【方案】焊接机器人及其柔性夹具控制系统
点焊机器人控制系统毕业设计

点焊机器人控制系统毕业设计一、选题背景及意义随着现代制造业的快速发展,自动化生产已经成为了制造业的主流趋势。
而点焊机器人作为其中的重要设备之一,在汽车、家电等行业中得到了广泛应用。
点焊机器人可以提高生产效率,降低生产成本,保证产品质量,减少人力资源浪费等方面具有重要意义。
因此,设计一套点焊机器人控制系统是非常有必要的。
该系统可以实现对点焊机器人的精准控制,提高其工作效率和稳定性,同时也可以提高操作安全性和减少操作难度。
二、设计目标本设计旨在设计一套全自动化的点焊机器人控制系统,实现以下目标:1. 实现对点焊机器人的精准控制,并能够自动完成多种复杂任务。
2. 提高点焊机器人的工作效率和稳定性,并保证产品质量。
3. 提高操作安全性和减少操作难度。
三、设计方案1. 系统框架本系统采用分布式控制结构,包括上位机、下位机和PLC三个部分。
其中上位机主要负责图形界面的显示和操作,下位机主要负责点焊机器人的运动控制,PLC主要负责点焊机器人的输入输出控制。
2. 硬件设计本系统采用单片机作为下位机控制芯片,并配合步进电机和直流电机实现点焊机器人的运动控制。
同时,为了保证系统的稳定性和可靠性,还需要加入各种传感器、电源、开关等辅助设备。
3. 软件设计本系统采用Visual Studio作为上位机软件开发工具,使用C#语言编写程序。
下位机采用Keil C51进行编程。
PLC则采用三菱公司的GX Works 2进行编程。
4. 功能设计本系统具有以下功能:(1)图形化界面:通过上位机可以实现对点焊任务的设置、调试和监控等操作。
(2)自动化控制:通过上位机设置任务参数后,下位机可以自动完成点焊任务。
(3)故障检测:系统具有故障检测功能,在发生故障时能够及时报警并停止运行。
(4)数据存储:系统可以将每次点焊任务的数据进行记录,并保存到数据库中。
四、总结本设计提出了一套全自动化的点焊机器人控制系统,实现了对点焊机器人的精准控制,提高了其工作效率和稳定性,并保证了产品质量。
工业机器人柔性夹具实际应用与展望

社科研究17作者简介:聂波(1982.9— ),男,汉族,湖北咸宁人,硕士。
主要研究方向:机电一体化、工业机器人。
课题项目:一种多功能工业机器人末端执行器的设计研究(项目编号:2019B002)。
现代制造业的先进性是传统工业生产的集成化、自动化越来越普遍。
工业机器人主要应用于航空、汽车等高附加值、高附加值行业。
随着计算机系统、数控加工和柔性制造技术的不断改进,工业机器人的成本逐渐降低。
因此,工业机器人逐渐应用于各种传统产品行业,附加值并不一定高。
然而,铜川通用工业机械端部夹具无法满足市场对个性化产品生产的巨大需求,传统的专用夹具也不适合,因此柔性夹具成为解决这一明显弊端的必然途径。
柔性夹具是指同一夹具在改变工件形状和尺寸后,调整参数后仍能适应变化。
柔性夹具在数控加工中具有多品种少数量的特点,值得学习。
一、柔性夹具元件柔性夹具是一套具有不同形状、尺寸和功能的预制构件和组合件。
在精加工中能较好地保证工件的定位基准和加工农业表面的定位精度。
它还可以保证夹具能使刀具根据数控和加工中心机床工作面的要求尽可能接近加工台,甚至所有加工面都能减少机床的停机时间。
在加工中,一次夹多种物件进行依次加工。
它可以缩短夹具、刀具和工件系统的调整时间,减少刀具更换次数和刀具调整时间,更好地发挥数控机床和加工中心机床的高效性能。
柔性夹具元件可通过组装、使用、拆卸和重新组装等方式重复使用。
二、工业机器人柔性夹具的发展根据工业发展要求,设计制造了基于组合夹具的柔性夹具。
柔性夹具的特点是:统一的零件规格、多功能的零件性能、简单的零件结构、模块化、夹紧工件的快速自动化、可调的重用、微机化的装配管理。
