车用膜式空气弹簧静特性试验研究
客车用空气弹簧分析研究

中图分类号 :U463. 33 + 4. 2 文献标识码 :A 文章编号 :100623331 (2007) 0320017204用。
如纽波兰 BN316、INBU SL303、奔驰 O371、沃——— 30 km/ h 40 km/ h 50 km/ h 60 km/ h 型簧悬架。
如扬州亚星产客车选用 Neway 及 Reyco 的空气悬架 ,东风杭汽产客车采用 Neway 和科曼的 空气悬架 ,一汽客车主要选用 Neway 或 Reyco 的空 有频低 抗 减・设计・计算・研究・客 车 技 术 与 研 究2007年 第 3期客车用空气弹簧分析研究万 科1 ,程 飞2 ,过学迅2(1.重庆嘉斯特质量检测有限公司国家客车质量监督检验中心 ,重庆 401122 ;2.武汉理工大学汽车工程学院 ,湖北武汉 430070)摘 要 :叙述客车用空气弹簧的国内外发展状况及空气弹簧的特点 ,讨论空气悬架的刚度特性、效 面积特性、率特性及其影响因素 ,分析空气悬架的控制特性及关键技术。
关键词 :客车 ;空气悬架 ;空气弹簧 ;电子控制Analysis and Study on Air Suspension Used on Buses and Coaches(1. The Natio nal Coach Supervision and Inspection Center ,Cho ngqing 401122 ,China ; 2. College of Automo bile Eng. ,Wuhan Univ. of Technol. ,Wuhan 430070 ,China)Abstract : This paper relates t he air suspensio n develop ment at do mestic and abroad , and t he air sp ring characteristics for bus and coach. Meanwhile , it also discusses some characters , such as stiff ness , effective area and f requency of airpension.Key words : bus and coach ; air suspension ; air sp ring ; elect ronic co nt rol空气悬架系统是高档客车关键部件 ,是汽车钢振动频率几乎不变。
空气弹簧的刚度及阻尼特性研究

1
空气弹簧热力学特性
空气弹簧系统由空气弹簧和附加空气室组成。 空 气弹簧和附加空气室通过一节流孔连通, 如图 1 所示。
收稿日期:2004-09-22 基 金 项 目 :教育部高等学校骨干教师资助计划项目 — 16 — 图1 空气弹簧的原理图 1 ——空 气 弹 簧;2 ——节 流 孔;3 ——附 加 空 气 室
+
Study on stiffness and damping characteristic of air spring
LIU Zeng-hua, LI Fu, FU Mao-hai, BU Ji-ling
