17电子和空穴的统计分布.ppt
半导体中电子和空穴的统计平衡分布

半导体中电子和空穴的统计平衡分布作者:侯博伟来源:《硅谷》2010年第08期摘要: 半导体的电导率直接依赖于导带中电子和价带中的空穴的多少。
电子在半导体中各能级上如何分布的问题是个基本的问题。
在热平衡的半导体中,电子和空穴依赖于热激发产生。
平衡时电子在各能级上的分布服从一定的统计规律,它与激发电子和空穴的具体过程无关。
讨论包括有杂质在内的平衡的半导体中电子和空穴的数目及其随温度的变化。
关键词: 半导体;统计;分布;载流子;导带电子;价带空穴中图分类号:TN3文献标识码:A文章编号:1671-7597(2010)0420037-011 费米分布波尔兹曼分布1.1 费米分布。
半导体中的电子数目是很大量的,在某一温度下,这数目众多的电子一方面做共有化运动,另一方面又做无规则的热运动。
所以,每个电子都有不同的能量状态,就对每一个电子来说其能量也是不断变化的。
因此,必须从大量电子的整体来找出其各种参数的统计规律。
费米分布函数描述了热平衡状态下,在一个费米粒子系统中能量为E的一个量子态被一个电子占据的概率。
在费米分布中,EF是一个很重要的物理参数,称为费米能级或费米能量。
EF 与温度、电子系统的性质有关,它可以由系统被所有量子态中被电子占据的量子态数应该等于系统中电子的总数N来决定,即∑f(Ei)=N晶体中作共有化运动的电子的量子能态分裂成能带,能带与能带之间隔着禁带。
通常对金属晶体而言,价电子只能部分地填满最外的异带,因而费米能级的位置在异带中。
而半导体的价电子却填满了价带,而最外的导带是空的,其费米能级的位置在禁带的范围内,而且随着掺杂浓度以及温度的不同而改变了导带和价带的电子浓度,则改变了共有化能量状态被电子占据的概率。
1.2 波尔兹曼分布。
在统计物理中波尔兹曼-麦克斯韦分布是针对非常稀薄的微粒子系统而统计得到的结果。
它与费米粒子系统的最大区别是:当粒子系统中的微粒子非常稀少时,粒子必须遵守的泡利不相容原理自动失去了意义。
2023春半导体物理习题课

2023春半导体物理习题课第二章载流子中的平衡统计分布⚫当E −E F 为1.5k 0T ,4k 0T ,10k 0T 时,分别用费米分布函数和玻尔兹曼分布函数计算电子占据各该能级的概率。
根据量子统计理论,服从泡利不相容原理的电子遵循费米统计律。
对于能量为E 的一个量子态被电子占据的概率f(E)为f E =11+e E−E F k 0T当E −E F ≫k 0T 时,eE−E F k 0T≫1,此时费米分布(简并系统) 可以近似为玻尔兹曼分布(非简并系统)f B E =e −E−E F k 0T当E −E F =1.5k 0T ,f E =0.1824,f B E =0.2231;当E −E F =4k 0T ,f E =0.01799,f B E =0.01832;当E −E F =10k 0T ,f E =4.540×10−5,f B E =4.540×10−5;在半导体中,E F 一般位于禁带中且与允带距离较远,因此一般可以认为E −E F ≫k 0T 。
3-3 电子的统计分布①在室温下,锗的有效状态密度N c=1.05×1019cm−3,N v=3.9×1018cm−3,试求锗的载流子有效质量m n∗,m p∗。
计算77K时的N c和N v。
已知300K时,E g=0.67eV。
77K时E g=0.76eV。
求这两个温度时锗的本征载流子浓度。
以导带有效状态密度N c举例,它是把导带中所有量子态都集中在导带底E c时的状态密度,此时导带中的电子浓度是N c中有电子占据的量子态数,有效状态密度表达式为N c=2(2πm n∗k0T)Τ32ℎ3,N v=2(2πm p∗k0T)Τ32ℎ3由此可算出m n∗=12πk0TN cℎ32Τ23=5.0968×10−31kg=0.5596m0m p∗=12πk0TN vℎ32Τ23=2.6336×10−31kg=0.2892m0①在室温下,锗的有效状态密度N c=1.05×1019cm−3,N v=3.9×1018cm−3,试求锗的载流子有效质量m n∗,m p∗。
空穴 - 电子分析激发态