高强度、高刚度、高精度,为了提高劳动生产率,缩短工件加工时间,工件加工朝着高速化、人性化的切削量方向发展,工艺高度集中。
工件定位夹紧后,依次完成铣、钻、锉等多工序加工。
切削力的大小和方向不断变化,这就要求柔性夹具本身具有较高的使用强度和刚度,以满足工件的加工精度。
机器人焊接夹具的设计要点分析

机器人焊接夹具的设计要点分析刘继乐摘要:当前,我国正在大力发展焊接机器人,最为典型的代表就是富士康集团,其已经采用了大量的焊接机器人,从而大大提高了生产效率。
由此可见,焊接机器人在当今制造行业当中具有十分重要的作用,而当前焊接夹具则是通过标准化、柔性化以及快捷化的基础上,然后再降低成本,从而使得焊接夹具越来越普及,在柔性焊接机器人当中得到了广泛使用。
随着计算机、通信技术、网络技术的发展,使得焊接机器人的发展突飞猛进,当前正在朝着高效率、高速度、高精度方向发展。
关键词:工业机器人;焊接夹具;柔性化设计随着经济的不断发展,机械工业也发生了较大变化,产品的生命周期越来越短,新产品层出不穷的发展,人们需要各种各样的产品,新产品的更换速度越来越快,这就要求生产制造行业要尽可能的在较短的时间内完成生产,同时新产品的数量往往不高。
从这个角度上来说,柔性焊接机器人将成为未来的一种发展趋势,因此对于焊接夹具来说,也要求较高,这就要求我们不断提高焊接夹具的精度、稳定性才能够通过柔性焊接机器人来满足用户的需求,才能够提高制造企业的竞争力。
1焊接夹具的介绍焊接夹具是机械加工当中必不可少的基础工具。
我们在设计焊接工装的时候,就要正确按章和固定每一个零部件,这也是采用焊接机器人的重要条件。
一个工件的焊接精度高低,一个重要因素就是焊接工装的合理性、安装方式等,这些都是直接决定焊接工艺的质量,对于焊接的成本有着十分重要的影响,通常来说,焊接工装的成本对于整个生产系统来说,约占1/10-1/5左右焊接机器人除了焊接主体之外,还必须要用到焊接工装夹具,因为它可以将焊件精准的定位,方便焊接的进行利保证精度,有助于提高产品质量,同时还可以减轻工人的劳动量作为焊接机器人的工装夹具,自然不像其他设备那么简单,必须要符合一定的设计要求才能予以应用。
焊接机器人的工装夹具除了具有上述特性之外,在自动化、机械化等方面都起着非常重要的作用,是焊接工作能实现高速、高效、精密、复合、智能、环保等目标的关键所在。
基于PLC的焊接机器人柔性控制系统

作 站 的 控 制 采 用 三菱 Q 系 P C L ,机 器 人 本 体 采 用
F N CR 3i A U 一 0 .焊 接 控 制 器 博 世 B S 2 0 O 6 0 ,触 摸 屏 采
用西 门子 T 2 0 ( 以直 接设定 数据 ,比如数据 寄存 P7 可
器 、I 等 , 而 且 报 警 信 息 ) 这 样 ,在 触 摸 屏 上 阅 读 信 息 ,一 目 了然 ,简 化 。
了操 作 。
装 配 的必 然 发 展 方 向 ,要 求 发 展 生 产 周 期 短 、加 工 成 本 低 、产 品 质 量 高 的柔 性 装 备 系 统 。焊 接 机 器 人 具 有 焊 缝 轨 迹 重 复 性 好 、焊 接 质 量 稳 定 性 高 等 优 点 ,已 经 广 泛应 用 于 汽 车 、工 程 机 械 、通用 机 械 和 兵 器 工 业 等 领 域[1 是 在 大 型 焊 接结 构 生 产 应 用 中 仍 存 在 着 4。但 , 5 许 多 问 题 ,需 要 进 一 步 提 高 机 器 人 控 制 系 统 的 柔 性
作 为 机 器 人 的 核 心 部 分 ,控 制 系 统 是 影 响 机 器 人 性 能 的关 键 部分 之一 , 它从 一 定 程 度 上 影 响 着 机 器 人 的 发 展 ,对 于 不 同结 构 的 机 器 人 ,控 制 系 统 的 设 计 方 案 也 不 同 。本 研 究 主要 研 究 焊 接 机 器 人 控 制 系 统 的设
