数学形态学及其应用共43页文档
数学形态学及其应用

数学形态学及其应用数学形态学及其应用数学形态学是一种数学方法和理论,最早由法国数学家乌戈尔·乔尔丹(Ugo Cerletti)在20世纪60年代提出。
它基于拓扑学、代数学和概率论等学科的基本原理,研究对象是图像和信号等离散数据的形状和结构,并利用数学统计的方法对它们进行分析和处理。
随着计算机技术的发展和应用需求的增加,数学形态学已经成为图像处理、模式识别和计算机视觉等领域中的重要工具。
数学形态学的基本概念包括结构元素、腐蚀、膨胀、开运算和闭运算等。
结构元素是一个小的图像或信号,用来描述和刻画对象的特征。
腐蚀和膨胀是两种基本的形态学操作,它们可以对图像或信号进行形状的变化和结构的调整。
开运算和闭运算是由腐蚀和膨胀组合而成的操作,用来改善图像的质量和特征。
在数学形态学的基础上,还发展了很多衍生的操作和算法,如基本重建、灰度形态学和形态学滤波等。
数学形态学在图像处理中的应用非常广泛。
例如,在图像分割中,可以利用数学形态学的方法提取目标的边界和内部结构;在图像增强中,可以利用形态学处理方法去除图像中的噪声和不规则部分;在模式识别中,可以利用形态学算法提取和描述对象的特征;在计算机视觉中,可以利用形态学方法实现图像的匹配和配准等等。
数学形态学的应用不仅仅局限在图像领域,它还可以应用于信号处理、文本分析、医学影像等其他领域。
以图像分割为例,数学形态学可以通过结构元素的逐步腐蚀或膨胀操作来准确地提取目标的轮廓。
首先,选择合适的结构元素,使其大小和形状适应目标的尺寸和形态特征。
然后,通过不断的腐蚀操作,可以逐渐消除目标周围的无关细节,最终得到目标的边界。
类似地,通过不断的膨胀操作,可以填补和连接目标内部的空洞,并得到目标的内部结构。
通过这种方式,数学形态学可以实现对复杂图像的准确分割,为图像识别和分析提供了可靠的基础。
总之,数学形态学是一种重要的数学方法和理论,它在图像处理、模式识别和计算机视觉等领域中具有广泛的应用和深远的意义。
数学形态学及其应用

摘要论文研究了数学形态学理论,对基本形态学算子的几何意义与性质进行了归纳与总结,阐述了数学形态学用结构元素“探测”信号的本质。
论文对数学形态学的应用进行了研究,主要成果是:(1)将数学形念学应用于纺织工业纱线疵点检测中,提出了数学形态学广义结构元素的概念,并构造了形态学“梯形塔式”广义结构元素,丰富了数学形态学理论。
广义结构元素的概念和构造广义结构元素的方法是本文的创新点;(2)研究了数学形态学在红外序列图象弱小目标自动检测中的应用,提出了基于狄值形态重构丌的红外序列图象弱小目标自动检测算法,并利用形态学运算进行红外图象增强,进~步提高了算法的硷测性能,丰富了数学形态学在红外目标检测中的应用知识;(3)提出了应用数学形态学对闭环控制系统反馈信号进行滤波的方法,并成功地应用于实际系统巾.填补了数学形态学在这一应用领域中的空白。
以上应用算法无论在理论研究还址实际应用方面都具有重要价值。
论文研究了形念金字塔理论,主要成果是:(1)构造出了可以精确重构的多Jt度平形态闭会字塔,并成功地将其应用于图象的多分辨率分割。
该分割算法可以区别暗背景中的亮成分与亮背景中的暗成分,这对遥感等图象领域处理具有重要意义。
(2)构造了多尺度平形态混合金字塔,并成功地应用于扫描图象的滤波I—p。
以上研究对形态金字塔理论和应用研究都具有很高的参考价值。
论文研究了形态小波理论,主要成果是:(1)首次详细论述了非线性形念Haar小波构造方法,并将形态Haar小波成功地应用于图象分解中。
形态Haar小波具有非线性、尺度信号的取值范围同原始信号相同、信号局部最大(小)很好地保留在多个分辨率空怕J和可保证精确重构等优点,更适合应用于压缩编码、模式识别等领域;(2)提出了一种新的基于更新提升构造非冗余的、可完备重构的形态小波的方法,首次提出了广义更新算子的概念,阐述了构造了广义更新算子的方法,进一步发展了数学形态学理论。
广义更新算子的概念和广义更新算予的孛f=J造办法是本文的创新点;(3)提出了一种更新提升小波闽值去噪算法,对比实验表明该,J法比传统小波闽值去噪算法具有明显的优势,峰值信噪比提高2~5dB,信噪比约提高4~7dB,尤其在低信噪比情况下性能更加优越。
实验三 数学形态学及其应用

