InGaAs—APD门模单光子探测及其应用

合集下载

InGaAs(P)InP近红外单光子探测器暗计数特性研究.doc

InGaAs(P)InP近红外单光子探测器暗计数特性研究.doc

InGaAs(P)/InP近红外单光子探测器暗计数特性研究基于InGaAs(P)/InP 雪崩光电二极管(Single Photon Avalanche Diodes,SPADs)的近红外单光子探测器具有功耗低、不需超低温制冷、可靠性高、使用简单、易集成、近红外探测效率高等优点,在光通讯波段(1310 nm、1550 nm)量子密钥分发(QKD)、激光测距(1064nm、1550nm)等前沿领域有着迫切的应用需求,但其暗计数特性对应用有诸多限制。

InGaAs(P)/InPSPAD基近红外单光子探测器主要包括InGaAs(P)/InP SPAD及其驱动电路,二者的性能均可影响探测器性能。

本论文主要针对InGaAs(P)/InP SPAD基近红外单光子探测器的暗计数特性及其影响因素、InGaAs(P)/InPSPAD暗电流特性及其影响因素进行深入研究,探索二者关联特性,为SPAD器件及单光子探测器的性能优化提供指导。

搭建SPAD 器件变温测试平台对SPAD暗电流特性进行了研究;搭建激光束诱导电流(LBIC)测试系统对SPAD器件的响应均匀性及其边缘击穿特性进行了研究;研制SPAD器件单光子探测性能测试装置对不同SPAD器件对应单光子探测器的暗计数特性进行了研究。

对SPAD器件暗电流特性及其对应单光子探测器的暗计数关联性进行探索,研究发现SPAD雪崩击穿偏压处的暗电流斜率与相应单光子探测器的暗计数相关,斜率较小时相应的暗计数较小;暗电流与暗计数存在抖动情况,此抖动均与温度呈负相关,与过偏压无关。

目前对暗计数特性的研究主要集中于影响机制,并未发现对上述结果的报导。

雪崩光敏二极管,单光子探测

雪崩光敏二极管,单光子探测

单光子探测技术
SPAD
单光子检测中,通常以光电倍增管和雪崩光敏二极管作为代表性的单光子检测 器件。光电倍增管由于具有极高的灵敏度,较低的噪声和快速响应的特性,过 去一直是单光子探测的首选器件,而现在由于更多的实际应用,半导体类单光 子探测器件收到广泛的关注,其中最常见的是雪崩光电二极管。 实现单光子检测的基本要求: 一是对被探测的光子要有很高的响应灵敏度 二是背景噪声要尽可能少
Photomultiplier Tube
(a)输入光较强时PMT输出有涨落的直流量。
(b)输入光较弱时PMT输出光电流不再是 连续的。
(c)输入光极弱时PMT输出离散的脉冲。
雪崩光敏二极管简介
Avalanche Photodiodes
Avalanche Photodiodes
Operating Principle
Quenching Circuits
雪崩阶段
一个光子被处于就绪态的APD接收 到时,APD两端的电压在几个fs的时 间内降为比雪崩电压值低一些, 电 容Cg 开始通过电阻Rs 放电, Rs上产 生一个脉冲信号. 经过约RsCg 的时 间, Cg上的电压降到与APD两端的 电压一致, 流经APD的电流小于 APD的熄灭阈值, 雪崩停止.
Quenching Circuits
有源淬灭电路
Quenching Circuits
将无源抑制扩展为有源抑制, 获得了更短的死时 间、更小的暗计数和更高的计数率. 有源抑制方 式中APD产生电脉冲信号的过程与无源抑制相同, 所不同的是在有源抑制电路中通过外围电路迅速 抑制雪崩并将APD恢复到等待状态以使它能探测 下一个光子, 从而大大降低了死时间 主动淬火电路是指在雪崩发生时, 不是通过其 自身增长的电流产生压降来淬灭, 而是通过一个 能够感应雪崩的模块产生一个电平反馈, 主动切 断电路工作状态, 并在很短的时间之后重新启动 电路

单光子探测器及其发展

单光子探测器及其发展

单光子探测器及其发展摘要:本文介绍了光电倍增管单光子探测器、雪崩光电二极管单光子探测器和真空单光子探测器以及它们的基本工作原理和特性,分析了它们各自的优缺点和未来的发展方向。

