数值分析第二章学习小结
数值分析第二章小结

第二章小结对于n 元线性方程组b A =x (*),其中A 为非奇异矩阵,当0det ≠A 时,方程组有唯一的解向量。
求解线性方程组的方法可分为两类:直接法(如克莱姆法则,高斯消去法等)和迭代法(Jacobi 迭代法和GS 迭代法等)。
一 、直接法1、Gauss 消去法:(1) 顺序Gauss 消去法:将矩阵化为上三角矩阵(2) 列主元素Gauss 消去法:将增广矩阵],[)()(k k b A 中绝对值最大的元素交换到底k 行的主对角线上。
比较:顺序Gauss 消去法的计算结果数值稳定性没有列主元素Gauss 消去法的好。
2、直接三角分解法:(1)定义 Doolittle 分解法和Crout 分解法:如果方程组b A =x 的系数矩阵A 可以分解为A=LU,其中L 是下三角矩阵U 是上三角矩阵,这样方程组b A =x 就化为两个容易求解的三角方程组:y U b Ly ==x ,。
定理3 Doolittle 分解法的充要条件是矩阵A 的前n-1阶顺序主子式0≠K D (k 取1,2,3,4...,n-1)推论 矩阵A 有唯一Crout 分解的充要条件是A 的前n-1阶顺序主子式0≠K D (k 取1,2,3,4...,n-1)Doolittle 分解计算公式为:对于k=1,2,3...,n),...,1,(11n k k j u l a u k t tj kt kj kj +=-=∑-=);,...,2,1(/)(11n k n k k i u u l a l kk k t tk it kj ik <++=-=∑-=则求解下三角方程组y U b Ly ==x 和上三角方程组的计算方程式: ⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-===-==∑∑+=-=1,,2,1,/)(u /),,3,2(11111 n n i u x u y x y x n i y l b y b y ii n i t t it i i nnn n t i t it i i Crout 分解计算公式为:对于k=1,2,3...,n),...,1,(11n k k j u l a l k t tk it ik ik +=-=∑-=);,...,2,1(/)(11n k n k k j l u l a u kk k t tj kt kj kj <++=-=∑-=则求解下三角方程组y b y U L ==x ~~和上三角方程组的计算方程式: ⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-===-==∑∑+=-=1,,2,1,),,3,2()(/1111111 n n i x u y x y x n i l y l b y l b y n i t t it i i n nii t i t it i i (2)选主元的Doolittle 分解法优点:对A 的要求低,只要矩阵A 可逆即可,即只要矩阵A 非奇异便可通过对A 做适当变换就可以了.二、迭代法1、思想:通过构造一个无限的向量序列,使它的极限是方程组b A =x 的解向量,通过求迭代矩阵,再通过迭代公式使解向量逐步逼近精确解。
数值分析(计算方法)总结

第一章 绪论误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差ε(x )=|x −x ∗|是x ∗的绝对误差,e =x ∗−x 是x ∗的误差,ε(x )=|x −x ∗|≤ε,ε为x ∗的绝对误差限(或误差限) e r =ex =x ∗−x x为x ∗ 的相对误差,当|e r |较小时,令 e r =ex ∗=x ∗−x x ∗相对误差绝对值得上限称为相对误差限记为:εr 即:|e r |=|x ∗−x||x ∗|≤ε|x ∗|=εr绝对误差有量纲,而相对误差无量纲若近似值x ∗的绝对误差限为某一位上的半个单位,且该位直到x ∗的第一位非零数字共有n 位,则称近似值 x ∗有n 位有效数字,或说 x ∗精确到该位。
例:设x=π=3.1415926…那么x ∗=3,ε1(x )=0.1415926…≤0.5×100,则x ∗有效数字为1位,即个位上的3,或说 x ∗精确到个位。
科学计数法:记x ∗=±0.a 1a 2⋯a n ×10m (其中a 1≠0),若|x −x ∗|≤0.5×10m−n ,则x ∗有n 位有效数字,精确到10m−n 。
