GH独立钢管避雷针

合集下载

避雷针计算书

避雷针计算书

设计条件:1.计算依据《钢结构设计规范》 《变电站建筑结构设计技术规定》 《建筑地基基础设计规范》 《建筑结构荷载规范》 《建筑抗震设计规范》 《变电构架设计手册》 2.独立避雷针荷载计算: H=35m , 第一段高度 h 1=7300mm, 采用钢管Φ 第二段高度 h 2=7000mm, 采用钢管Φ 第三段高度 h 3=7000mm, 采用钢管Φ 第四段高度 h 4=7000mm, 采用钢管Φ 第五段高度 h 5=2400mm, 采用钢管Φ 第六段高度h 6=1950mm, 采用钢管Φ 第七段高度 h 7=1600mm, 采用钢管Φ 第八段高度 h 5=1050mm, 采用钢管Φ按各段高度及外径求得加权平均外径为:D=(7300×535+7000×440+7000×340+7000× 240+2400×152+1950×133+1600×114+1050×95)÷(7300+7000×3+2400+1950+1600+1050)=339mm (实际取用 364mm 偏于安全) 风荷载计算:按《建筑结构荷载规范》 (GB 50009-2001 )( 2006版)查得ω 0=0.60kN/m 2, 风荷载标准值 :ω k =βz. μ s . μ z . ω0风振系数:单钢管柱 (h>8m), β z =2.0 风压高度变化系数μ z : h=35m 查《建筑结构荷载规范》 (GB50009-2001 )表 7.2.1( B 类)插值得: μ z =1.42+(1.56-1.42) ×5÷ (40-30)=1.4922风荷载体型系数μ s :μ z ω 0.d =1.49× 0.60× 0.364 =0.118>0.015 ,取μ s =+0.62ωk =βz .μs . μz . ω 0=2.0×0.6× 1.49× 0.60=1.073kN/m作用于各段钢管的风荷载标准值:第一段钢管Φ 580/Φ 490x10, q 1= ω k xD=1.073 ×0.535=0.574 kN/m 第二段钢管Φ 490/Φ390x8,q 2=ω k xD=1.073 × 0.44=0.472 kN/m第三段钢管Φ 390/Φ290x8,q 3=ω k xD=1.073 × 0.34=0.365 kN/m 第四段钢管Φ 290/Φ190x6,q 4=ωkxD=1.073 × 0.24=0.258 kN/m避雷针计算GB50017-2003 NDGJ96-92 GB 50007-2002GB 50009-2001 (2006 年版) GB 50011-2008580/Φ 490x10,平均直径Φ 535,N=9.5 kN490/Φ 390x8,平均直径Φ 440, N=6 kN 390/Φ 290x7,平均直径Φ 340,N=5 kN290/Φ 190x6,平均直径Φ 240, N=2.5 kN 152x4, N=0.5 kN133x4, N=0.4 kN114x4, N=0.3 kN95x3, N=0.2 kN第五段钢管Φ152x4,q5=ωk xD=1.073 ×0.152=0.163 kN/m第六段钢管Φ133x4,q6=ωk xD=1.073 ×0.133=0.143 kN/m第七段钢管Φ114x4,q7= ω k xD=1.073 ×0.114=0.122 kN/m第八段钢管Φ95x3,q8=ωk xD=1.073 ×0.095=0.102 kN/m 、内力分析各段钢管底风荷载标准值:1) 剪力第八段钢管Q k8=0.102 × 1.05=0.107 kN第七段钢管Q k7=0.107+0.122 × 1.60=0.107+0.195=0.302 kN第六段钢管Q k6=0.302+0.143 × 1.95=0.302+0.279=0.581 kN第五段钢管Q k5=0.581+0.163 × 2.40=0.581+0.391=0.972 kN第四段钢管Q k4=0.972+0.258 × 7=0.972+1.806=2.778 kN第三段钢管Q k3=2.778+0.365 × 7=2.778+2.555=5.333 kN第二段钢管Q k2=5.333+0.472 × 7=5.333+3.304=8.637 kN第一段钢管Q k1=8.637+0.574 × 7.3=8.637+4.19=12.827 kN2) 弯矩第八段钢管M k8=0.5 ×1.05× 0.107=0.056 kNm第七段钢管M k7=0.056+0.107×1.6+0.5×1.6×0.195=0.056+0.171+0.156=0.383 kNm第六段钢管M k6=0.056+0.107×( 1.6+1.95) +0.156+0.195 × 1.95+0.5×1.95× 0.279=0.056+0.38+0.156+0.38+0.272=1.244 kNm第五段钢管M k5=0.056+0.107×(1.6+1.95+2.40)+0.156+0.195×( 1.95+2.40) +0.272+0.279 ×2.40+0.5×2.4× 0.391=0.056+0.637+0.156+0.85+0.272+0.67+0.469=3.574 