(School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, Sichan 610031, China) A b s t r a c t : The thermodynamic characteristics of air spring are introduced. Also analyzed are the vertical stiffness and dampness characteristics. The results show that the stiffness is dependent not only on the pressure and volume at static balance, but also on the change rates of efficient area and volume. The damping characteristic is relevant with the air spring structure and is influenced by external excitation frequency and amplitude. It will change accordingly with the excitation conditions. K e y w o r d s : air spring; vertical stiffness; damping; characteristic; spring suspension device
空气弹簧技术特性的研究

风能的利用主要充分利用 自然通风 , 增加 室内空气换 气率 , 改善室 内空气状 况 , 降低室 内气温 , 减少对换气设备 和空调设备的使用 , 以达
到 节 能 的 目的 。 在 地 热 能 的 利 用 中 ,深 井 水 回 灌技 术 是一 种 比较 成 熟 的用 能 方 案
^
/
l
—G 1
} |
、
\
、
l
今年发 展起来的电动空气悬 架 , 同时具备 主动 、 半主动 、 动悬架 被 的特点 , 性能优越 , 成本相对较低 , 将成为汽车悬架的主要成 品。 1空气弹簧的工作原理 、 空气弹簧工作时 , 内腔充人压缩空气 , 形成一个压缩空气气柱 。随 着振动载荷的增加 , 空气弹簧的高度降低 , 有效容积减小 , 刚度增加 , 内 腔空气柱的有效面积加大 , 时空气 弹簧的承载能力增加。 此 当振动载荷 减小时 , 空气弹簧的高度升高 , 有效容积增大 , 刚度减小 , 内腔空气柱的 有效 面积减小 , 此时空气弹簧的承载能力减小 。这样 , 空气弹簧在有效 的行程内 , 空气 弹簧 的高度 、 有效 容积 、 承载能力 随着 振动载荷的增减 发生 了平稳 的柔性传递。 空气弹簧 与高度 阀联合使用 , 可以保持 车身在设定高度位置。车身 载荷增加时 , 车身与车桥相对位移 减小 , 触发高度 阀开放 , 气路系统对 空气 弹簧充气 , 刚度增加 , 空气弹簧达到设定高度 , 高度 阀关 闭; 车身载 荷减少 , 车身与车桥的相对位移增 大 , 触发高度 阀开放 , 空气弹簧对外 放气 , 刚度减小 , 弹簧达到设定高度 , 空气 高度 阀关 闭。因此 , 和金属 弹 簧悬架相比较 , 空气悬架节省 了工作行程。 2 刚度设计 _ 空气 悬架具 有诸多 的特点 , 、 l I , 比如 刚度可调 、 高度 可 控、 通用 性好等 , 其基本 的刚度特性设计是核 心技术之一 , 下面 简要 介 绍一下特性设计 : 空 气 弹 簧 承 载 能力 : = zA F Px
汽车空气弹簧研究报告

汽车空气弹簧研究报告一、引言汽车空气弹簧是一种新型的悬挂系统,它通过控制气压来调节车辆的悬挂高度和硬度。
与传统的钢制弹簧相比,空气弹簧具有更好的可调性和舒适性。
本报告将对汽车空气弹簧进行全面、详细、完整且深入的研究。
二、汽车空气弹簧的原理汽车空气弹簧的主要原理是利用气体的可压缩性来调节悬挂系统的工作状态。
通过改变弹簧内部气体的压力,可以实现对车辆悬挂高度和硬度的精确控制。
三、汽车空气弹簧的优势相比传统的钢制弹簧,汽车空气弹簧具有以下优势:1.可调性高:通过控制气压可以精确地调节悬挂系统的硬度和高度,满足不同路况和行车需求。