where when
7.Morphology小结
A.通过物体(对象)和结构元素的相互作用,得到更本质的形态(shape)
(1)图像滤波
(2)平滑区域的边界
(3)将一定形状施加于区域边界
(4)描述和定义图像的各种几何参数和特征(区域数、面积、周长、连通度、颗粒度、骨架、边界)
B.形态运算是并行运算
C.细化
区域或边界变为1个象素的宽度,但它不破坏连通性
四方向细化算法:逻辑运算(可删除条件)
形态运算是否可用于细化?
(1)腐蚀:收缩(去掉边缘的点)何时结束?能否保证连通性?
(2)开:去毛刺,能否细化(去掉尺寸小于结构元素的块)
三.实验提示
Matlab中用imdilate函数实现膨胀。用法为:
Imdilate(X,SE).其中X是待处理的图像,SE是结构元素对象。
功能:
提取二进制图像的轮廓。
语法:
BW2 = bwmorph(BW1,operation)
BW2 = bwmorph(BW1,operation,n)
举例
BW1 = imread('circles.png');
imshow(BW1);
BW2 = bwmorph(BW1,'remove');
BW3 = bwmorph(BW1,'skel',Inf);
Matlab用imopen函数实现图像开运算。用法为:
imopen(I,se);
I为图像源,se为结构元素
Matlab用imclosee函数实现图像闭运算。用法为:
imclose(I,se);
I为图像源,se为结构元素
第八章 数学形态学及应用

2.5 形态学算子
2.5.1 腐蚀(Erosion) 腐蚀(Erosion)
腐蚀目的:消除目标图像中的无用点( 腐蚀目的:消除目标图像中的无用点(或 孤立噪声点)的一个过程, 孤立噪声点)的一个过程,其结果使得剩下 的目标比处理前减少了一些像素。 的目标比处理前减少了一些像素。 腐蚀定义: 腐蚀定义: X用B来腐蚀记为 ,定义为 腐蚀过程: 平移( 后仍在集合X 腐蚀过程:B平移(x,y)后仍在集合X中 的结构元素其参考点的集合。换句话说, 的结构元素其参考点的集合。换句话说,用 来腐蚀X得到的集合是B完全包括在集合X B来腐蚀X得到的集合是B完全包括在集合X中 的参考点位置的集合。 时B的参考点位置的集合。
实验六数学形态学及其应用

实验六: 数学形态学及其应用实验原理腐蚀和膨胀是数学形态学最基本的变换,数学形态学的应用几乎覆盖了图像处理的所有领域,给出利用数学形态学对二值图像处理的一些运算。
膨胀就是把连接成分的边界扩大一层的处理。
而收缩则是把连接成分的边界点去掉从而缩小一层的处理。
二值形态学II (xx ,yy ), TT (ii ,jj )为0011⁄图像 腐蚀:EE (xx ,yy )=(II ⊙TT )(xx ,yy )=�[II (xx +ii ,yy +jj )&TT (ii ,jj )]mm ii ,jj=00膨胀:DD (xx ,yy )=(II ⊕TT )(xx ,yy )=�[II (xx +ii ,yy +jj )&TT (ii ,jj )]mm ii ,jj=00灰度形态学TT (ii ,jj )可取0011⁄以外的值 腐蚀: EE (xx ,yy )=(II ⊙TT )(xx ,yy )=mmii mm 00≤ii ,jj≤mm−11[II (xx +ii ,yy +jj )−TT (ii ,jj )] 膨胀: DD (xx ,yy )=(II ⊕TT )(xx ,yy )=mmmmxx 00≤ii ,jj≤mm−11[II (xx +ii ,yy +jj )+TT (ii ,jj )]1.腐蚀Erosion : XX ⊙BB ={xx :BB xx ⊂xx }B 1删两边B 2删右上2.膨胀Dilation : XX ⊕BB ={xx :BB xx ↑xx }B1补两边B2补左下3.开运算open:XX BB=(XX⊙BB)⊕BB4.闭运算close:XX BB=(XX⊕BB)⊙BB代码1:function[]= fs()I=imread('finger.tif');subplot(1,2,1),imshow(I);title('原图');BW=I;BW=rgb2gray(BW);SE=strel('square',2);%结构元素为边长2像素的正方形BW=imopen(BW,SE);%开运算(先腐蚀再膨胀)可以消除小物体、在纤细点处分离物体、平滑较大物体的边界。
第十二讲 数学形态学及其应用