关键词:单光子探测;光电倍增管(PMT);雪崩光电二极管(APD);真空雪崩光电二极管(VAPD)中图分类号:TP21.14 文献标识码:A一、引言单光子探测技术在高分辨率的光谱测量、非破坏性物质分析、高速现象检测、精密分析、大气测污、生物发光、放射探测、高能物理、天文测光、光时域反射、量子密钥分发系统等领域有着广泛的应用。

由于单光子探测器在高技术领域的重要地位,它已经成为各发达国家光电子学界重点研究的课题之一。

二、单光子探测器的原理及种类单光子探测是一种极微弱光探测法,它所探测的光的光电流强度比光电检测器本身在室温下的热噪声水平(10-14W)还要低,用通常的直流检测方法不能把这种湮没在噪声中的信号提取出来。

单光子计数方法利用弱光照射下光子探测器输出电信号自然离散的特点,采用脉冲甄别技术和数字计数技术把极其弱的信号识别并提取出来。

这种技术和模拟检测技术相比有如下优点[1]:(1)测量结果受光电探测器的漂移、系统增益变化以及其它不稳定因素的影响较小;(2)消除了探测器的大部分热噪声的影响,大大提高了测量结果的信噪比;(3)有比较宽的线性动态区;(4)可输出数字信号,适合与计算机接口连接进行数字数据处理。

入射的光子信号打到光电倍增器件上产生光电子,然后经过倍增系统倍增产生电脉冲信号,称为单光子脉冲。

计数电路对这些脉冲的计数率随脉冲幅度大小的分布如图1所示。

脉冲幅度较小的脉冲是探测器噪声,其中主要是热噪声;脉冲幅度较大的是单光电子峰。

V h为鉴别电平,用它来把高于V h的脉冲鉴别输出,以实现单光子计数。

可用来作为单光子计数的光电器件有许多种,如光电倍增管(PMT)、雪崩光电二极管(APD)、增强型光电极管(IPD)、微通道板(MCP)、微球板(MSP)和真空光电二极管(VAPD)等。

InGaAs纳米线雪崩焦平面探测器发展研究

InGaAs纳米线雪崩焦平面探测器发展研究

第45卷 第1期2021年1月激 光 技 术LASERTECHNOLOGYVol.45,No.1January,2021 文章编号:1001 3806(2021)01 0105 04InGaAs纳米线雪崩焦平面探测器发展研究张 伟1,徐 强1,谢修敏1,邓 杰1,覃文治1,胡卫英1,陈 剑1,宋海智1,2(1.西南技术物理研究所,成都610041;2.电子科技大学基础与前沿科学研究所,成都610054)摘要:基于InGaAs纳米线的光电探测器,由于其优异的性能而受到广泛的关注和研究。

综述了InGaAs纳米线光电探测器的探测机理、材料结构、器件性能和当前的研究现状。

讨论了InGaAs纳米线雪崩焦平面探测器结构设计、纳米线材料精密生长、纳米线材料的界面与缺陷控制、纳米线雪崩焦平面器件制备工艺等关键技术。

对发展高光子探测效率、低噪声、高增益InGaAs纳米线雪崩焦平面探测器的前景进行了展望。

关键词:传感器技术;雪崩焦平面探测器;InGaAs纳米线阵列;光电二极管;探测器中图分类号:O475 文献标志码:A doi:10 7510/jgjs issn 1001 3806 2021 01 018ProgressofInGaAsnanowireavalanchefocalplanedetectorsZHANGWei1,XUQiang1,XIEXiumin1,DENGJie1,QINWenzhi1,HUWeiying1,CHENJian1,SONGHaizhi1,2(1.SouthwestInstituteofTechnicalPhysics,Chengdu610041,China;2.InstituteofFundamentalandFrontierSciences,Uni versityofElectronicScienceandTechnologyofChina,Chengdu610054,China)Abstract:PhotodetectorsbasedonInGaAsnanowireshavebeenwidelystudiedduetotheirexcellentproperties.Thedetectionmechanism,materialstructure,deviceperformanceandcurrentresearchstatusofInGaAsnanowirephotodetectorswerereviewed.Thekeytechnologies,suchasthestructuredesignofInGaAsnanowireavalanchefocalplanedetector,theprecisegrowthofnanowirematerials,theinterfaceanddefectcontrolofnanowirematerials,andthepreparationprocessofnanowireavalanchefocalplanedeviceswerediscussed.Onthisbasis,theprospectofdevelopinghighphotondetectionefficiency,lownoiseandhighgainInGaAsnanowireavalanchefocalplanedetectorwasprospected.Keywords:sensortechnique;avalanchefocalplanedetector;InGaAsnanowirearray;photodiodes;detectors 基金项目:四川省科技计划资助项目(2018TZDZX0001);国家重点研发计划资助项目(2017YFB0405302)作者简介:张 伟(1983 ),男,博士研究生,现主要从光电功能材料与器件的研究。

ingaas单光子探测器测试标准

ingaas单光子探测器测试标准

ingaas单光子探测器测试标准题目:InGaAs单光子探测器测试标准及步骤解析引言:随着量子通信、光子计算和量子信息等领域的不断发展,单光子探测器作为光学实验中至关重要的组成部分,其性能的准确测试和有效评估变得尤为重要。