空穴 - 电子分析激发态
电子分析激发态是空穴电子学领域中一个著名的研究课题,它关注于有效利用电子结构学和量子力学来描述电子状态的发生变化的过程。
其核心思想是,激发态的形成是它隐藏的来源,可以推导出激发态的原子结构组成及各组成成分的样式表示。
求解激发态的方法的最先进的为统计激励方法,有效地减少了精确的方法的计算成本,能够对激发态的特性,即能级,跃迁概率和发射谱和吸收谱等诸多方面进行深入探索。
另外,统计激励理论还可以解释一些特殊的现象,比如衰减、光谱枝结构以及激发态间的耦合等,是研究电子激发态和光谱结构的重要方法。
此外,还有Koopmans定理,它基于把电子结构变化之间的关系简化为简单的数学式,可在准系统的状态下的激发态的频率以及激发态的能级分布都能够得到较好的描述。
基于多体效应和关联效应,空穴电子学领域还研究了多体效应及关联效应的电子分析激发态计算方法。
必须认识到,由于空穴激发态系统的复杂性,多体效应及关联效应的诸多符号都会加剧电子激发态中的复杂性,而能提供有效的模拟方法,能够可视化性地描述它们的形式,并有助于准确地计算它们的物理量。
综上所述,电子分析激发态的研究是空穴电子学领域中的一个重要研究课题,有多种方法可以用来对激发态的特性进行深入研究,但同时,也必须注意由于其复杂性,有必要选择合适的研究方法来获得可靠的研究结果。
§4.2 电子和空穴的统计分布

一. 费密分布函数
半导体中的电子服从费密 —— 狄拉克统计
—— 在金属中,电子填充空带的部分形成导带,相应的费 密能级位于导带中 —— 对于掺杂不太多的半导体,热平衡下,施主电子激发 到导带中,同时价带中还有少量的空穴 —— 半导体中电子的费密能级位于带隙之中
半导体中费密能级位于带隙之中
—— 半导体中的导带能级和价带能级远离费密能级 —— 导带接近于空的,价带接近于满带
图4-5 不同温度的费密分布函数,其中a: T=0; b: kBT=1; c: kBT=2.5
二.平衡态下的载流子浓度
导带底附近的能量
满带顶附近的能量
,
n
EC
f ( E ) NC ( E )dE
4 V * 3/ 2 N C ( E ) 3 (2mn ) E EC h 4 V 3/ 2 NV ( E ) 3 (2m* ) EV E p h
导带中电子的浓度
n
EC
f ( E ) NC ( E )dE
令
2(2 m k T ) n h
* n B 3
3/ 2
e
EC EF k BT
—— 有效能级密度
导带电子浓度
n NC e
EC EF k BT
—— 单位体积中导电电子数就是如同导带底 EC 处的 N 个 能级所应含有的电子数
温度很低时
Ei / kBT 1/ 2
]
—— 很少的施主被电离 温度足够高时
—— 施主几乎全被电离,导带中的电子数接近于施主数
P 型半导体
受主的能级位置: EA 受主浓度: NA —— 足够低的温度下,载流子主要是从受主能级激发到满 带的空穴
电子与空穴优质课件PPT

