的匀强磁场中,将质量相等,带等量异种电荷的小球A 和B 同时从两斜面的顶端由静止释放,不考虑两电荷之间的库仑力,则( )A 、在斜面上两球做匀加速运动,且AB a a < B 、在斜面上两球都做变加速运动C 、两球沿斜面运动的最大位移A B s s <D 、两球沿斜面运动的时间A B t t <【例8】如图所示,一带电为-q 的小球,质量为m ,以初速度v 0竖直向上射入水平方向的匀强磁场中,磁感应强度为B .当小球在竖直方向运动h 高度时,球在b 点上所受的磁场力多大?【例9】质量m =0.1 g 的小物块,带有5×10-4C的电荷,放在倾角为30°的绝缘光滑斜面上,整个斜面置于B =0.5 T 的匀强磁场中,磁场方向如图所示.物块由静止开始下滑,滑到某一位置时,开始离开斜面(设斜面足够长,g 取10 m/s 2),求:(1)物体带何种电荷?(2)物体离开斜面时的速度为多少? (3)物体在斜面上滑行的最大距离.。
磁学中的洛伦兹力和电磁感应定律

磁学中的洛伦兹力和电磁感应定律磁学是物理学的一个重要分支,研究物质中磁场的性质和相互作用。
在磁学中,洛伦兹力和电磁感应定律是两个基本概念,它们解释了电流产生磁场和磁场对电荷施加的力。
一、洛伦兹力在电磁场中,洛伦兹力描述了磁场对电荷的作用力。
它是由荷质比、电流以及磁场强度共同决定的。
洛伦兹力的计算公式为:F = q(v × B)其中,F为洛伦兹力,q为电荷的电量,v为电荷的速度,B为磁场强度。
×表示矢量叉乘。
根据该公式,我们可以得出以下几个结论:1. 当电荷的速度与磁场方向垂直时,洛伦兹力与电荷的速度及磁场强度均垂直。
2. 当电荷的速度与磁场方向平行时,洛伦兹力为零。
3. 当电荷的速度与磁场方向成一定角度时,洛伦兹力的大小与电荷的速度、磁场强度以及它们之间的夹角有关。
洛伦兹力在许多实际应用中起着重要作用,如磁共振成像中利用洛伦兹力对核磁共振的探测和电子束在磁场中的偏转等。
二、电磁感应定律电磁感应定律是由英国物理学家法拉第在1831年提出的,描述了磁场对导体中电荷运动的影响。
根据电磁感应定律,当导体中的磁通量发生变化时,将在导体中诱导出电动势和电流。
电磁感应定律可以表示为两个方程式:1. 第一电磁感应定律,也称为法拉第定律:ε = -dφ/dt其中,ε表示电动势,dφ/dt表示磁通量的变化率。
负号表示电动势的方向与磁场变化的方向相反。
2. 第二电磁感应定律:ε = -dΦ/dt该定律描述了导体中的电流与产生的磁场之间的关系。
其中,ε表示电动势,dΦ/dt表示磁通量的变化率。
根据电磁感应定律,我们可以得出以下几个重要结论:1. 当导体中的磁通量变化率为零时,导体中不会产生电动势和电流。
2. 当磁通量变化率增大时,导体中产生的电动势和电流也增大。
3. 当导体中的电阻较小时,电磁感应定律描述的现象更加明显。
电磁感应定律在电磁感应、发电和变压器等领域具有重要应用。
例如,在发电机中,通过将导体置于变化的磁场中,利用电磁感应定律产生感应电动势,从而实现电能的转换。
第二讲 洛伦兹力

.
必考部分 选修3-1 第八章 磁场
栏目导引
二、带电粒子在匀强磁场中的运动 匀速直线 运 1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做 . ∥ ,带电粒子不受洛伦兹力, 动. 2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面 . ⊥ ,带电粒子仅受洛伦兹力作用, 内以入射速度v做 内以入射速度 做 (1)基本公式 基本公式
3.运动时间的确定 . 粒子在磁场中运动一周的时间为T, 粒子在磁场中运动一周的时间为 ,当粒子运动的圆弧所对应的圆 α α 心角为α时 其运动时间由下式表示: = T(或t= T). 心角为 时,其运动时间由下式表示:t= 或= . 360° 2π
工具
必考部分 选修3-1 第八章 磁场
栏目导引
4.带电粒子在不同边界磁场中的运动 . (1)直线边界 进出磁场具有对称性, 如下图 直线边界(进出磁场具有对称性 如下图) 直线边界 进出磁场具有对称性,
mv 2 向心力公式: ①向心力公式:Bqv= r . = mv 轨道半径公式: = ②轨道半径公式:r= qB .
匀速圆周
运动. 运动.