由有效数字求相对误差限:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)有n 位有效数字,则其相对误差限为12a 1×101−n由相对误差限求有效数字:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)的相对误差限为为12(a 1+1)×101−n 则它有n 位有效数字令x ∗、y ∗是x 、y 的近似值,且|x ∗−x|≤η(x )、|y ∗−y|≤η(y)1. x+y 近似值为x ∗+y ∗,且η(x +y )=η(x )+η(y )和的误差(限)等于误差(限)的和2. x-y 近似值为x ∗−y ∗,且η(x +y )=η(x )+η(y )3. xy 近似值为x ∗y ∗,η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)4. η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)|y ∗|21.避免两相近数相减2.避免用绝对值很小的数作除数 3.避免大数吃小数 4.尽量减少计算工作量 第二章 非线性方程求根1.逐步搜索法设f (a ) <0, f (b )> 0,有根区间为 (a , b ),从x 0=a 出发, 按某个预定步长(例如h =(b -a )/N )一步一步向右跨,每跨一步进行一次根的搜索,即判别f (x k )=f (a +kh )的符号,若f (x k )>0(而f (x k -1)<0),则有根区间缩小为[x k -1,x k ] (若f (x k )=0,x k 即为所求根), 然后从x k -1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k -x k -1|< 为止,此时取x *≈(x k +x k -1)/2作为近似根。
计算方法 数值分析 第二章考点总结CH.2(1)

1第二章 解线性方程组的直接法解线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b+++=⎧⎪+++=⎪⎪⎨⎪+++=⎪⎪⎩或写成矩阵式Ax b =其中()1212,(,,,),(,,,)T Tij n n n nA a x x x x b b b b ⨯=== Gauss 消去法(矩阵行变换法)第k 次消元公式()()(1)()()(1)()()/(1,,)(,1,,)(1,,)k k ik ik kk k k k ij ij ik kj k k k i i ik k m a a i k n a a m a i j k n b b m b i k n ++==+=-=+=-=+计算中,中间结果不必保留,进行一次变换后原来存放(1)k A -的单元存放()k A,(1)k b-的单元存放()k b。
因此,我们得到Gauss消去法的算法:2循环:1,2,,k = n-1何时可行?即第k 步 Gauss 消去法可实行,易见充要条件是()0k kk a ≠若A 的各阶顺序主子式 *det()0ij k k a ≠ 1,,1k n =- ,则有:()**()()()1122()det()det() ||k ij k k ij k kk k k kk k kk a a a a a a =⇔≠ 消元过程可进行到 1k n =-。
因此,可以用Gauss 消去法解线性方程组的充要条件是系数矩阵的各阶顺序主子式不为0。
最后得到()()() n n n A x b A =是上三角阵()()k k A x b =与Ax b =同解2,,k n =解()()n n A x b=只需递推(回代过程)2211112()/, ,,1(0 = 1)nk k kjj kk j k k k i i i k i k x b ax a k n k k a a =+===-=>=∑∑∏ 当时,规定:3计算量 第k 步消元计算ik m 用(n-k )次除法,算诸()k ij a 用2(-)n k 乘法和2(-) n k 次加减法, 对1,,1k n =- 相加,可得消元过程共需2(1)/3n n -⨯÷次(1)(21)/6n n n -- 右端 (1)()n bb →(1)/2 n n -⨯÷ (1)/2 +n n --(1)/2 (1)/2 +-n n n n -⨯÷-回代3233 /3/3 /3(1)(25)/6 /3n n n n n n n n +-≈-+≈总数:乘除法加减法矩阵的三角分解(用矩阵乘法分解的观点看Gauss 消去法)对A 作行变换相当于左乘初等矩阵,例如(1)(2)AA →(2)1A L A =其中421131110-1 -01-001n m L m m ⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭= 类似的讨论易知:()()1111 ,,n n n n AL L A b L L b --==1,,100001 00000001 k k k n k L m m k +⎛⎫ ⎪ ⎪ ⎪⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭=第列令()1111111121313212,1= := 110=11n n n n n n n U A A L L U L L L m m m m m m -------=⎛⎫⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭上三角阵则单位下三角阵5定理:**(),det()0 1,,1ij n n ij k k A a a k n =≠=- ,则A 可表示为A=LU L :单位下三角阵,U 上三角阵,且分解唯一。
数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
数值分析学习总结感想

数值分析学习总结感想在数值分析学习的过程中,我深刻体会到了这门学科的重要性和广泛应用的范围。
通过学习数值分析,我不仅加深了对数学理论的理解,还掌握了一些重要的数值计算方法和算法。
在此过程中,我收获了很多,也产生了许多感想。
首先,数值分析教给我了科学问题解决的方法。
在数值计算中,我们通常无法通过简单的代数运算来求解问题,而是需要借助计算机和数值算法来逼近解。
这种方法可以应用于很多实际问题,例如求解线性方程组、积分、微分方程等。
通过数值分析课程的学习,我掌握了很多常见的数值计算方法,例如高斯消元法、插值方法、数值积分等。
这些方法在实际问题中的应用非常广泛,能够帮助我们解决许多实际问题,提高计算效率和精度。
其次,数值分析也教会了我如何分析和估计误差。
在数值计算中,误差是无法避免的,而且可能会在计算过程中不断累积。
因此,我们需要了解误差的来源,能够进行误差估计和控制。
通过学习数值分析,我学会了如何使用泰勒展开式、理解截断误差和舍入误差等概念,同时也学会了如何使用残差计算和误差估计方法。
这对于判断数值结果的可靠性和计算效果的好坏非常重要,能够帮助我们找到优化方法和改进方案。
另外,数值分析还教会了我如何进行数值模拟和数据处理。
在实际工程和科学研究中,常常需要通过数值模拟来研究分析问题。
通过数值分析的学习,我学会了如何建立数学模型、选择合适的数值方法和算法来模拟求解问题,并能够对模拟结果进行合理的处理和分析。
这对于科学研究和工程设计都非常有价值,能够提高研究效率和解决复杂问题的能力。
最后,数值分析还培养了我一种严谨的科学态度和问题解决的能力。
在数值计算中,一个细微的误差可能会导致完全不同的结果,因此需要我们对问题进行仔细的分析,并保持谨慎的态度。
通过编程实现数值算法,我学会了如何调试代码和检查问题,发现解决bug的方法。
这培养了我的逻辑思维和问题解决能力,也增强了我对科学研究和工程实践的兴趣和热情。
综上所述,通过数值分析的学习,我不仅掌握了一些重要的数值计算方法和算法,还学会了科学问题解决的方法和误差估计的技巧。
数值分析总结

第一章绪论1.数值运算的误差估计2.绝对误差、相对误差与有效数字3.避免误差的相关问题病态问题与条件数算法的数值稳定性数值运算中的若干原则第二章非线性方程求根1.不动点迭代格式不动点迭代格式的构造、计算全局收敛性判断局部收敛性与收敛阶判断(两个方法)2.Newton迭代格式、计算及几何意义局部收敛性及收敛阶(单、重根)非局部收敛性判断(两个方法)3.Steffensen迭代格式及计算(具有)二阶的局部收敛性4.Newton迭代的变形求重根的迭代法(三种方法)避免导数计算的弦割法(两种方法)Newton下山法*5.二分法计算预先估计对分次数第三章解线性方程组的直接法1.