2.舒适性好:空气弹簧能够更好地吸收道路不平,提供更舒适的乘坐体验。
3.稳定性强:空气弹簧可以根据车辆载荷自动调节,保持车辆的平稳性和悬挂系统的稳定性。
四、汽车空气弹簧的应用领域汽车空气弹簧主要应用于以下领域:1.SUV和越野车:SUV和越野车常常需要面对复杂的路况,空气弹簧可以提供更好的通过性和舒适性。
2.商务车和豪华车:商务车和豪华车注重乘坐舒适性,空气弹簧的可调性可以满足不同消费者的需求。
3.专用车辆:一些特殊用途的车辆,如救护车和运输车,需要根据货物或乘客的不同负荷进行调节,空气弹簧能够实现快速而准确的调节。
五、汽车空气弹簧的研究进展目前,关于汽车空气弹簧的研究主要集中在以下几个方面:1.材料研究:研究新型的材料用于制造空气弹簧,提高其耐久性和可靠性。
2.控制系统研究:开发更智能的控制系统,实现对空气弹簧的精确控制。
3.性能测试与评估:对各种不同设计的空气弹簧进行性能测试和评估,提出改进意见和建议。
六、汽车空气弹簧的未来发展方向在未来,汽车空气弹簧有望在以下方面得到进一步发展:1.节能环保:通过改善空气弹簧的工作效率和减少能量损耗,实现对汽车悬挂系统能源的节约和环境的保护。
2.智能化:结合先进的传感器和控制技术,将空气弹簧与其他车辆系统相连,实现更智能化的车辆控制和管理。
商用车膜式空气弹簧静刚度的有限元分析

膜式空气弹簧的上盖板通过扣压的方法与气 囊 上 开 口 固 定,可 以 保 证 气 囊 在 工 作 中 不 发 生 漏 气 和 脱 落。 上 盖 板 中 心 装 有 橡 胶 缓 冲 块,可 以 保 证空气弹簧在极限或者失效工况下能提供必要的 支撑。根据有限元模型的简化方法和静刚度试验 工 况,取 膜 式 空 气 弹 簧 的 上 盖 板 与 膜 式 空 气 弹 簧 的 接 触 面 及 压 缩 过 程 中 可 能 接 触 到 的 面,建 立 离 散刚性面,如图4所示。
50
45
40
ۆՓҦkN
35
3
30
1
25
20
2
15
10 200 150 100 50 0 50 100 150 200 Ԍ᎕᧙mm
1—方案A;2—方案B;3—方案C。
图6 等压下3种方案膜式空气弹簧的静刚度仿真曲线
从 图6可 以 看 出:在 囊 皮 采 用 膜 单 元 法 模 拟
时,采 用 流 体 腔 法 和 均 布 载 荷 法 表 征 气 体 压 力 对
空 气 弹 簧 与 车 身 储 气 罐 连 通,通 过 车 体 上 的 高 度 控 制 阀 调 节 空 气 弹 簧 内 的 气 体 压 力,工 作 原 理如下:在载荷增大时车体下降,高度控制阀的进 气阀打开,将空气压入空气弹簧,直到空气弹簧恢
Copyright©博看网. All Rights Reserved.
在相同工作高度下,方案A,B和C的膜式空气 弹簧外直径分别为311. 2,312. 2和311. 2 mm。不 同气体压力表征方法对膜式空气弹簧的外直径计 算没有影响,囊皮建模方法对外直径影响较小。
高速磁浮车用空气弹簧的研究的开题报告

高速磁浮车用空气弹簧的研究的开题报告标题:高速磁浮车用空气弹簧的研究一、研究背景磁浮列车是一种利用磁悬浮技术实现高速地面交通的交通工具。
在磁悬浮技术中,空气弹簧是支撑列车的主要部件之一,起到减震和稳定车体的作用。
目前,磁浮列车的最高商业运营速度已经达到了600公里/小时,为了进一步提高列车的速度和平稳性能,研究和优化空气弹簧的设计和性能是非常重要的。
二、研究目标本研究旨在探索并优化高速磁浮车用空气弹簧的设计和性能,以提高列车的速度和平稳性能。
具体研究目标如下:1.分析空气弹簧的工作原理和影响因素;2.建立空气弹簧的数学模型,通过数值仿真研究弹簧的动态特性;3.优化空气弹簧的结构和参数,以提高弹簧的稳定性和减震性能;4.通过实验验证优化方案的有效性和可行性,为磁浮车的研发和实际应用提供技术支撑。