工具
必考部分 选修3-1 第八章 磁场
栏目导引
③周期、频率和角速度公式: 周期、频率和角速度公式:
2πr 2πm T= = = v qB qB 1 . f= = = 2πm T 2π qB . ω= =2πf= = = T m
工具
必考部分 选修3-1 第八章 磁场
栏目导引
2.如右图所示,在一矩形区域内,不加磁场时,不计重力的带电粒 如右图所示,在一矩形区域内,不加磁场时, 如右图所示 子以某一初速度垂直左边界射入,穿过此区域的时间为t.若加上磁感应 子以某一初速度垂直左边界射入 ,穿过此区域的时间为 若加上磁感应 强度为B水平向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子 强度为 水平向外的匀强磁场,带电粒子仍以原来的初速度入射, 水平向外的匀强磁场 飞出时偏离原方向60° 利用以上数据可求出下列物理量中的 飞出时偏离原方向 °,利用以上数据可求出下列物理量中的( A.带电粒子的比荷 . B.带电粒子在磁场中运动的周期 . C.带电粒子的初速度 . D.带电粒子在磁场中运动的半径 . )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中物理洛伦兹力知识点总结
初中物理洛伦兹力知识点总结
洛伦兹力左手定则将左手掌摊平,让磁感线穿过手掌心,四指表示正电荷运动方向,则和四指垂直的大拇指所指方向即为洛伦兹力的方向。
但须注意,运动电荷是正的,大拇指的指向即为洛伦兹力的方向。
反之,如果运动电荷是负的,仍用四指表示电荷运动方向,那么大拇指的指向的反方向为洛伦兹力方向。
另一种对负电荷应用左手定则的方法是认为负电荷相当于反向运动的正电荷,用四指表示负电荷运动的反方向,那么大拇指的指向就是洛伦兹力方
1.洛伦兹力左手定则
2.洛伦兹力公式
3.洛伦兹力和安培力
将左手掌摊平,让磁感线穿过手掌心,四指表示正电荷运动方向,则和四指垂直的大拇指所指方向即为洛伦兹力的方向。
但须注意,运动电荷是正的,大拇指的指向即为洛伦兹力的方向。
反之,如果运动电荷是负的,仍用四指表示电荷运动方向,那么大拇指的指向的反方向为洛伦兹力方向。
另一种对负电荷应用左手定则的方法是认为负电荷相当于反向运动的正电荷,用四指表示负电荷运动的反方向,那么大拇指的指向就是洛伦兹力方向。
f=qvB
q、v分别是点电荷的电量和速度;B是点电荷所在处的磁感应强度。
v与B方向不垂直时,洛伦兹力的大小是f=|q|vBsinθ,其中θ是v和B的夹角。
方程的积分形式为F=∫v(pE+J×B)dr
1、洛伦兹力:运动电荷在磁场中所受到的力称为洛伦兹力,即磁场对运动电荷的作用力。
荷兰物理学家洛仑兹(1853-1928)首先提出了运动电荷产生磁场和磁场对运动电荷有作用力的观点,为纪念他,人们称这种力为洛仑兹力。
洛伦兹力的公式是f=qvB(适用条件:磁场是匀强磁场,v与B 方向垂直)。
式中q、v分别是点电荷的电量和速度;B是点电荷所在处的磁感应强度。
v与B方向不垂直时,洛伦兹力的大小是f=|q|vBsinθ,其中θ是v和B的夹角。
洛伦兹力的方向遵循左手定则。
由于洛伦兹力始终垂直于电荷的运动方向,所以它对电荷不作功,不改变运动电荷的速率和动能,只能改变电荷的运动方向使之偏转。
洛伦兹力既适用于宏观电荷,也适用于微观荷电粒子。
电流元在磁场中所受安培力就是其中运动电荷所受洛伦兹力的.宏观表现。
导体回路在恒定磁场中运动,使其中磁通量变化而产生的动生电动势也是洛伦兹力的结果,洛伦兹力是产生动生电动势的非静电力。
2、安培力:磁场对电流的作用力通常称为安培力,这是为了纪念安培在研究磁场对通电导线的作用方面的杰出贡献而命名的。
大量实验表明,垂直于磁场的一段通电导线,在磁场中某处受到的安培力的大小F跟电流强度I和导线的长度L的乘积成正比。
即:电流为I、长为L的直导线,在匀强磁场B中受到的安培力大小为:F=ILBsin(I,B),电动机的工作原理就是基于此式,其中(I,
B)为电流方向与磁场方向间的夹角。
安培力的方向由左手定则判定。
对于任意形状的电流受非匀强磁场的作用力,可把电流分解为许多段电流元I△L,每段电流元处的磁场B可看成匀强磁场,受的安培力为△F=I△L·Bsin(I,B),把这许多安培力加起来就是整个电流受的力。
应该注意,当电流方向与磁场方向相同或相反时,即(I,B)=0或TT时,电流不受磁场力作用。
当电流方向与磁场方向垂直时,电流受的安培力最大为F=ILB。
安培力的实质是形成电流的定向移动的电荷所受洛伦兹力的合力。
磁场对运动电荷有力的作用,这是从实验中得到的结论。
同样,当电荷的运动方向与磁场垂直时不受洛伦兹力作用,也是从实验观察中得知的。
当电流方向与磁场平行时,电荷的定向移动方向也与磁场方向平行,所受洛伦兹力为零,它们的合力安培力也为零。
洛伦兹力不做功是因为力的方向与粒子的运动方向垂直,根据功的公式W=FScosα,α=90度时W=0。
而安培力是与导线中的电流方向垂直,与导线的运动方向并不一定垂直,一般遇到的情况大多是在同一直线上的,所以安培力做功不为零。
模板,内容仅供参考。