Ke r :rb t PLC;c nr ls se wedng y wo ds o o ; o to y tm; li
1 引 言
自从 16 9 0年 初 第 一 台 工 业 机 器 人 问 世 至 今 ,机
器 人 技 术 得 到 了迅 猛 发 展 。随 着 机 器 人 技 术 的 日趋 成
某款MPV车型柔性焊接工装设计

某款MPV车型柔性焊接工装设计作者:***来源:《时代汽车》2022年第07期摘要:近年來,随着汽车款式的增多,汽车车身的焊装工装类别越来越多样化。
焊接工装类别的增加,势必造成生产车间场地浪费,生产成本增加和生产效益的下降。
所以完善汽车车身的焊装工艺水平,使汽车车身焊接工装柔性化设计成为一种汽车行业的发展趋势。
本文以汽车制造业中工业机器人焊接生产线为对象,研究工业机器人焊接生产线柔性工装特点。
关键词:车身焊接编程控制系统1 引言在汽车制造业中,焊接工装的力度和装配精度直接影响汽车的生产效率和产品质量。
随着汽车工业的不断发展和经济水平的提高,人们对汽车的要求越来越高,这对汽车车身的焊接尺寸、精度和质量提出了更高的要求,这使得焊接工装的精度等级至关重要,为优化汽车车身焊接工装的结构,提高焊接效率,设计更适合新车型的焊接工装势在必行[1]。
闫淑亮[2]主要分析了汽车车身的焊装工艺设计,深入探讨当下汽车车身的焊装工装设计,以保证汽车生产的质量。
李新社等[3]阐述了乘用车工厂柔性焊装线的开发设计、焊接工艺性分析、柔性焊装线的模式选择等内容。
2 车身焊接柔性工作站随着工业自动化的普及和发展,焊接机器人的应用逐渐普及,主要应用于汽车、电子、机械等众多领域。
车身柔性焊接工作站一般由焊接机器人和柔性焊接平台组成。
自动化焊接线的形成,不仅可以节约能源提高生产效率,还能避免人为的焊接失误。
如图1所示,工业常用的车身自动化柔性焊接。
3 工件定位工装设计对工作站机器人焊接区域,人工上件存在安全风险,机器人配合抓手上件、焊接是较为高效的方法。
为便于机器人携带抓手进行零件的快速移动上下件,机器人抓手需要轻量化处理。
轻量化抓手主要采用模块化的铝制八角管进行设计,如图2为某公司抓手结构产品图。
抓手设计的定位点需要与拼台定位选取的点区分开,因考虑到抓取放置位置精度要求,零件需要有2个销孔进行定位,销孔选取时,主要考虑孔的稳定性,其次是要靠近抓手夹紧点(抓取点)。
工业机器人中的柔性夹具设计与优化

工业机器人中的柔性夹具设计与优化工业机器人作为现代制造业的重要装备,已经广泛应用于各个行业的生产线上。
在现代制造业中,柔性夹具作为一种重要的工具也得到了广泛的应用。
柔性夹具的设计与优化对于提高生产线效率,降低成本,提高产品质量都起到了至关重要的作用。
本文将针对工业机器人中的柔性夹具设计与优化进行探讨与分析。
首先,我们来了解什么是柔性夹具。
柔性夹具是一种可以根据工件形状和尺寸自动调整的夹具,其主要特点是具有良好的适应性和灵活性。
与传统的夹具相比,柔性夹具能够自适应各类工件形状,不需要频繁更换,提高了工作效率和生产线的稳定性。
在工业机器人中,柔性夹具的设计与优化需要考虑以下几个方面:首先,要考虑工件形状的适配性。
不同的工件形状需要设计相应的夹具结构来保持工件的稳定性和安全性。
柔性夹具设计时应该考虑工件的形状、尺寸以及表面特性等因素,调整夹具的形状和尺寸,确保夹具与工件之间的接触面积最大化,从而提高夹具的夹持力和稳定性。
其次,要考虑工件尺寸的适应性。
不同尺寸的工件需要设计不同尺寸的夹具来夹持。
柔性夹具应该具备自动调节夹持力的能力,可以根据工件尺寸的变化而自动调整夹持力大小,确保夹具与工件之间的紧密接触,从而提高夹持效果。