三、研究内容和方法1.分析空气弹簧的工作原理和影响因素通过文献调研和理论分析,研究空气弹簧的工作原理和受力情况,并分析其受到速度、负载等多种因素的影响。
2.建立空气弹簧的数学模型,通过数值仿真研究弹簧的动态特性基于理论分析结果,建立空气弹簧的数学模型,使用ANSYS等有限元软件进行模拟计算,研究弹簧的动态特性和影响因素。
通过仿真计算,得出空气弹簧的受力和变形情况,并分析影响空气弹簧性能的因素。
3.优化空气弹簧的结构和参数,以提高弹簧的稳定性和减震性能基于仿真计算和分析结果,结合实际需求,通过优化空气弹簧的结构和参数,以提高其稳定性和减震性能,例如增加弹簧垫层的厚度和硬度、调整弹簧的几何形状等等。
4.通过实验验证优化方案的有效性和可行性设计并实施相关实验,通过实验验证优化方案的有效性和可行性。
对实验结果进行分析和总结,对改进方案进行调整和改进。
四、预期结果通过对高速磁浮车用空气弹簧的研究,预计能够实现以下结果:1.建立高精度和可靠的空气弹簧模型,提供技术支持和理论基础;2.优化空气弹簧的结构和参数,提高其稳定性和减震性能;3.验证优化方案的可行性和有效性,为高速磁浮车的研发和实际应用提供技术支持。
空气弹簧特性研究

空气弹簧特性研究本文旨在研究空气弹簧特性。
空气弹簧是指一类由流体或液体运动而成的减震器,它是运用空气体压学学理论设计出来的,其主要功能是调节前后轮的动态刚度,有效的减少振动。
一、空气弹簧的原理1、原理介绍:空气弹簧是一种利用气体动力学原理制造的减震器,空气弹簧包括活塞、减震器壳体、活塞棒及其它附件组成。
空气弹簧利用空气体压计理跳动,当空气体压降低时,空气弹簧能够吸收前轮和后轮受力之间的差异,从而改变车辆胎压,使振动减小。
2、构造特点:活塞和减震器壳体之间可以进行伸缩,可以有效的减小振动,维持车辆的行驶稳定,提高乘员的乘坐舒适性。
空气弹簧的优点是可以简单调节,采用空气压力控制,当低车辆行车振动,增加有效行车通过空气弹簧即可调整车辆的高度,实现简单的调节。
二、空气弹簧特性1、减振性能:空气弹簧具有良好的减振性能,承受较大的负载,耐磨性强,在恶劣环境下仍能发挥很好的效果,对车辆路面振动变化有良好的配合能力。
2、稳定性:空气弹簧具有较高的稳定性,采用液压设计,可以提高车辆的稳定性,以保持车辆行驶的稳定性。
3、调节灵活性:空气弹簧采用气体原理,有较高的可调性,可以根据需要随时调节出发和力度较大的减振效果,以保持驾驶安全和舒适。
三、空气弹簧研发应用1、柴油机:柴油机可以采用空气弹簧减震,可以在柴油机设备上安装一个小型空气弹簧减震器,空气弹簧可以更好的表现柴油机的稳定性,提高机器的耐用性和安全性。
2、汽车行驶:由于空气弹簧可以增加行车减振效果,汽车可以在行驶中增加平稳性,提高乘员的舒适性,以及车辆的稳定性,降低不良路况对车辆行驶的影响。
3、机器工业:机器工业可以采用空气弹簧减震技术,减少机器运转时的噪音和感和误差,确保机器发挥最大的功能,提高工业机械的使用效果。
综上所述,空气弹簧具有良好的减振性能,稳定性和可调性,因此应用前景广阔。
汽车空气弹簧动静刚度特性分析

汽车空气弹簧动静刚度特性分析刘国漪;张少波;周劲松【摘要】针对某一膜式空气弹簧,运用非线性有限元软件ABAQUS建立有限元模型.首先通过模拟空气弹簧静特性试验,得出了空气弹簧在给定位移和一定初始气压情况下的静刚度特性曲线,其次改变空气弹簧的物理参数,分析初始气压、帘线加强层的角度和各层间的距离对空气弹簧垂向静特性的影响,最后建立动刚度模型,研究在特定工作气压下振动频率对动刚度的影响.计算结果表明,该膜式空气弹簧的帘线层角度、帘线层间距的改变对其静刚度会产生相应的影响;不同频率下,空气弹簧的动刚度也将发生相应改变以适应不同工况.