矩阵三角分解法及其方程组求解 直接三角分解法及其分解的条件平方根法(Cholesky 分解)追赶法列主元三角分解法* 2.Gauss 消去法Gauss 主元素消去法(列主元素消去法、全主元素消去法) Gauss 顺序消去法3.方程组的性态与误差分析 向量和矩阵的范数(基础知识) 方程组解的相对误差估计 矩阵的条件数 病态方程组的求解*第四章解线性代数方程组的迭代法1.迭代法的基本理论简单迭代法格式的构造、收敛性判断以及方程组的求解Gauss—Seidel迭代法格式的构造、收敛性判断以及方程组的求解2.三种迭代法的构造、收敛性判断以及方程组的求解Jacobi迭代法基于Jacobi迭代法的Gauss—Seidel迭代法逐次超松弛迭代法①掌握简单迭代收敛性判断的方法。
设B为迭代矩阵,如果||B||<1,则用||B||判断迭代的收敛性比用ρ(B)<1更为方便,但此结论仅为充分条件。
如果||B||≥1,判断迭代的收敛性需考察ρ(B)<1是否成立。
如果需证明迭代发散,则需证明ρ(B)≥1。
②简单迭代法的收敛快慢,依赖于迭代矩阵谱半径的大小。
当ρ(B)<1,迭代次数k≥(mln10)/(-lnρ(B)),则迭代矩阵谱半径越小,收敛越快。
数值分析总结
数值分析总结数值分析是一门应用数学的学科,它的目标是使用数值方法来解决数学问题,尤其是那些难以使用解析方法求解的问题。
通过使用计算机来计算近似解,数值分析提供了一种实用而有效的解决方案。
在本文中,我将对我在学习数值分析过程中的一些主要收获进行总结。
一、数值方法的重要性数值方法不仅在科学计算中起着重要作用,而且在工程和实际应用领域也有广泛的应用。
无论是模拟天气预报、设计飞机的机翼,还是分析金融市场的波动,数值分析都可以提供快速、准确的结果。
因此,掌握数值方法成为了现代科学与工程领域必备的技能之一。
二、数值计算的误差与稳定性在数值计算中,我们经常会面对误差的问题。
舍入误差、截断误差和舍入误差都是我们需要关注的。
舍入误差是由于计算机在进行浮点数计算时的有限精度而引入的,而截断误差则是由于将无限精度的数学问题转化为有限精度计算引起的。
为了减小误差,我们可以使用舍入规则,并尽可能减小截断误差。
稳定性是另一个需要考虑的重要因素。
在一些计算中,输入数据的微小变化可能会导致输出结果的巨大变化。
这种情况下,我们说该算法是不稳定的。
为了确保计算的稳定性,我们需要选择合适的算法和数据结构,并且要进行合理的数值分析。
三、插值和拟合插值和拟合是数值分析的重要应用之一。
在实际问题中,我们往往只能够获得有限个数据点,但是我们需要获得一条曲线或函数来描述这些数据。
插值方法可以通过连接这些数据点来获得平滑的曲线,而拟合方法则通过选择一个合适的函数来逼近数据点。
在实际应用中,我们需要根据具体问题选择合适的插值和拟合方法,并进行适当的调整和优化。
四、求解非线性方程求解非线性方程是数值分析中的一个重要问题。
在实际应用中,很多问题都可以归纳为求解非线性方程。
例如,求解光学系统中的折射问题、解微分方程等。
数值分析提供了多种求解非线性方程的方法,如牛顿法、二分法、割线法等。
这些方法有着各自的特点和适用范围,我们需要根据问题的性质选择合适的方法。
数值分析总结
数值分析复习总结任课教师王建国第二章数值分析基本概念教学内容:1.误差与有效数字误差、误差限、相对误差、相对误差限和有效数字的定义及相互关系;误差的来源和误差的基本特性;误差的计算(估计)的基本方法。
2.算法的适定性问题数值分析中的病态和不稳定性问题;病态问题和不稳定算法的实例分析。
3.数值计算的几个注意问题数值计算的基本概念误差概念和分析误差的定义:设x是精确值,p是近似值,则定义两者之差是绝对误差:a x p∆=-由于精确值一般是未知的,因而Δ不能求出来,但可以根据测量误差或计算情况估计它的上限|-|x p εε<称为绝对误差限。
相对误差定义为绝对误差与精确值之比ar x∆∆=ar xη∆∆=<称为相对误差限● 误差的来源:舍入误差将无限位字长的精确数处理成有限位字长近似数的处理方法称为舍入方法。
带来舍人误差。
截断误差用数值法求解数学模型时,往往用简单代替复杂,或者用有限过程代替无限过程所引起的误差。
● 有效数字对于a=a0 a1 … am . am+1 … am+n(a0≠0) 的近似数, 若|Δ|≤0.5x10-n ,则称a 为具有m+n+1位有效数字的有效数,其中每一位数字都叫做a 的有效数字。