Introduction
数学形态学的历史可回溯到19世纪 Euler,20世纪Minkowski等人的研究, 1964年法国的Matheron和Serra在积分集合 的研究成果上,将数学形态学引入图像处 理领域,并研制了基于数学形态学的图像 处理系统。
原图
膨胀
腐蚀
开操作
闭操作
实验题目:图像平滑技术(去噪)
实验目的: 熟练掌握空域滤波中常用的平滑和锐化滤波器; 熟练掌握掩模技术,并可以应用掩模技术对图像进行增强处理; 了解图像增强的目的和意义,加深对图像增强的感性认识,巩固 所学的图像增强的理论知识和相关算法。 实验重点:邻域平均法、中值滤波降噪法 实验难点:产生噪声并叠加在图像上 实验内容: (1)选择一幅图像,叠加零均值高斯噪声,然后分别利用邻域平 均法和中值滤波法对该图像进行滤波,显示滤波后的图像,比 较各滤波器的滤波效果。 (2)选择一幅图像,叠加椒盐噪声,选择合适的滤波器将噪声滤 除。 课后作业: 撰写本次上机实验报告
概念
数学形态学是一门建立在严格数学理论的 基础上,分析空间结构的形状、框架的学科。 其语言是集合论,这是极其重要的,也意味着: (1) 它的运算是由集合运算来定义 (2) 所有的方式都必须以合理的方式转换为集合
数学形态学的方法
输入图像 移位、交、并等集合运算 输出图像
结构元素
形态学处理的基本思想:利用结构元素(structuring element)作为“探针”,在图像中不断移动,在此过程中收 集图像的信息、分析图像各部分间的相互关系,从而了解图 像的结构特征。
a X
B X
A B
第八章(1)-数字形态学及其应用

b
A
a
a∈ A b∉ A
结构元素(Structure Element) 设有两幅图像A和B,若A是被处理的对象,B 是用来处理A的,则称B为结构元素。
7
第八章 数字形态学及其应用
交集、 并集和补集
AI B
AU B
AC
A B A
B A
B
A I B = {a a ∈ A且 a ∈ B}
A U B = {a a ∈ A或 a ∈ B} AC = {a a ∉ A}
2
第八章 数字形态学及其应用
利用数学形态学进行图像分析的基本步骤如下: 1、提出所要描述的物体几何结构模式,即提取物 体的几何结构持征; 2、根据该模式选择相应的结构元素,结构元素应该 2 简单而对模式具有最强的表现力; 3、用选定的结构元对图像进行击中与否(HMT)变 换,便可得到比原始图像显著突出物体特征信息的 图像。如果赋予相应的变量.则可得到该结构模式 的定量描述; 4、经过形态变换后的图像突出需要的信息,此时 就可以方便地提取信息。
8
第八章 数字形态学及其应用
差集
A − B = {x x ∈ A, x ∉ B} = A I B c
A B
9
第八章 数字形态学及其应用
平移转换:设A是两个二维集合,A中的元素是 定义 x = ( x1 , x2 )
a = (a1 , a2 )
则: ( A) x = c c = a + x, for a ∈ A
4 3 2 1 0 1 2 3 4 5 6
b∈B
0 1 2 3 4 5 6
(a) 图像X与结构元素B 4 3 2 1 0 1 2 3 4 5 6 (c)
(b) ( X 膨胀的等价定义形式: X ⊕ B = U ( X)b2b ) 4 3 2 1
数学形态学及应用

4 3 2 1 0 1 2 3 4 x y 3 2 1 0 b 1 2 3 4 x 5 4 3 2 1 0 1 2 3 4 x
y
(a )数字图像
(b )点
(c)
A被b平移:A+b={a+b| a∈A} ————a与b对应坐标相加
5 4 3 2 1 0
y
x 4 3 2 1 0 1 2 3 4 y
C ⊙ X S {x | S1 x X且S2 x X }
C ⊙ X S ( XS1 ) ( X S2 )
( XS1 ) ( X S ) ( XS1 ) ( X S )
V 2
V C 2
X被S击中的结果相当于X被S1腐蚀的结果与X 被S2的反射集S2V膨胀的结果之差。
区域填充
骨架提取
骨架提取是由细化而来。骨架形成的是单像素的细化结果
粗化
连通分量提取
(a)X光图 像
(b)二值图 像 (c)用5×5 结构元 素腐蚀 结果
灰度级图像扩展
(a)原图 (b)膨胀图,更亮了减弱了暗细节 (c)腐蚀图,更暗了,明亮成分减 少
注意不同图中亮和暗细节的变化
一、膨胀 使图像扩大
A和B是两个集合,A被B膨胀定义为:
上式表示:B的反射进行平移与A的交集不为空 B的反射:相对于自身原点的映象 B的平移:对B的反射进行位移
膨胀的另一个定义
上式表示:B的反射进行平移与A的交集是A的子集
膨胀操作过程
将结构元素B的原点移至集合A的某一点,
将结构元素B中点的坐标与集合A中该点坐标相加, 得到对集合A中一点膨胀的运算结果.
击中/击不中变换的应用
• 严格的模版匹配。指出被匹配点所应满足的 性质(模板形状)的同时也指出这些点所不 应满足的性质,即对周围环境背景的要求。 • 保持拓扑结构的形状细化,以及形状识别和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学形态学及其应用
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
ห้องสมุดไป่ตู้
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根