【期刊名称】《海南大学学报(自然科学版)》【年(卷),期】2018(036)002【总页数】6页(P197-202)【关键词】空气弹簧;非线性;有限元分析;动静刚度特性【作者】刘国漪;张少波;周劲松【作者单位】同济大学铁道与城市轨道交通研究院,上海201804;海南大学机电工程学院,海南海口570228;同济大学铁道与城市轨道交通研究院,上海201804【正文语种】中文【中图分类】U468.4空气弹簧利用胶囊内部的压缩空气承受载荷,主要用于车辆的悬架及驾驶室座椅等,具有变刚度、自振频率低、高度可控及良好的降噪和隔振性能等特点,在改善乘坐舒适性、车辆行驶平顺性和对道路的保护方面,相比刚性弹簧和板簧等具有明显的优越性,目前已得到了广泛应用[1].空气弹簧的物理参数影响其力学性能,为了提高汽车动态性能和平稳性,有必要开展关于空气弹簧物理参数对其刚度特性影响的研究.例如刘青峰[2]等对空气弹簧的横向刚度的影响因素进行了研究,张建振[3]研究了活塞形状与橡胶囊结构对其刚度的影响.为了丰富空气弹簧刚度特性的研究,笔者将着重于探讨影响空气弹簧垂向特性的因素.基于有限元非线性理论,采用非线性有限元软件ABAQUS,对某空气弹簧进行动静刚度特性分析,研究垂向静载荷、垂向静刚度随着充气压力、帘线层角度和帘线层间距的变化规律;在动刚度方面,通过改变振动频率,分析振动频率对空气弹簧动刚度的影响,从而为产品的开发设计提供参考.图1 膜式空气弹簧结构1 空气弹簧有限元模型的建立1.1 膜式空气弹簧的结构空气弹簧主要由上盖板、橡胶气囊和下盖板(或底座)组成,如图1所示,在其内部充入一定量的压缩气体.上盖板和活塞底座主要是将弹簧固定在车身和车架之间,也起到支撑作用,材料一般由铝合金或者不锈钢铁制成.1.2 模型分析空气弹簧在工作过程中多方面都涉及到非线性问题,主要有几何非线性、边界条件非线性和材料非线性.1.2.1 几何非线性橡胶气囊由外覆层、帘线层、内覆层组成,橡胶气囊壁厚设定为4 mm.空气弹簧根据承受的载荷方向不同会呈现拉伸或压缩的状态,在整个过程中由于幅度变化大,属于大变形问题,此时线性理论不再适用.因此在求解该类问题应采用几何非线性方程[4].在ABAQUS中采用全拉格朗日法求解,表示为(KO+Kσ+KL)δq=F+T+P,(1)其中,KO为切线刚度矩阵,Kσ为几何刚度矩阵,KL为大位移刚度矩阵,δq为节点坐标增量矢量,F为体载荷矢量,T为面载荷矢量,P为应力在节点上的等价合力矢量.1.2.2 边界条件非线性本文的接触问题是一种边界非线性问题.接触状态和边界条件会随着气囊的形变而改变,当发生大幅度的位移和变形时尤为明显.由于金属的弹性模量远远大于橡胶气囊,在接触分析时可以简单地将底座和上盖板视为不可变形的刚体部件并设成接触主面,气囊设置为接触从面.边界接触协调条件可以表示为[5](2)其中,Cj=nj,n为接触单元局部坐标的单位矢量,下标为边界单元沿切向方向与法向的局部坐标,Δk为k处的材料重叠矢量,上标(i)为迭代次数;接触分析的控制方程(3)其中,D阻尼方程,M为质量方程,F为体单位应力矢量,T为面单位应力矢量,P(i)为每次迭代的合力矢量,KT,R,Δλ,Δq,Δ为接触引起的附加项.式(3)是一个对称的非线性方程组,而且每次迭代未知数系数矩阵都会随接触状态变化而变化.1.2.3 材料非线性气囊部分采用复合材料,由橡胶和尼龙帘线层复合组成的聚合物PA-66.橡胶属于超弹性材料,在受到拉力或压力而形变时也是非线性问题.在有限元分析中,橡胶的力学特性使用Mooney-Rivlin模型[6]U=C10(I1-E)+C01(I2-3),(4)其中,U为应变能,C10和C01为与温度有关的材料参数,I1和I2是应变不变量.帘线加强层是气囊承压的核心部分.建模过程中,采用壳单元来模拟橡胶气囊壁.采用Rebar钢筋层单元模拟橡胶材料的帘线层,通过嵌入的方式设置在壳单元上. 