距Ec越远,也就是越趋向Ei。
6 强电离后,如果温度继续升高,本征激发 也进一步增强,当ni可以与ND比拟时,本征 载流子浓度就不能忽略了,这样的温度区间 称为过渡区。
能带理论
杂质浓度一定时,如果强电离后继续升高温度,施主对载流子 的贡献就基本不变了,但本征激发产生的ni随温度的升高逐渐变得 不可忽视,甚至起主导作用,而EF则随温度升高逐渐趋近Ei。
Thank You
电子与空穴
目录
A 电子和空穴/施主和受主 C 电子占据施主能级的几率
载流子
B
电子和空穴
半导体中有两种载流子:自由电子和空穴,价电子受共价键的束缚, 晶体中不存在自由运动的电子,半导体是不能导电的,某些共价键中的 价电子获得了足够的能量,足以挣脱共价键的束缚,跃迁到导带,成为 自由电子,同时在共价键中留下相同数量的空穴。空穴是半导体中特有 的一种粒子。它带正电,与电子的电荷量相同。把热激发产生的这种跃 迁过程称为本征激发。本征激发所产生的自由电子和空穴数目是相同的。
杂半导体中,施主和受主要么处于未离化的中性态, 要么电离成为离化态。以施主为例,电子占据施主能级时 是中性态,离化后成为正电中心。因为费米分布函数中一 个能级可以容纳自旋方向相反的两个电子,而施主能级上 要么被一个任意自旋方向的电子占据(中性态),要么没有被 电子占据(离化态)。
电子占据施主能级的几率
施主的离化情况与能级ED和费米能级EF的相对位置有 关:如果ED-EF>>k0T,则未电离施主浓度nD≈0,而电离 施主浓度nD+ ≈ ND,几乎全部电离。如果费米能级EF与 施主能级ED重合时,施主有程 小结
01 电子和空穴 02 半导体载流子 03 电子占据施主能级的几率
光催化基础及应用-本科生

福建省光催化重点实验室
14
FUZHOU UNIVERSITY
晶体中电子的共有化运
动: 电子可以在整个晶体
中运动,在相应的壳层中 转移,最外层电子的共有 化运动较显著。
晶体中电子运动的重要
特征。
福建省光催化重点实验室
15
FUZHOU UNIVERSITY
原子能级分裂为能带(左)以及金刚石型结构价电子能带(右)示意图
福建省光催化重点实验室
11
FUZHOU UNIVERSITY
2-1-1电子的共有化运动与能带的形成
1.1原子结合成晶体的过程 1.理想的孤立原子
H原子中的电子在原子核势场作用下运动, 只能处于某一特定的量子态,可用主量子数n, 角量子数 l,磁量子数ml,自旋量子数ms来表 征。
福建省光催化重点实验室
(2)在一定条件下,电子可以发生从一个量子态转移到 另一个量子态的突变,这种突变称为量子跃迁。原子发生相互 碰撞,或吸收光的能量,都可以使电子从一条轨道跳到另一条 轨道,即发生量子跃迁。
福建省光催化重点实验室
31
FUZHOU UNIVERSITY
我们将看到,半导体中存在各类的量子态: (1)硅、锗中构成共价键的电子属于一类量子态; (2)它们摆脱共价键后在半导休中作自由运动的状态属于另 一类量子态; (3)掺进半导体的杂质原子可以把电子束缚在它四周运动, 则又是一类量子态。
2-1-2电子和空穴的统计分布
我们所要讨论的主要是电子的统计规律。统计规律是大量 的电子在作微观运动时表现出来的。我们知道,电子的微观运 动服从不同于一般力学的量子力学规律,其基本特点包含以下 两种运动形式:
(1)电子做稳恒的运动,具有完全确定的能量。这种稳 恒的运动状态称为量子态。如下面要讲的,电子在原子中象行 星环绕太阳一样作稳恒不变的运动,就是一个量子态。相应的 能量称为能级。
第五章-PN-结PPT课件