有效数和可靠数的最末位数字称为可疑数字有效数位的多少直接影响到近似值的绝对误差与相对误差的大小。
推论1 对于给出的有效数,其绝对误差限不大于其最末数字的半个单位。
推论2 对于给出的一个有效数,其相对误差限可估计如下:例:计算y = ln x 。
若x ≈ 20,则取x 的几位有效数字可保证y 的相对误差 < 0.1% ?120.10mn x a a a =±⨯1102m nx x *-∆=-≤⨯120.10mn x a a a =±⨯15()10nr x a -∆≤⨯●数值计算的算法问题“良态”问题和“病态”问题在适定的情况下,若对于原始数据很小的变化δX,对应的参数误差δy也很小,则称该数学问题是良态问题;若δy很大,则称为病态问题。
数值分析第二章学习小结-
数值分析第⼆章学习⼩结-第2章插值法--------学习⼩结姓名班级学号⼀、本章学习体会1.我的感受:在学习本章之前,我在很多地⽅都见到过涉及到插值法的问题,⽐如中学时见到的类似于“给定两组数据,求⽬标函数”,⽣活中的“由坐⽕车的某两站到站时间估计⽕车到其他站的时间”。
⽽经过了《数值分析》第⼆章“插值法”的学习,我知道了简单估计与科学插值之间的关系以及拉格朗⽇插值、⽜顿插值、分段线性插值、三次样条插值、埃尔⽶特插值这些经典的插值⽅法,我知道了插值法是⾮常系统、科学的数学估计⽅法与⼯科领域的优化⽅法。
2.我的困惑:经过了这⼀章插值法的学习,我知道了拉格朗⽇插值、⽜顿插值等等优秀的插值⽅法,但是针对不同的问题,我们应该如何选择最适合的插值⽅法呢?或者说在不同类型的题⽬中各种插值法的优势是什么?(困惑解答在⼩结思考题处)⼆、本章知识梳理b x a x xc x a x s n j j i i ≤≤-+=∑∑-+,)(1)(313三、本章思考题思考题:在不同类型的题⽬中各种插值法的优势劣势分别是什么?思考:1.拉格朗⽇插值:优点:公式结构整齐紧凑,理论分析⽅便简单;缺点:随着插值点的变化计算量成倍增加,计算变得⼗分繁琐,插值点较多时误差⼤数值不稳定。
插值多项式不能全⾯反映被插值函数的性质,不能满⾜插值多项式与被插值函数在部分或全部插值节点上的导数值与⾼阶导数值相等。
2.⽜顿插值:优点:公式结构整齐紧凑,理论分析⽅便简单并且随着插值点的变化计算仍相对⽐较简单;缺点:插值多项式不能全⾯反映被插值函数的性质,不能满⾜插值多项式与被插值函数在部分或全部插值节点上的导数值与⾼阶导数值相等。
3.埃尔⽶特插值优点:插值函数与被插值函数贴合程度⾼,在插值节点上其⼆者导数值相同;缺点:被插值函数在插值节点的导数值在实例中不易知。
4.分段线性插值优点:计算简洁⽅便,舍⼊误差较⼩,数据稳定性好,易编程缺点:在插值节点处不光滑,不满⾜插值节点处插值函数导数连续。
数值分析实习报告总结
一、实习背景数值分析是数学的一个重要分支,它研究如何用数值方法求解数学问题。
随着计算机技术的飞速发展,数值分析在各个领域得到了广泛的应用。
为了提高自己的实践能力,我选择了数值分析作为实习课题,希望通过这次实习,能够掌握数值分析的基本方法,并将其应用于实际问题中。
二、实习过程1. 实习初期在实习初期,我首先了解了数值分析的基本概念、理论和方法。
通过阅读相关教材和文献,我对数值分析有了初步的认识。
接着,我学习了数值分析的基本方法,如泰勒展开、牛顿法、高斯消元法等。
2. 实习中期在实习中期,我选择了几个实际问题进行数值计算。
首先,我使用泰勒展开法求解一个简单的微分方程。
通过编写程序,我得到了微分方程的近似解。
然后,我运用牛顿法求解一个非线性方程组。
在实际计算过程中,我遇到了一些问题,如收敛性、迭代次数过多等。
通过查阅资料和请教导师,我找到了解决方法,成功求解了方程组。
3. 实习后期在实习后期,我进一步学习了数值分析的高级方法,如复化梯形公式、复化Simpson公式、自适应梯形法等。
这些方法在解决实际问题中具有更高的精度和效率。
我选择了一个具体的工程问题,运用复化梯形公式求解定积分。
在计算过程中,我遇到了区间细分、精度控制等问题。
通过不断尝试和调整,我得到了较为精确的积分值。
三、实习收获与体会1. 理论与实践相结合通过这次实习,我深刻体会到理论与实践相结合的重要性。
在实习过程中,我不仅学习了数值分析的理论知识,还将其应用于实际问题中。
这使我更加深刻地理解了数值分析的基本方法,提高了自己的实践能力。
2. 严谨的学术态度在实习过程中,我养成了严谨的学术态度。
在编写程序、进行数值计算时,我注重细节,力求精确。