此外,夹具的材料选择也是关键。
夹具的材料应具备足够的强度和刚性,能够承受机器人的运动和重力负荷。
同时,夹具的材料还应具备较好的摩擦系数和抗磨损性能,从而提高夹持的稳定性和可靠性。
优化柔性夹具设计的关键在于提高其自适应性和智能化程度。
通过引入传感器和控制系统,可以实现对夹具尺寸、形状和夹持力的实时调整和监测。
例如,可以利用视觉传感器对工件形状进行扫描和分析,从而确定夹具的形状和尺寸。
同时,可以利用力传感器对夹具与工件之间的压力和接触状态进行监测,及时调整夹持力,避免工件变形或夹具滑脱。
另外,优化柔性夹具的设计还需要考虑生产线的整体效率和自动化程度。
柔性夹具与机器人之间的协同工作可以实现生产线的自动化和智能化。
焊接机器人工作站方案

3.劳动强度:焊接机器人工作站降低劳动强度,改善作业环境。
4.经济效益:焊接机器人工作站的投入使用,有助于降低生产成本,提高企业竞争力。
本方案旨在为企业提供一套合法合规、高效可靠的焊接机器人工作站解决方案。在实施过程中,需根据企业实际情况进行适当调整与优化,以确保方案的实施效果。
-焊接:焊ቤተ መጻሕፍቲ ባይዱ机器人按照预设程序进行焊接。
-下料:焊接完成后,人工取下工件。
四、方案实施
1.操作人员培训:对操作人员进行焊接机器人技术培训,使其熟练掌握设备操作、编程及维护。
2.设备安装调试:按照设计方案,完成焊接机器人、焊接设备、工装夹具等设备的安装与调试。
3.焊接工艺试验:通过调整焊接参数,优化焊接工艺,确保焊接质量。
4.生产运行:按照焊接工艺要求,组织生产运行。
五、质量保证与售后服务
1.提供详细的设备操作、维护说明书。
2.设备质保期内,提供免费维修、保养服务。
3.设备质保期外,提供有偿维修、保养服务。
4.建立客户档案,定期回访,了解设备运行情况。
六、效益分析
1.生产效率:焊接机器人工作站可替代多名熟练焊工,显著提高生产效率。
2.提高焊接质量,减少焊接缺陷。
3.降低劳动强度,改善作业环境。
4.实现焊接过程的自动化、智能化。
三、方案设计
1.机器人选型
根据焊接工件的特点及生产需求,选用六轴关节式焊接机器人。该机器人具有以下优点:
(1)灵活性好,适用于各种焊接工艺。
(2)精度高,重复定位精度±0.1mm。
(3)负载能力强,可满足不同焊接工件的搬运需求。
5.作业流程
(1)工件上料:人工将工件放置在工装夹具上。
X架焊接机器人焊接系统技术方案纯方案,21页

X架焊接机器人焊接系统设备名称:x架焊接机器人焊接系统数量:壹套一.应用范围:该机器人系统主要用于SY425X架焊接工件名称:SY425X架工件外形最大尺寸:2700X3050X877mm孔中心大小尺寸:①800工件最大重量:4100kg工件材质:碳钢、低合金钢等焊接方式:双丝脉冲MAG保护气体:83%Ar+17%CO2气体保护焊效率:工作站采用单工位两班作业,每班平均作业时间10小时,平均焊接外焊缝时间5〜6小时/件,紧固时间要求不超过10分钟(不含吊运时间)。
工件组对要求:焊缝位置偏差WIOnim焊缝间隙W2mm二.项目描述:1.系统描述:采用单工位结构形式,焊接机器人倒装于三轴滑轨龙门架上,配以L形双轴变位机,全系统为11轴联控。
布局如图所示:X架焊接机器人焊接系统主要由机器人系统、三轴滑轨龙门架、L型双轴变位机、双丝焊接系统、防碰撞传感器、清枪剪丝器、电气控制系统等组成,系统具有技术先进、功能完善、适应性强、可靠性高的特点,能有效地提高焊接质量和一致性,减轻操作者的劳动强度,提高生产效率。
系统设备配置表:2.操作描述:2.1.工件装夹:操作工使用行车将点定好的工件装夹到变位机上,利用变位机上焊接夹具对工件进行定位及夹紧(保证孔中心与变位机回转中心的同心度),操作工离开机器人工作区域,按下操作台“启动”按钮,控制系统通过夹具上的传感器进行确认。