本文将详细介绍InGaAs单光子探测器测试的标准及相关步骤,以帮助读者了解其操作原理和测试过程。

一、InGaAs单光子探测器简介InGaAs单光子探测器是一种基于铟镓砷化物(InGaAs)材料制作的半导体器件,其在近红外区域有着高度敏感的光子探测能力。

其工作原理是当光子入射到探测器上时,通过光电效应产生载流子,最终转化为电信号输出。

二、InGaAs单光子探测器测试标准1. 探测效率测试:探测效率是评估探测器灵敏度的关键指标,可以用来描述InGaAs单光子探测器探测到输入信号的能力。

测试时,通过输入标准光源,分析输出信号来计算探测效率。

2. 暗计数率测试:暗计数率是指探测器在无光源情况下产生的误测率,即产生虚假信号的速率。

暗计数率低表示探测器噪声小,对于低光强下信号的准确探测更为重要。

测试时,将探测器置于完全无光的环境中,记录单位时间内的误测事件数量。

3. 噪声等效温度测试:噪声等效温度是一个衡量探测器噪声性能的重要指标,其值越低表示探测器的噪声性能越好。

测试时,使用标准热源,通过测量输出电压等参数来计算噪声等效温度。

4. 相干串扰测试:相干串扰是表示探测器在工作状态下由于光子的干涉效应而产生的误差。

测试时,通过输入相干光源,记录准确的探测输出与期望输出之间的差异。

5. 出射波束测试:出射波束测试用于评估探测器的准直性能。

测试时,使用合适的设备和方法来测量和记录探测器产生的光束的发散角和波前质量。

三、InGaAs单光子探测器测试步骤1. 准备测试环境:确保测试环境的干净、稳定和无尘,以避免外界干扰对测试的影响。

调整室温和湿度,确保测试环境符合标准。

2. 清洗探测器:在操作探测器之前,首先使用合适的方法清洗探测器表面,确保其表面无污染物和杂质。

InGaAs_InPAPD探测器光电特性检测

InGaAs_InPAPD探测器光电特性检测
令bj=bj0+∆bj,bj0为给定初始值,利用Taylor展开,
将偏微分方程转化为可求解的线性代数方程组。
2.2 获得倍增因子M=1的 IP0 的方法 倍增因子定义为在完全相同的注入条件下,有
雪崩增益时通过器件的电流与无雪崩增益时通过器 件的电流之比。
在实际器件中,获得的最高直流倍增因子受串
联电阻的空间电荷效应限制,这些因素可以合并成
wi为权重,达到最小。使用Q→min为标准的拟合称 为最小二乘法。使用最小二乘原理处理非线性曲线
拟合,令权重wi=1,非线性曲线拟合的数学表达为: 已知一组数据{xi,yi},i=1,2,…, n,满足已知方程形 式f(xi, bj),j=1,2,…,m,求解{bj},使其满足
n
∑ Q = [ yi − f (xi ,bj )]2 → min ,即求解 ∂Q / ∂bj = 0 。 i =1
=
I0 P0
+ ∆IP0

3 测量
本文研究了台面型InP/InGaAs APD静态光电特
性。该APD的光敏面直径为500 µm,光照下的电流
与电压关系曲线及无光照下的暗电流与电压关系曲
线如图1所示,将有光照与无光照时候相同偏压下的
电流值相减得到的电流即为光电流。图1还显示了倍
增因子与偏压的关系,其中,实线对应由实验测量
中图分类号 TN312+.7
文献标识码 A
Measurement of the Static Optoelectronic Characteristics of InGaAs/InP Avalanche Photodiode
XIAO Xue-fang1, YANG Guo-hua1, GUI qiang1, WANG Guo-hong1, MA Xiao-yu1, CHEN Chao2, and CHEN Liang-hui1

焦平面APD探测器的国内外技术现状和发展趋势

焦平面APD探测器的国内外技术现状和发展趋势

红外焦平面探测器的国内外技术现状和发展趋势一、焦平面APD探测器的背景及特点焦平面APD探测器主要是由:APD阵列和读出电路(ROIC)两部分组成,其中APD是核心元件。