这使我更加注重学术规范,提高了自己的学术素养。
3. 团队合作精神实习过程中,我与其他同学进行了交流与合作。
在解决实际问题时,我们互相学习、互相帮助,共同完成了实习任务。
这使我更加懂得团队合作的重要性,提高了自己的团队协作能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 迭代法
迭代法的一般形式及 其收敛性
谱半径
迭代法收敛的充 要条件
迭代法
Jacobi 迭代法 Gauss-Seidel 迭代法
逐次超松弛迭代法
相关概念 2.4.1 迭代法的一般形式及其收敛性
a.设 nn 矩阵 G 的特征值是 1,2 ,,n ,称
为矩阵 G 的谱半径。
(G)max 1in
i
迭代公式
四、 本章测验题
用 Doolittle 分解法求解下列方程组
x1 x2 3x3 10 4x1 2x2 5x3 20 - x1 4x2 3x3 12
解:对方程的系数矩阵 A 进行 LU 分解:
1 1 3 1 1 3 1 1 3 1 1 3
A
4
2
5
3
2
5
3
-1
-
4
a1 b1
d1
d2 a2 c2
A
cn1
cn
dn an
的线性方程组 Ax=b 称为拟三对角线性方程组。
2.3 矩阵的条件数与病态线性方程组
矩阵的条件数 与线性方程组
的性态
条件数:对非奇异矩阵 A ,称量 A A1 为 矩阵 A 的条件数,记作 cond( A) A A1
常用的条件数: cond( A)
d.定理 2.13 GS 法收敛的充分必要条件是 (GG ) 1。
定理 2.14 如果 GG 1,则 GS 法收敛。 定理 2.15 如果方程组的系数矩阵 A 是主对角线按行(或按列)严格占优阵,则用 GS
法求解必收敛。 2.4.4 逐次超松弛迭代法
c.迭代公式:
x
(k
1)
( 1
DL)
1
11
DU
A
A1
,
cond(A)2
A
A1
2
矩阵的条件数 与病态线性方 程组
关于病态线 性方程组的
求解问题
采用高精度的算术运算 平衡方法 残差校正法
相关概念: 2.3.1 矩阵的条件数与线性方程组的形态
a.定理 2.6 设 A 、 A Rnn ,b、 b Rn ,A 非奇异,b 0 ,x 是方程组 A,x=b
Ly=b, Ux=y
先由 Ly=b 解出向量 y,再由 Ux=y 解出向量 x,这就是原方程组的解向量。
矩阵 A 分解为 LU 的形式称为矩阵 A 的三角分解。
2.Doolittle 分解法:如果上诉分解式中 L 是单位下三角阵,U 是上三角矩阵,则称为矩阵 A
的 Doolittle(杜立特尔)分解。
x
(
k
)
( 1
DL)
1
b
(
k
0,1,)
b.迭代矩阵:
GS
(
1
DL)
1
11
DU
c.分量形式:
x (k 1) i
i 1 j 1
aij aii
x (k 1) j
1 1
xi(
k
)
n aij a ji1 ii
x
(k j
)
bi aii
(
i1,2,,n;k 1,2, )
d.定理 2.17 SOR 方法收敛的充分必要条件是 (GG ) 1。
过
程
程
(1)如果 akk (k ) 0 ,则算法失效,停止计算;否则转(2)。
(2)对于 i=k=1,k=2,…,n 计算
2、 回代过程
2.1.2 列主元素 Gauss 消去法
1、 消元过程 对于 k=1,2,…,n-1 执行
(1)选行号 ik ,使
(2)交换
a(k
) kj
与
a(k) ik
j
(j=k,k+1,…,n)以及 b(k )k
(3)设 A 是非奇异矩阵的实对称矩阵,则有
cond
(
A)
2
1 n
其中 1 和 n 分别是矩阵 A 的模为最大和模为最小的特征值。
(4)设 A 是正交矩阵,则有 cond( A)2 1 2.3.2 关于病态线性方程组的求解问题
a.可以用下列方法判别线性方程组 Ax=b 是否病态:
(1)当 det A 相对很小或 A 的某些行(或列)近似线性相关是 2,方程组可能病态。
b.迭代矩阵: GJ D 1 LD
c.分量形式:
xi(k
1)
n
aij
j 1
ji
x
(k j
)
bi
aii
( i1,2,,n;k1,2,)
d. Jacobi 迭代法收敛的充分条件:
(1) GJ 1 (2)如果方程组 Axb 的系数矩阵是主对角线按行(或按列)严格占优阵,则用 Jacobi 迭
代法求解必收敛。 2.4.3Gauss-Seidel 迭代法