2.2.机器人焊接:机器人在三轴滑轨龙门架上行走至焊接位置,机器人使用焊缝自动寻位功能对焊缝进行起始点的寻找,自动进行单层单道(或多层多道)焊接,在焊接过程中,机器人使用电弧跟踪实现对接焊缝(带坡口)和角焊缝的跟踪,保证焊枪对中,纠正由于工件装配或焊接变形产生的偏差,同时变位机按预设程序变位(翻转或旋转)、机器人按预设程序升降或进退或移动,使各焊缝处于最佳焊接位置, 保证焊接质量。
2.3.工件卸装:焊接结束后,机器人退回到安全位置,操作工再次进入机器人工作区域,松开工装,操作人员用行车卸下工件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊接机器人及其柔性夹具控制系统焊接机器人及柔性夹具控制系统在结构上主要由两部分组成:机械系统和控制系统。
机械系统包括机器人工作房、机器人本体、机器人外轴回转台及机器人周边设备等;控制系统可分为机器人控制系统、工装夹具识别及控制系统、人机界面等辅助单元。
机械结构1.机器人工作房机器人工作房的布置及主要部件如图1所示,工作房外形为六边梯形,房间由方管框架加薄铁板焊接而成,焊接机器人在房间中央位置,左右对称位置各有一个工作台,分别由两个机器人外轴电机直接驱动。
两工作台之间有30°左右的夹角,机器人工作时可在两工位之间切换,即机器人在左侧工位焊接时,操作工可在右侧工位上下料,同样,当机器人在右侧工位工作时,操作工可在左侧装拆工件,这样可使机器人停机等待时间大大减少,从而提高生产效率。
图1 机器人工作房顶视图在机器人和回转台之间有气缸驱动的隔离装置,它可以遮挡弧焊时产生的弧光和焊渣,并保护操作者在另一侧操作时不受影响。
在两工位外侧开了两个门,以便操作,该门上方安装了气动门帘,焊接时可自动关上,以遮挡弧光和焊渣。
两工位外侧分别有一个双手启动操作盒,用以操作焊接夹具盒启动机器人进行焊接工作。
在整个工作房的前侧有一个主操作面板,上面安装了触摸屏和若干按钮,在此可以对系统进行设置和操作。
机器人工作房的外观如图2所示。
图2 机器人工作房图我们采用的FANUC ROBOWELD 100i系列焊接机器人是标准的六轴机器人,具有六个自由度,理论上可以达到运动范围内的任意一点,其臂展范围为1440mm,配以松下的焊枪,足以满足本系统的需要。
另外,汽车零部件的焊接对机器人轨迹的重复定位精度有一定要求,一般应小于0.5mm,而该机器人可达到0.2mm,可以满足生产需要。
此外,整车厂商对及时供货和零库存的要求决定了零部件厂商对生产效率的关注,所以对设备的自动化程度和零件生产节拍有近乎苛刻的要求,FANUC机器人2000mm/s的直线速度可以大大减少机器人轨迹中空行程所浪费的时间。
机器人本体外形如图3所示。
图3 机器人本体3.机器人外轴回转台外轴回转台由支架、驱动电机、减速器和回转框架等构成,焊接夹具就固定在该框架上。
回转由机器人外轴直接控制,除去了以往由PLC控制的转台单独回转、位置确认以及与机器人通信等过程所增加的许多时间。
由于该回转台主动侧和从动侧之间的跨度较大(1800mm),而且在工作时转速又很高,因此对回转台在回转时的跳动范围是有一定要求的,需认真调校才能使回转台在工作时运转平稳,否则很容易引起电机过载、过热等情况,严重时将损坏设备。
4.机器人周边设备机器人焊接时还需要用到其他辅助设备来使生产顺利进行,并减少停机时间、降低设备故障率、提高安全性等,所以,该机器人工作房中还安装了一些周边设备,如焊丝剪切装置、喷硅油装置、焊枪清洗装置、光电保护装置、焊丝管平衡吊空装置等。
控制系统该机器人工作房的控制系统可分为主控系统和机器人控制系统两个层次,其总体结构如图4所示。