1、APD雪崩光电二极管(APD)是一种具有内部增益的半导体光电转换器件,具有量子响应度高、响应速度快、线性响应特性好等特点,在可见光波段和近红外波段的量子效率可达90%以上,增益在10~100倍,新型APD材料的最大增益可达200倍,有很好的微弱信号探测能力。

2、APD阵列的分类按照APD的工作的区间可将其分为:Geiger-modeAPD(反向偏压超过击穿电压)和线性模式APD(偏压低于击穿电压)两种。

(1)Geiger-modeAPD阵列的特点优点:1)极高的探测灵敏度,单个光子即可触发雪崩效应,可实现单光子探测;2)GM-APD输出信号在100ps量级,即有高的时间分辨率,进而有较高的距离分辨率,厘米量级;3)较高的探测效率,采用单脉冲焦平面阵列成像方式;4)较低的功耗,体积小,集成度高;5)GM-APD输出为饱和电流,可以直接进行数字处理,读出电路(ROIC)不需要前置放大器和模拟处理模块,即更简单的ROIC。

缺点:1)存在死时间效应:GM-APD饱和后需要一定时间才能恢复原来状态,为使其可以连续正常工作需要采用淬火电路对雪崩进行抑制。

2)GM-APD有极高的灵敏度,其最噪声因素更加敏感,通道之间串扰更严重。

(2)线性模式APD阵列的特点优点:1)光子探测率高,可达90%以上;2)有较小的通道串扰效应;3)具有多目标探测能力;4)可获取回波信号的强度信息;5)相比于GM-APD,LM-APD对遮蔽目标有更好的探测能力。

缺点:1)灵敏度低于GM-APD;(现今已经研制出有单光子灵敏度的LM-APD)2)读出电路的复杂度大于GM-APD(需对输入信号进行放大、滤波、高速采样、阈值比较、存储等操作)。

(其信号测量包括强度和时间测量两部分)按照基底半导体材料APD可分为:SiAPD、GeAPD、InGaAsAPD、HgCdTeAPD。

基于InGaAs(P)InP APD的单光子探测器的研制和性能研究

基于InGaAs(P)InP APD的单光子探测器的研制和性能研究

基于InGaAs(P)/InP APD的单光子探测器的研制和性能研究单光子探测器是目前量子信息领域、激光雷达和生物医学等领域的关键器件。

基于InGaAs(P)/InP雪崩光电二极管(APD)的单光子探测器适用于近红外波段,制冷要求低,响应速度快,体积小巧,光纤与器件耦合较容易,实用性较强。

然而,相对于超导纳米线等性能更高的探测器以及用于可见光波段探测的光电倍增管和SiAPD,基于InGaAs(P)/InPAPD的单光子探测器的主要缺点在于其探测效率相对偏低,后脉冲概率较大。

单光子探测器常用于量子通信、激光雷达、荧光寿命分析等应用,不同应用对探测器的性能和工作条件要求差别较大,且其各项性能指标受外部参数影响较大。

研究单光子探测器的性能与其工作模式和参数的关系,特别是后脉冲效应与各参数的关系,针对不同应用系统研究不同侧重点的单光子探测技术,具有重要的研究意义和应用价值。

本论文研制了基于InGaAs(P)/InPAPD的近红外自由运转单光子探测器和门控单光子探测器,对其性能的测试方法和影响因素进行了研究,重点针对后脉冲效应进行了深入研究,并在激光测距系统应用中比较了两种探测器的性能及其对系统性能的影响。

主要的研究内容如下:1.综合现有猝灭恢复电路的优点,设计了超低延迟的主动猝灭主动恢复(AQAR)电路,研制了高性能的自由运转单光子探测器。

设计了在APD的阳极或阴极进行雪崩提取和猝灭的多种不同AQAR电路组合,不同电路组合具有不同的猝灭延迟和不同的最大过偏压。

对不同电路组合的雪崩猝灭性能进行了比较研究,并以此为指导对电路结构进行改进。

利用商用SiGe集成电路比较器、高速E-pHEMT射频晶体管和电容平衡噪声抑制电路设计了超低延迟的AQAR电路,其中巧妙地利用了比较器自身的锁存功能实现雪崩后猝灭状态的锁存,降低了反馈环路延迟;引入了电容平衡法,较好地消除了微分噪声。

改进的AQAR电路使雪崩持续时间短至约1ns,显著提高了自由运转探测器的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档