半桥变压器
半桥开关电源变压器设计方案

性能
冰箱
• 为设备提供稳定、可靠
空调
的电源
• 提高设备的能效、环保
性能
• 为设备提供稳定、可靠
的电源
• 提高设备的能效、环保
性能
谢谢观看
THANK YOU FOR WATCHING
CREATE TOGETHER
• 实现设备的自动化、智能化控制
家用电器
• 电视、空调、冰箱等
• 提高设备的能效、环保性能
半桥开关电源变压器的发展趋势
高效率
• 优化磁芯、绕组的设计
• 提高开关管的工作频率
小型化
• 采用高磁导率的磁芯材料
• 优化绕组的排列方式
绿色环保
• 采用无铅、环保的材料
• 提高设备的能效性能
⌛️
02
半桥开关电源变压器的设计原理
常规测试
• 直流输出电压、电流、功率等测试
• 交流输入电压、电流、功率等测试
性能测试
• 效率、损耗、绝缘性能等测试
• 负载、短路、过载等条件下的测试
半桥开关电源变压器的故障诊断与排除
故障诊断
故障排除
• 通过测试数据、现象进行分析
• 对故障部位进行维修、更换
• 判断故障类型、部位
• 进行调试、测试,确保设备正常运行
半桥开关电源变压器的安全设计
绝缘性能
• 采用绝缘材料,保证绕组与磁芯之间的绝缘
• 考虑绕组、磁芯的耐压性能
散热性能
• 采用散热材料,保证设备的正常运行
• 考虑散热、通风设计,提高散热效果
抗震动性能
• 采用抗震动材料,保证设备在振动环境下的稳定运行
• 考虑设备结构、安装方式等因素
半桥LLC变压器的设计

半桥LLC变压器的设计
引言:
设计目标:
设计步骤:
下面是半桥LLC变压器的设计步骤:
1.确定输入电压和输出电压:首先,我们需要确定输入电压和输出电
压的数值。
根据应用需求,我们可以通过电压变换比来计算输出电压。
同时,我们还需要考虑输入电压的范围,以确定输入电压的设定。
2.确定功率需求:根据设计需求,我们可以计算出所需的功率。
功率
是变压器设计中一个非常重要的参数,因为它决定了变压器的大小和能效。
3.制定电路拓扑:在半桥LLC变压器设计中,需要选择适当的电路拓扑。
常见的拓扑选择包括全桥、半桥、LLC,并根据设计需求选择合适的
拓扑。
4.计算变压器参数:根据电路拓扑和设计需求,我们可以计算出变压
器的参数,包括变比、电感值和损耗等。
这些参数对于变压器的设计和性
能至关重要。
5.选择材料:根据设计需求和参数计算结果,选择适当的材料。
材料
的选择包括铁芯材料、线圈绝缘材料和绕组材料等。
6.进行热设计:在高功率变压器的设计中,热管理是至关重要的。
通
过进行热设计,包括散热器、冷却风扇和热导管等,可以确保变压器的稳
定性和长寿命。
7.进行模拟和测试:在设计完成后,进行模拟和测试以验证设计的性能和可靠性。
这可以通过电路仿真软件和实际硬件测试来完成。
总结:
半桥LLC变压器的设计过程包括确定输入电压和输出电压、确定功率需求、制定电路拓扑、计算变压器参数、选择材料、进行热设计和进行模拟和测试等步骤。
通过合理的设计和参数选择,可以设计出高效能的半桥LLC变压器,满足各种电源设计需求。
半桥电源驱动变压器设计

• 提高开关频率,减小变压器体积
• 提高变压器的工作效率,降低能耗
集成化技术
• 将变压器与其他电路集成在一起,提高系统性能
• 降低系统成本,提高可靠性
智能控制技术
• 采用数字控制技术,提高变压器的自适应性和可靠
性
• 实现变压器的远程监控和故障诊断
半桥电源驱动变压器的产业发展与市场前景
产业发展趋势
S M A RT C R E AT E
半桥电源驱动变压器设计全面解析
CREATE TOGETHER
01
半桥电源驱动变压器的基本原理与应用场景
半桥电源驱动变压器的结构及工作原理
半桥电源驱动变压器的结构
半桥电源驱动变压器的工作原理
• 由两个线圈、铁芯和输出端组成
• 当电源电压施加到线圈上时,产生磁场