降低温度,熔融体开 始凝固,在n型硅片上 形成一含有高浓度铝 的p型硅薄层,它和n 型硅衬底的交界面处 即为p-n结(这时称为 铝硅合金结)。
图5-2 合金法制造p-n结过程
2021
3
突变结的杂质分布
图5-3突变结的杂质分布
xxj, N(x) NA xxj, N(x) ND
2021
nne 0 q(VDV)/kBT Pn
和
n ne 0
0 qVD/kBT
Pn
比较得到
nPnP 0eqV/kBT
—— 外加电场使边界处电子的浓度提高 eqV/kBT 倍
2021
17
边界处非平衡载流子浓度 n P n P 0 n P 0(eq/V kB T 1 )
—— 正向注入的电子在P区边界积累,同时向P区扩散
—— 非平衡载流子边扩散、边复合形成电子电流
2021
18
边界处非平衡载流子浓度 n P n P 0 n P 0(eq/V kB T 1 )
—— 正向注入电子在P区边界积累,同时向P区扩散,非 平衡载流子边扩散、边复合形成电子电流
应用非平衡载流子密度方程
DddN xN0
Dex/L L
边界处 x0 N0nP 0(eqV /kBT1)
1)Dp Lp
PN结总的电流密度 j jn jp j0(eqV /kBT1)
j0
q(Dn Ln
nP0
Dp Lp
pN 0 )
——
肖克莱方程
(
W.
Shockley
)
2021
20
结果讨论
jj0(eqV /kBT1)
1) 当正向电压V增加时,电流增加很快
半导体物理第四章电子和空穴的统计分布复习

N(E) 定义:单位体积的晶体中,单位能量间隔的状态数
mdn
2
1
M 3 m1m2m3 3
,叫做状态密度有效质量。
2。费米分布函数:p73, 4.10式
描述每个量子态被电子占据的几率随能量E的变化 3。费米能级EF的意义,影响费米能级的因素;费米分布函数
的性质 p74 4。能带中电子和空穴的浓度:
p77,4.22式,4.21式 ;p78, 4.25和4.26
p79,4.29式
非简并半导体的条件。
5。本征半导体,电中性条件 本征费米能级:p81, 4.31式 本征载流子浓度:4.32式,4.33, 4.34, 4.35
6。杂质能级: 电子占据杂质能级的几率:p85,4.36-4.40式 杂质能级上的电子浓度和空穴浓度:p86,4.41-4.44式 只含一种杂质的半导体(p87)和有杂质补偿的半导体(p96):
VIP: 电中性条件的具体对应形式及应用
弱电离、饱和电离和本征激发的条件(p89,4.52,4.55) 确定杂质电离能的方法。浓度表达式(p89, 4.54, 4.58)
载流子浓度随温度变化的讨论(杂质半导体)(p91, 图4.5) 费米能级与杂质浓度和温度的关系(p93, 图4.6;p94)
(p95)饱和电离区的范围的标准和应用 7。简并半导体的概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑤双简并半导体——半导体中存在两个费米能级。(图f ) 两个费米能级使得导带中有自由电子;价带中有空穴。
3. 小结
(1)半导体在热平衡时,一个电子占据能量为E的能级
1 的几率为 fn (E) EEF
e kT 1
(2)在轻掺杂P型半导体中,受主能级使费米能级向下
移动;轻掺杂N型半导体中,施主能级使费米能级向上
移动。
4. 作业思考题
①什么是双简并半导体?
②半导体在热平衡时,电子在能带中的分布, 服从什么分布?
电子和空穴的统计分布
课程名称:激光原理与技术 主讲人:张玄和 单位:浙江工贸职业技术学院
电子和空穴的统计分布
1. 教学目标
使学生明白什么是费米函数、费米能级。
2. 学习内容
统计物理学指出:半导体在热平衡时,电子在能带中的分布
不再服从玻尔兹曼分布,而服从费米分布,一个电子占据能量为
E的能级的几率为
fn(E)
1
E EF
e kT 1
上式称为费米函数。可见,对于某一温度T,电子占据能 级EF的几率为1/2。 EF:费米能级 k: 玻尔兹曼常数
2. 学习内容
杂质半导体中,费米能级的位置与杂质类型及掺杂浓度有密 切关系。为了说明问题,下图给出了温度极低时的情况。
费米能级的位置与杂质类型及掺杂浓度关系
2. 学习内容
①在未掺杂质的本征型半导体中,费米能级居于禁带中央,导带 内的电子或价带内的空穴是非简并化分布(图a)。 ②在轻掺杂P型半导体中,受主能级使费米能级向下移动(图b);轻 掺杂N型半导体中,施主能级使费米能级向上移动(图d)。
③在重掺杂P型半导体中,费米能级向下移到价带中,低于费 米能级的能带被电子填满,高于费米能级的能态都是空的,价 带中出现空穴——P型简并半导体 (图c)。