在Rebar要赋予4个几何特性:1) Rebar的横截面积;2) Rebar与Rebar间的距离(帘线层间距);3) Rebar的帘线角(帘线与气囊轴向的夹角);4) Rebar到中性面的距离.1.3 建立有限元模型采用四节点的壳单元模拟橡胶层,对应到ABAQUS单元类型为S4R.帘线层的参数设置如表1,帘线层的弹性模量为1 450 MPa,泊松比为0.002 59.超弹性橡胶材料输入Mooney-Rivlin参数C10为3.2e6,C01为8e5.上盖板和活塞底座采用三节点壳单元S3R和四节点壳单元S4R,同时通过设定刚体约束设置成刚体.上板盖、底座与气囊上下口圈上接触的点采用绑定约束,连接3个部件.摩擦设定为有限滑移,摩擦系数设定为0.2.表1 空气弹簧帘线增强层的基本参数横截面积/m2帘线层间距/mm帘线角/(°)中性面距离/mm 2.043e-70.78541.5流体腔的设定当中,选择封闭曲面内任意一点为参考点,封闭面积选择由气囊、上下刚体所围成的封闭曲面.在计算过程中,气囊壁上形成静流体单元 (F3D4,F4D4),每一个组成节点都与相同位置的气囊壳单元节点相同.因此气囊壁上流体单元的位移或形变与对应气囊的壳单元相同,从而实现气固耦合.设定气体常数为8.314 J/(mol·K).基于ABAQUS/CAE建立的空气弹簧有限元模型如图2所示.图2 空气弹簧有限元模型1.4 静态垂向特性有限元分析根据《汽车悬架用空气弹簧橡胶气囊》(GB/T 13061-1991)[7]的试验方法,在ABAQUS中设定3个分析步计算空气弹簧静刚度.第1步对上板盖和底座的6个自由度进行约束,往气囊充入0.1 Mpa气体;第2步释放上板盖垂向位移的约束,并移动至工作高度,充入初始工作气压0.3 Mpa;第3步对上板盖施加±100 mm的垂向位移.通过获取上板盖参考点位移的变化和底座所受到的反作用力的数据,便可得出空气弹簧的静刚度特性.空气弹簧工作时应力云图见图3,图3a为充气后压缩100 mm状态,图3b为充气后拉伸100 mm状态.图3 空气弹簧充气0.3 Mpa时应力云图2 静态垂向特性影响因素探究2.1 初始气压对垂向弹性特性的影响空气弹簧的气囊内充入气体量的不同,影响其承压能力.在标准高度的位置,分别对气囊充入0.15 Mpa,0.2 Mpa,0.3Mpa,0.4 Mpa的初始气压,标准高度285 mm,其余参数不变,设定相同的分析步.不同初始工作气压下位移-刚度曲线如图4所示.图4 不同初始气压时空气弹簧位移-刚度曲线从图4可知,气囊腔内在上板盖同一位移下承受的刚度都随着气压的增大而增大.在拉伸过程至标准高度区间,刚度变化不明显,只在工作气压0.3 Mpa以上有微弱的增加.2.2 帘线角对垂向弹性特性的影响保持初始工作气压0.3 Mpa不变,设定不同帘线层角度47 °,54 °,60 °,计算空气弹簧底座随着上盖板位移变化的载荷.图 5为不同帘线角空气弹簧的位移-刚度曲线.图5 不同帘线角的空气弹簧的位移-刚度曲线由图5可知,当帘线角增加时,空气弹簧的刚度在小位移行程(小于±50 mm)时略微增加,在大位移行程(大于±50 mm)时,刚度增加明显.帘线加强层角度增加时,垂向载荷投影至帘线增强层垂直方向的载荷量增加,使帘线层承受的压力增大,在压缩小行程阶段,各层之间仍存在间隙,所以此变化相对不明显.2.3 帘线层间距对垂向弹性特性的影响保持初始工作气压0.3 Mpa不变,设定间距分别为1 mm、3 mm和5 mm,研究各层间的距离对弹性特性的影响.图6为不同帘线层间距的空气弹簧的位移-刚度曲线.由图6可知,在压缩位移较小阶段(小于50 mm)至拉伸阶段,帘线增强层间的距离对刚度的影响有限,在标准高度附近,基本没有影响.从整体来看,各层间距越大,刚度的变化曲线更加缓和.