• 材料性能:影响变压器的性能和质量
• 工艺参数:影响变压器的性能和稳定性
• 制造环境:影响变压器的可靠性和寿命
变压器的质量检测与评估方法
变压器的质量检测方法
变压器的质量评估方法
• 电气性能测试:测量输出电压、电流、功率等
• 性能指标评估:评估变压器的转换效率、输出稳定性等
• 磁性能测试:测量磁导率、磁饱和度、磁损耗等
• 具有磁导率和磁阻,能够产生磁场
• 具有磁饱和和磁滞现象,影响性能
• 具有磁损耗,包括磁滞损耗和涡流损耗
磁性材料的分类
• 铁磁材料:如铁、硅钢片等,具有较高的磁导率和磁饱和度
• 非铁磁材料:如钴磁体、钕磁体等,具有较高的磁能积和矫顽力
• 软磁材料:如纳米晶软磁材料等,具有低磁损耗和高磁导率
磁性材料在半桥电源驱动变压器中的应用
• 高性能、高效率、环保型变压器成为主流
半桥llc变压器共模干扰建模与屏蔽层设计

半桥llc变压器共模干扰建模与屏蔽层设计半桥LLC变压器共模干扰建模与屏蔽层设计引言:随着电子设备的快速发展,电磁兼容性(EMC)问题变得越来越突出。
共模干扰是一种常见的EMC问题,它会对电路的性能和稳定性造成负面影响。
为了解决共模干扰问题,设计工程师需要进行建模和屏蔽层设计。
本文将探讨半桥LLC变压器共模干扰的建模方法以及屏蔽层设计。
一、半桥LLC变压器共模干扰建模半桥LLC变压器是一种常用的电源变压器,广泛应用于电力电子领域。
在工作过程中,由于电源电压的高频切换,会引发共模干扰。
共模干扰是指电路中两个信号引起的干扰信号在地线上形成的电压。
为了建立半桥LLC变压器的共模干扰模型,我们可以按照以下步骤进行:1. 首先,需要确定共模干扰的来源。
共模干扰可以来自于电源、开关器件以及其他电路元件。
通过仔细分析电路结构和信号路径,可以确定共模干扰的主要来源。
2. 其次,需要建立共模干扰的传导路径。
共模干扰的传导路径包括电源线、地线以及信号线等。
通过分析电路的物理结构和布局,可以确定共模干扰的传导路径。
3. 然后,需要建立共模干扰的耦合模型。
共模干扰的耦合模型可以分为电容耦合、电感耦合和电阻耦合等。
根据具体情况,可以选择合适的耦合模型进行建模。
4. 最后,需要进行共模干扰的仿真和分析。
通过使用电磁场仿真软件,可以模拟共模干扰的传输和耦合过程,进一步分析共模干扰的影响和控制方法。
二、屏蔽层设计屏蔽层是减小共模干扰的重要手段之一。
通过合理的屏蔽层设计,可以有效地阻止共模干扰信号的传播和耦合。
以下是一些常见的屏蔽层设计方法:1. 选择合适的屏蔽材料。
屏蔽材料应具有良好的导电性和磁性,以便有效地吸收和屏蔽共模干扰信号。
常用的屏蔽材料包括金属板、导电涂层和磁性材料等。
2. 设计合理的屏蔽结构。
屏蔽结构应具有良好的接地连接,以便将共模干扰信号有效地引导到地线上。
同时,屏蔽结构的物理结构和布局应尽量减少共模干扰信号的传导路径。
半桥式开关电源变压器参数计算方法

半桥式开关电源变压器参数计算方法1. 输入电压(Vin):即待转换的电源电压,常用交流电压,如220V交流电。
2. 输出电压(Vout):即转换后的电源电压,可以是交流电也可以是直流电。
3. 输出电流(Iout):即变压器输出的电流大小。
4.开关频率(f):开关频率是指开关器件开关的次数,通常以kHz 为单位。
5.变压器功率(P):变压器的功率是变压器所能处理的电能大小,即输入电压乘以输出电流。
下面以一个实际计算的案例来详细介绍半桥式开关电源变压器的参数计算方法:假设我们需要设计一个输入电压为220V,输出电压为12V,输出电流为5A的半桥式开关电源变压器。
第一步是计算变压器的功率。
根据上述参数,变压器的功率P=Vout×Iout=12V×5A=60W。
第二步是选择开关频率。
开关频率的选择取决于应用的特定需求,一般在几十kHz到几百kHz之间。