图4 控制系统结构简图1、主控系统主控系统采用OMRON CQM1H系列中小型PLC,该机种采用非机架结构的模块拼装方式,从左向右分别由电源模块PM、CPU模块、功能模块、输入输出模块及终端盖板组成。
根据应用系统的不同,用户可以选择相应的模块来组成所需的控制系。
由于CQM1H系列PLC 的模块种类丰富,功能齐全,几乎可以适应控制系统的各种需求,由其组成的系统也具有相当的柔性化程度。
本控制系统采用的模块及其功能如下:电源模块PA206:提供稳定的直流工作电源给各模块使用。
CPU模块CQM1H-CPU51:这是整个系统的核心部分,支持最大数量为512点的I/O;支持OMRON特殊指令如PID控制、浮点数运算、宏指令、脉冲指令等;支持Compobus/S和AS接口的多种主从网络模块;支持OMRON最新版编程软件CXP3.1;程序容量最大可达15.2K;内建16点直流12~24V的输入点。
将编制好的程序下载运行后可维持系统的自动运行。
该模块提供一个RS232端口,和两个内装板插槽,RS232端口可以和其他串口设备进行通讯,该系统中纳入的一个触摸屏TP,就是通过CPU上自带的RS232串口进行通讯的;内装板插槽上最多可以安装两块特殊功能卡,由于本系统无特殊功能需求,所以该槽上是空着的。
网络主模块CQM1-SRM21-V1:系统采用OMRON Compobus/S网络结构,可以大大减少现场接线工作量,并有效延长连接电缆的使用寿命,增加可靠性。
机器人工作房内两个回转台上各安装一块远程从模块,通过网络电缆和主模块进行通信,交换信息(I/O状态刷新)。
从模块为16点的远程输入模块,其中低8位分配给该工位夹具上的气缸检测夹紧和松开状态使用,高八位分配给系统用于识别夹具编号,进而设定和储存夹具控制信息,然后系统可以根据此信息来对不同夹具进行相应控制。
I/O输入输出模块:输入模块用于接收机器人工作房中各按钮、传感器等信号,输出模块用于控制各种执行器件,如气缸、电机、机器人等根据工艺要求进行动作,满足生产和安全的需要。
机器人的控制由主控系统通过与机器人控制器之间的I/O信号交换来实现。
2、机器人控制系统机器人控制系统由机器人控制器、外轴控制器、焊机等构成;在控制属性上,机器人控制系统是下层,是被控制的对象,它受上层主控系统的指挥和调用,处于被动地位。
机器人控制器由电源模块、CPU、伺服控制单元、输入输出模块、焊机接口模块等组成,用以控制机器人本体的自如运动,控制方法为程序示教和再现法,这是通过连接于控制器上的TP (Teach-Pandent示教器) 来实现的。
外轴控制器它是机器人控制器的扩展,内含一个伺服放大模块,可以同时控制两个外轴的运动。
由于这两个外轴是机器人控制器的一部分,所以它们可以在机器人本体移动的同时进行转动,从而将焊接轨迹中通常需要由外轴单独回转的时间节约下来,提高了焊接效率。
焊机控制器用于控制弧焊时的规范,如电流、电压、焊丝的送给、焊接保护气体通断等,对焊接质量的控制起关键作用。
关键控制方法研究客户要求中关键及难点在于:多套夹具能在一套系统中共存,夹具的更换时间不应超过五分钟,新制夹具加入系统时,无需改动PLC程序,做到自动识别和控制(即所谓的柔性控制),且系统中的夹具可扩展容量不应小于100台/套。
1.夹具控制字的形成⑴控制对象特点主要控制对象为夹具上的气缸,每套夹具上的气缸数量可能不一样,但总数不超过4组,每组气缸使用一个三位五通电磁阀,这样每套夹具有2x4=8个输出点控制电磁阀动作,有两个工位总共16个输出点;同时为了检测气缸的夹紧或松开状态,每组气缸配有两个传感器(干簧管磁性开关),每套夹具2x4=8点输入;鉴于夹具识别的需要,另分配8点输入用于以两进制识别不同夹具,这样每个工位上的16点远程输入模块正好用足,且夹具最大可扩展数量为20+21+…+26+27=28=256,理论上两工位有2x256=512套夹具容量,已足够。