(2)用列主元素 Gauss 消去法求解方程组时,若出现小列主元
a(k) ik k
《1,则方程
组可能病态。
(3)分别用 b 和 bb ( b《1)作方程组的右端向量,求解 Axb 和 A~x = bb ,
若 x 和 ~x 相差很大,则 Axb 是病态的。 当 A 的元素的数量级差别很大,且无一定规则时,方程组可能病态。
3
-1 - 4
-1 - 4 3 -1 - 4 3 -1 3 3 -1 3 8
L
3
-1 3
1 1 3
U
-1 - 4
8
由 Ly=b, Ux=y
10 得: y -10
52
x -89321 3 13 3
第 2 章 线性方程组的解法 --------学习小结
姓名 赵越 班级 机械 1504 学号 S20150171 一、 本章学习体会
通过两周的时间,我们进行了第 2 章—线性方程组的解法的学习。通过对这一章 的学习,我了解到了两种求解线性方程组的方法:直接方法和迭代法。掌握了这两种算 法的分类和各种类别计算方法的思路和算法。并且通过对这些算法的相互比较,得出了 其各自的优点和缺点,认识到了要根据具体的线性方程组的特点来选择合适的解法,这样 我们才能快速准确的得到方程组的解。然后还尝试去编译这些算法的 matlab 程序,学会 通过电脑编程来进行线性方程组的求解。
二、 本章知识梳理 2.1Gauss 消去法
Gauss 消去法是由消元和回代这两个过程组成的。
2主元素 Gauss 消去法
消
回
元
代
过
过
程
程
相关概念: 2.1.1 顺序 Gauss 消去法
1、 消元过程
对于 k=1,2,…,n-1 执行
消
回
元
代
过
3.Crout 分解法:如果 L 是下三角矩阵,U 是单位上三角阵,则称为矩阵 A 的 Crout(克劳
特)分解。
2.2.2 选主元的 Doolittle 分解法
1、定理 2.4 若矩阵 A Rnn 非奇异,则存在置换矩阵 Q,使得 QA 可作 Doolittle
分解,其中 L 是单位下三角矩阵,U 是上三角矩阵。
2.2.3 三角分解法解带状线性方程组 2.2.4 追赶法求解三对角线性方程组 1、设 n 元线性方程组 Ax=b 的系数矩阵 A 为非奇异的三对角矩阵
a1 b1
d2 a2 c2
A
cn1
dn an
这种方程组称为三对角线性方程组。
2.2.5 拟三对角线性方程组的求解方法
1、系数矩阵为如下的拟三角矩阵
敛。
三、 本章思考题
在求解线性方程组的时候,直接法和迭代法的区别是什么?各自的算法思想 是什么?适用的范围是什么?
答:迭代法就是一种不断的通过用旧的值来递推出新的值的过程,与迭代法 相对应的就是直接法,顾名思义,直接法就是直接对所求问题进行求解的方法, 一次性的快速解决问题。一般情况下,直接法是有线考虑的,但是遇到未知量数 量较多的复杂问题时,直接法就无法直接求解到答案,这就需要使用其他方法, 迭代法就可以很好的解决这种情况。同时由于计算机的发展,可以利用计算机运 算速度快的特点,结合迭代法的特点,很快的就可以求解出答案,比直接法要快 的多。
定理 2.18 如果 GS 1,则 SOR 方法收敛。 定理 2.19 SOR 方法收敛的必要条件是 0 2。 定理 2.20 如果方程组的系数矩阵 A 是主对角线按行(或按列)严格占优阵,则用 0 1的 SOR 方法求解必收敛。 定理 2.21 如果方程组的系数矩阵 A 是正定矩阵,则用 0 2的 SOR 方法求解必收
迭代矩阵
分量形式 收敛的充要条 件 迭代公式 迭代矩阵 分量形式 收敛的条件 迭代公式 迭代矩阵 分量形式
收敛的条件
R x b.定理 2.8 对任意的向量 d n ,迭代法 (k1)Gx(k1) d ( k0,1,)收敛的
充分必要条件是 (G)1。
2.4.2Jacobi 迭代法
a.迭代公式: x(k1) D 1 (LD)x(k) D 1b ( k 0,1,)
b.迭代公式: x(k1) (D L)-1Ux (k) (D L)(1) b ( k 0,1,)
b.迭代矩阵: GG (- D L)1U
c.分量形式:
x(k 1) i
i 1 j 1
aij
aii
x(k 1) j
n aij
j 11
aii
x
(k j
)
bi
aii
(i
1,2,...n; k
0,1,...)
b 与 (k) ik
所含的数值。
(3)对于 i=k+1,k+2,…,n 计算
2、 回代过程
2.2 直接三角分解法
2.2 直接三角分解法