假设我们选择开关频率为50kHz。
第三步是计算变压器的绕组比。
绕组比定义了变压器输入与输出端的电压比。
在半桥式开关电源中,绕组比通常为1:1、所以输入电压与输出电压相等,即Vin=Vout。
第四步是计算变压器的变比。
变比(N)定义了输入和输出的绕组匝数之比,从而决定了电压的变化。
根据绕组比为1:1,我们有N=Vin/Vout=220V/12V=18.33第五步是计算变压器的一次侧电感。
一次侧电感(Lp)决定了变压器的电流特性。
一般来说,如果开关频率较高,则需要较小的电感值。
根据经验公式,计算一次侧电感为Lp=10×(Vin/Vout)²/f=10×(220V/12V)²/50kHz=0.029H。
第六步是计算变压器的二次侧电感。
二次侧电感(Ls)是指变压器绕组与输出端的电感。
一般来说,为了防止输出电压的波动,二次侧电感应比一次侧电感大。
根据经验公式,计算二次侧电感为Ls=10×(Vin/Vout)²/f=10×(220V/12V)²/50kHz=0.029H。
正激类(全桥、半桥、推挽、正激)变压器计算

2、 由电路参数计算以下值: 磁通摆幅: Δ B = 3、 试选磁芯型号: 更多选择 磁芯型号: 类型/厂家: E型/TDK 可输出功率: 20.01115062 EE25.4-Z 27 0.336 T 开通时间: Tonmax = 14 μ s 选择常用磁芯 Ae(cm2) 0.403 AW(cm2) 0.425 lW(cm) 4.94 le(mm) 48.7
1.414 A W k W j 原边方波 Idc= 电流峰值 4 DN p Wt(g/对) 10 窗口长(mm)
Ve(cm3)
1963
le/Ae(mm-1) 1.208436725
1、变压器原边最小输入电压:Vpmin=NpΔ BAe/Tonmax(电磁感应定律,Np:原边匝数)
适合营销广告管理公务员会计师建造师金融师经济师教师学生家长职员研究生养生家艺术家自然及社会学者娱乐者等各种人士阅读下载分享或收藏
2 正激类(全桥、半桥、推挽、正激)变压器计算 1、 确定电路参数: 电路拓扑: 全桥 半桥 推挽 正激 工作频率: 电流密度: fT = 31.25 kHz j = 4 A/mm2 占 空 比: 预估效率: Dmax = 0.875 η = 0.92 最大磁密: Bmax = 0.168 T 填充系数: kW = 0.4
ahb非对称半桥变压器设计方法

ahb非对称半桥变压器设计方法
非对称半桥变压器是一种常见的变压器拓扑结构,常用于直流-交流(DC-AC)逆变器和电源应用中。
设计非对称半桥变压器需要考虑以下几个方面:
1. 确定变压器的额定功率和输入/输出电压:根据应用需求确定变压器的额定功率和输入/输出电压,这将决定变压器的尺寸和参数。
2. 计算变压器的变比:根据输入/输出电压的比例,计算变压器的变比。
变比可以通过变压器的绕组比例来实现。
3. 计算变压器的绕组参数:根据变比和额定功率,计算变压器的绕组参数,包括绕组匝数、导线截面积和绕组电阻。
4. 选择磁芯材料和尺寸:根据变压器的功率和频率,选择合适的磁芯材料和尺寸。
常用的磁芯材料包括铁氧体和硅钢片。
5. 设计变压器的绕组结构:根据变压器的绕组参数和磁芯尺寸,设计变压器的绕组结构,包括绕组层数、绕组间隔和绕组连接方式。
6. 进行磁路设计和电磁仿真:使用磁路设计软件和电磁仿真工具,进行变压器的磁路设计和电磁性能仿真,以验证设计的合理性和性能。
7. 制造和测试:根据设计结果,制造变压器,并进行必要的测试和验证,确保其满足设计要求和性能指标。
需要注意的是,非对称半桥变压器的设计需要考虑到其特殊的工作方式和应用环境,例如逆变器的开关频率和电流波形等因素。
因此,在设计过程中需要综合考虑这些因素,并进行合适的优化和调整。