⑵控制特征夹具上四组气缸分别称为第1、2、3、4组,在控制上的特征是:夹紧时的顺序为1号夹紧,1号夹紧到位后2号夹紧,依此类推,全部气缸都夹紧后启动机器人进行焊接作业;待机器人焊接完成后气缸逐次松开,通常的顺序与夹紧时相反。
根据夹具制造时的使用要求和工件焊接工艺的不同,有些夹具气缸数量可能少于四;有些气缸的夹紧或松开位置可能不必要进行检测等情况,设想在程序数据区中开辟若干存储区间,分别用于存放该套夹具上的每组气缸实际是否存在,每组气缸的传感器是否需要检测等信息。
⑶数据储存方式为了适应更多的情况,每类信息分别形成数据后在相邻的数据区储存,每套夹具包含的信息暂定为3类:气缸使用字、夹紧检测字、松开检测字,再加上1个备用字,故夹具控制字长度为四个字;该信息可存放于以夹具编号作为索引间接寻址的数据区内,当需要控制时可由系统将夹具信息再次寻址调出,按固定格式对夹具气缸进行控制,具体内容见表1:2.夹具自动识别的实现:⑴硬件组成主要依赖夹具接线盒中的识别芯片,该芯片其实只是一块小线路板,装了一块8位DIP拨码开关,通过二进制方式来表明该夹具的编号,每套夹具上都安装了一个接线盒,通过这种方式从硬件上来实现对夹具的编码,既简单也实用,且容易实现。
⑵软件实现:PLC程序上,每次程序循环中都对远程模块上对应于夹具编号的输入点进行扫描,并放入暂存区,同时与记忆区中的夹具编号进行比较。
如果两者相同,则表明该工位上的夹具状态正常,无需任何动作;如果不同,则提示夹具编号变化,需操作员确认,此时又分为两种情况:①有新夹具换上工作台,且系统已经正确识别出新放入的夹具的编号,那么操作员需要在触摸屏上确认该夹具编号的正确性。
如果放上的夹具以前从未在该系统中使用过,则需对该夹具的控制字进行正确设置后写入PLC数据区;如果该夹具曾经在本系统中使用过至少一次,即数据区中保留有该夹具号对应的控制信息,那么操作员在确认夹具编号后,该夹具的控制信息会由系统以间接寻址方式自动调用出来,并显示在触摸屏上,确认无误,即可开始生产。
②由于硬件故障(连线断裂、网络故障等)造成自动识别出的夹具编号与实际不符时,(识别出错)可通过强行写入正确夹具编号的方式来让系统进入正常工作模式进行生产,待完成任务后再进行维修等操作,以缓解生产压力。
综合①②两点可知,夹具识别流程如图5:图5 夹具识别流程图3.多夹具系统气缸柔性控制根据夹具控制特点,各气缸由电磁阀控制,按工艺要求进行先后动作,编制程序如图6:图6 具夹紧流程梯形图在程序条“0”中,200通道为夹紧流程控制字,需要夹紧时将1写入200通道,则200.00位成为一号气缸夹紧动作标志位;条“1”中,HR40.00为根据间接寻址查表得到的该夹具控制字中一号气缸的启用标志,如果该标志为1,则在200.00位为1的条件下,右侧的输出201.00为ON,此时一号气缸夹紧电磁阀通电,产生气缸夹紧动作;当程序检测到该气缸夹紧后,一号夹紧标志位HR65.00为ON,所以输出200.01为ON,并自保,同时切断201.00的通路,使201.00为OFF,一号气缸夹紧电磁阀断电,不再动作,此时一号气缸夹紧动作完成;当然,如果一号气缸的启用标志HR40.00为0,则201.00始终为OFF,同时由于HR40.00的非并与一号气缸夹紧指示标志位下方,故程序直接接通200.01为ON,进行下一步动作。
与一号气缸夹紧过程完全类似,当所有气缸都夹紧后,进入夹紧控制流程的结束控制位,当该位为ON后,程序将对通道清零,至此夹具的夹紧控制已告完成。
以上编程方法,可触类旁通,再编写出夹具松开流程的控制程序,然后分别做出两工位各自的夹具夹紧和松开程序,那么这部分的功能就算完全实现了。