在压缩行程量较大的阶段,不同间距所承受的载荷也基本相同,但是间距较小的刚度在此阶段增大明显,由于各层之间的距离较小,在压缩阶段相互作用愈加明显,表现为刚度增加.图6 不同帘线层间距的空气弹簧的位移-刚度曲线3 空气弹簧动态垂向特性探究静态特性的模拟忽略了材料在动态过程中的应变迟滞现象.此迟滞应力所产生的阻尼作用,使空气弹簧在循环往复运动工作过程中需要克服内在摩擦,消耗内功.在动态特性仿真中,施加简谐位移变化,模拟空气弹簧在工作状况下的变化情况.振动频率的不同,影响迟滞应力作用,间接影响橡胶气囊的阻尼作用[8].研究动态特性的模型与静态特性的模型大致相同,在几何方面不做改动.关于接触的设定,稍作简化,将模型的所有接触设定为全局的普通接触.流体属性中设置摩尔定压热容为30 J/(mol·K).流体腔的气固耦合设置与静态特性的模型一致.设定橡胶密度1 000 kg·m-3,尼龙密度1 150 kg·m-3.动态特性的求解使用ABAQUS/Explicit模块,选取设计常用工作气压0.4 Mpa作为初始气压,简单探讨频率与动刚度之间的关系.选取5~35Hz频率,加以正弦周期位移.一般情况下频率高时的振动位移较小,因此较高的频率可以选择较小的幅值[9].表2为频率与对应幅值的选择.表2 正弦激励频率与对应幅值频率/Hz幅值/m10、15、180.02520、25、280.02030、32、350.010图7 在标准高度下刚度与频率关系曲线在正常的工作过程中,空气弹簧一般在标准高度上下浮动.拉伸和压缩的量不同,动刚度也不一样,为了探究动态刚度与振动频率之间关系,选取标准高度下的刚度进行比较.图7为动刚度与频率关系曲线.由图7可知,低频率时,动刚度基本保持不变.在25~30Hz之间存在最小刚度,之后刚度值随频率的增加急剧增加.在汽车行驶过程中,低频率的行驶相当于慢速行驶,此时刚度大小适中且基本维持不变,车辆的高度较为稳定而且也有良好的吸振效果.当较高速行驶时,振动频率增加,此时空气弹簧的刚度也随之增加,保证了高速行驶时的稳定性.在相同变形量下,空气弹簧刚度大时,吸收振动的能力也增加.4 小结借助非线性有限元软件ABAQUS建立了研究膜式空气弹簧静、动态特性的有限元模型,分析不同因素对空气弹簧垂向特性的影响,得到以下结论1) 空气弹簧处于标准工作高度时,增大气囊内压缩空气的压力,可也提高空气弹簧的垂向刚度;2) 气囊帘线层的物理参数变化对静刚度也会产生相应影响,帘线层角度增加会使空气弹簧的静刚度增加,且在大位移行程比较明显;帘线层间距增大使静刚度减小,在压缩大位移时变化比较明显;3) 在某一初始气压不变的情况下空气弹簧的动刚度随着振动频率发生改变,以适应不同的车况.【相关文献】[1] 朱敬娜,赵倩. 空气弹簧的应用现状及发展趋势[J]. 电子制作,2013(24):76-77.[2] 刘青峰,张治国,谢基龙. 空气弹簧非线性横向特性的有限元计算[J]. 铁道学报,2015,37(3):29-34.[3] 张建振. 空气弹簧活塞形状对悬架特性的影响[D].长春:吉林大学,2005.[4] 陈灿辉,谢建藩,陈娅玲. 汽车悬架用空气弹簧的非线性有限元分析[J]. 汽车工程,2004(4):468-471.[5] 任彦莎. 空气弹簧静态接触的三维非线性有限元分析[D].北京:北京化工大学,2004.[6] 张丽霞. 快速货车橡胶减振元件静、动态特性分析[D].成都:西南交通大学,2013.[7] 中国标准出版社.GB/T 13061-1991, 汽车悬架用空气弹簧橡胶气囊[S].北京:中国标准出版社,1991.[8] 王艳. 空气弹簧力学特性仿真分析与试验研究[D].成都:西南交通大学,2015.[9] 李美. 带附加气室空气弹簧系统动态特性机理的研究[D].镇江:江苏大学,2012.。