半桥式开关电源变压器参数计算方法

半桥式开关电源变压器参数计算方法半桥式开关电源是一种广泛应用的开关电源拓扑结构,在工业、通信、医疗等领域得到了广泛的应用。
半桥式开关电源变压器的参数计算是设计一个可靠、高效的电源的重要步骤。
以下是半桥式开关电源变压器参数计算方法的详细说明。
第一步:确定输入电压和输出电压在设计半桥式开关电源变压器之前,首先需要确定输入电压和输出电压的数值。
输入电压通常是直流电压,输出电压可以是直流或交流电压,具体根据应用场景来确定。
第二步:计算输出功率根据应用需要以及输出电压和电流确定输出功率。
输出功率是决定变压器参数的重要因素之一第三步:选择变压器的工作频率第四步:计算变压器的变比根据输入电压和输出电压,通过变比的计算来确定变压器的变比。
变比是输入和输出电压之间的比值,可以根据功率和电流的关系得出。
第五步:计算变压器的感应电感感应电感是变压器的一个重要参数,可以通过输出功率的计算得出。
感应电感决定了变压器输出电流的波形。
第六步:计算变压器的铜损和铁损铜损是由变压器的导线电阻引起的损耗,可以通过输入电压和变压器中电流的平方来计算。
铁损是由于铁芯材料磁化和磁交变损耗引起的,可以通过变压器的额定工作频率和铁芯材料的损耗特性来计算。
第七步:选择适当的变压器规格根据前面的参数计算结果,选择合适的变压器规格。
包括输出功率、变压器的尺寸和重量等。
最后,需要进行变压器的热设计,确保变压器在工作过程中能够正常散热,不会因过热而损坏。
综上所述,半桥式开关电源变压器参数的计算包括确定输入和输出电压、计算输出功率、选择工作频率、计算变比、计算感应电感、计算铜损和铁损、选择合适的变压器规格以及进行热设计等步骤。
这些参数计算的准确与否直接影响着半桥式开关电源的性能和稳定性,因此需要仔细考虑每个参数的计算过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半桥式开关电源变压器参数的计算
陶显芳时间:2009-08-10 9491次阅读【网友评论1条我要评论】收藏
半桥式开关电源变压器参数的计算
半桥式变压器开关电源的工作原理与推挽式变压器开关电源的工作原理是非常接近的,只是变压器的激励方式与工作电源的接入方式有点不同;因此,用于计算推挽式变压器开关电源变压器初级线圈N1绕组匝数的数学表达式,只需稍微修改就可以用于半桥式变压器开关电源变压器初级线圈N1绕组匝数的计算。
A)半桥式开关电源变压器初级线圈匝数的计算
半桥式变压器开关电源与推挽式开关电源一样,也属于双激式开关电源,因此用于半桥式开关电源的变压器铁心的磁感应强度B,可从负的最大值-Bm,变化到正的最大值+Bm,并且变压器铁心可以不用留气隙。
半桥式开关电源变压器的计算方法与前面推挽式开关电源变压器的计算方法基本相同,只是直接加到变压器初级线圈两端的电压仅等于输入电压Ui的二分之一。
根据推挽式开关电源变压器初级线圈匝数计算公式(1-150)和(1-151)式:
设直接加到半桥式开关电源变压器初级线圈两端的电压为Uab,且Uab =Ui/2 ,则上面(1-150)和(1-151)式可以改写为:
上面(1-174)和(1-175)式就是计算半桥式开关电源变压器初级线圈N1绕组匝数的公式。
式中,N1为变压器初级线圈N1绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯);Uab为加到变压器初级线圈N1绕组两端的电压,Uab =Ui/2 ,Ui为开关电源的工作电压,单位为伏;τ= Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒);
F为工作频率,单位为赫芝,一般双激式开关电源变压器工作于正、反激输出的情况下,其伏秒容量必须相等,因此,可以直接用工作频率来计算变压器初级线圈N1绕组的匝数;F和τ取值要预留20%左右的余量。
式中的指数是统一单位用的,选用不同单位,指数的值也不一样,这里选用CGS单位制,即:长度为厘米(cm),磁感应强度为高斯(Gs),磁通单位为麦克斯韦(Mx)。
B)交流输出半桥式开关电源变压器初、次级线圈匝数比的计算
半桥式变压器开关电源如果用于DC/AC或AC/AC逆变电源,即把直流逆变成交流,或把交流整流成直流后再逆变成交流,这种逆变电源一般输出电压都不需要调整,因此电路相对比较简单,工作效率很高。
请参考图1-36、图1-38、图1-39。
用于逆变的半桥式变压器开关电源一般输出电压uo都是占空比等于0.5的方波,由于方波的波形系数(有效值与半波平均值之比)等于1,因此,方波的有效值Uo与半波平均值Upa相等,并且方波的幅值Up与半波平均值Upa也相等。
所以,只要知道输出电压的半波平均值就可以知道有效值,再根据半波平均值,就可以求得半桥式开关电源变压器初、次级线圈匝数比。
首页 [1][2]下一页尾页
责任编辑:电源网子乐
来源:电子工程专辑
桥式开关电源变压器参数的计算
陶显芳时间:2009-08-10 9493次阅读【网友评论1条我要评论】收藏
根据前面分析,半桥式变压器开关电源的输出电压uo,主要由开关电源变压器次级线圈输出的正激电压来决定。
因此,根据(1-158)、(1-159)、(1-161)等式其中一式就可以出半桥式变压器开关电源的输出电压的半波平均值。
由此求得半桥式逆变开关电源变压器初、次级线圈匝数比:
n =N2/N1 =2Uo/Ui = 2Upa/Ui ——次/初级变压比,D = 0.5时(1-176)
(1-176)式就是计算半桥式逆变开关电源变压器初、次级线圈匝数比的公式。
式中,N1为变压器初级线圈N1绕组的匝数,N2为变压器次级线圈的匝数,Uo 输出电压的有效值,Ui为直流输入电压,Upa输出电压的半波平均值。
(1-176)式还没有考虑变压器的工作效率,当把变压器的工作效率也考虑进去时,最好在(1-176)式的右边乘以一个略大于1的系数。
C)直流输出电压非调整式半桥开关电源变压器初、次级线圈匝数比的计算
直流输出电压非调整式半桥开关电源,就是在DC/AC逆变电源的交流输出电路后面再接一级整流滤波电路。
请参考1-43、图1-44、图1-45。
这种直流输出电压非调整式半桥开关电源的控制开关K1、K2的占空比与DC/AC逆变电源一样,一
般都是0.5,因此,直流输出电压非调整式半桥开关电源变压器初、次级线圈匝数比可直接利用(1-176)式来计算。
即:
n =N2/N1 =2Uo/Ui = 2Upa/Ui ——次/初级变压比,D = 0.5时(1-176)
不过,在低电压、大电流输出的情况下,一定要考虑整流二极管的电压降和变压器的工作效率。
D)直流输出电压可调整式半桥开关电源变压器初、次级线圈匝数比的计算
直流输出电压可调整式半桥开关电源的功能就要求输出电压可调,因此,半桥式变压器开关电源的两个控制开关K1、K2的占空比必须要小于0.5;因为半桥式变压器开关电源正、反激两种状态都有电压输出,所以在同样输出电压(平均值)的情况下,两个控制开关K1、K2的占空比相当于要小一倍。
当要求输出电压可调范围为最大时,占空比最好取值为0.25。
根据(1-140)和(1-145)式,并把输入电压Ui换成Uab可求得:
(1-177)、(1-178)式,就是计算直流输出电压可调整式半桥开关电源变压器初、次级线圈匝数比的公式。
式中,N1为变压器初级线圈N1绕组的最少匝数,N2为变压器次级线圈的匝数,Uo为直流输出电压,Uab为加到变压器初级线圈N1绕组两端的电压,Uab =Ui/2 ,Ui为开关电源的工作电压。
同样,在低电压、大电流输出的情况下,一定要考虑变压器的工作效率以及整流二极管的电压降和开关器件接通时的电压降。