kNm 第四段钢管M k4=0.056+0.107×(1.6+1.95+2.40+7)+0.156+0.195×( 1.95+2.40+7) +0.272+0.279 ×(2.40+7)+ 0.469+0.391 ×7+0.5×7×1.806=0.056+1.386+0.156+2.213+0.272+2.623+0.469+2.734+6.321=16.23 kNm第三段钢管M k3=0.056+0.107×(1.6+1.95+2.40+7+7 )+0.156+0.195×(1.95+2.40+7+7) +0.272+0.279 ×(2.40+7+7)+ 0.469+0.391 ×(7+7)+6.321+1.806 × 7+0.5 ×7×2.555=0.056+2.135+0.156+3.578+0.272+4.576+0.469+5.474+6.321+12.642+8.943=44.622 kNm第二段钢管M k2=0.056+0.107 ×( 1.6+1.95+2.40+7+7+7 )+0.156+0.195×( 1.95+2.40+7+7+7 )+0.272+0.279 × (2.40+7+7+7)+ 0.469+0.391 ×( 7+7+7) +6.321+1.806 ×(7+7)+8.943+2.555 × 7+0.5×7×3.304=0.056+2.884+0.156+4.943+0.272+6.529+0.469+8.211+6.321+25.284+8.943+17.885+11.564=95.517 kNm第一段钢管M k1=0.056+0.107×( 1.6+1.95+2.40+7+7+7+7.3 )+0.156+0.195 ×(1.95+2.40+7+7+7+7.3 )+0.272+0.279 × (2.40+7+7+7+7.3)+ 0.469+0.391 ×( 7+7+7+7.3 )+6.321+1.806×(7+7+7.3)+8.943+2.555 ×( 7+7.3 )+11.564+3.304×7.3+0.5×7.3×4.19=0.056+3.665+0.156+6.367+0.272+8.565+0.469+11.065+6.321+38.468+8.943+36.537 +11.564+24.119+15.294=171.862 kNm3)轴力第八段钢管N k8=0.2kN第七段钢管N k7=0.2+0.3=0.5kN第六段钢管N k6=0.5+0.4=0.9kN第五段钢管N k5=0.9+0.5=1.4kN第四段钢管N k4=1.4+2.5=3.9kN第三段钢管N k3=3.9+5=8.9kN第二段钢管N k2=8.9+6=14.9kN第一段钢管N k1=14.9+9.5=24.4kN三、钢管截面特性计算(按平均截面计算)第一段钢管Φ 580/Φ 490x10, 平均直径Φ 535 的截面特性I x=I y=π(d4-d41)/64=3.141592 ×(5354-5154)÷64=568453891.8mm4W x=W y=π(d4-d41)/(32d)=3.141592 ×(5354-5154)÷(32×535)=2125061.3mm3i x=i y=(d2+d21)0.5/4=(535 2+515 2)0.5÷ 4=185.7mm185.8A=π(d2-d21) /4=3.141592×(5352-5152) ÷4=16493.3 mm2第二段钢管Φ 490/Φ 390x8, 平均直径Φ 440 的截面特性I x=I y=π(d4-d41)/64=3.141592 ×(4404-4244)÷64=253366931.8mm4W x=W y=π(d4-d41)/(32d)=3.141592 ×(4404-4244)÷(32×440)=1151667.9mm3i x=i y=(d2+d21)0.5/4=(440 2+424 2)0.5÷ 4=152.8mmA=π(d2-d21) /4=3.141592×(4402-4242) ÷4=10857.3 mm2第三段钢管Φ 390/Φ 290x8, 平均直径Φ 340 的截面特性I x=I y=π(d4-d41)/64=3.141592 ×(3404-3244)÷64=115031326.3mm4W x=W y=π(d4-d41)/(32d)=3.141592 ×(3404-3244)÷(32×340)=676654.9mm3i x=i y=(d2+d21)0.5/4=(340 2+324 2)0.5÷ 4=117.4mmA=π(d2-d21) /4=3.141592 ×(3402-3242) ÷4=8344.1 mm2第四段钢管Φ 290/Φ 190x6, 平均直径Φ 340 的截面特性I x=I y=π(d4-d41)/64=3.141592 ×(2404-2284)÷64=30209536.1mm4W x=W y=π(d4-d41)/(32d)=3.141592 ×(2404-2284)÷(32×240)=251746.1mm3i x=i y=(d2+d21)0.5/4=(240 2+228 2)0.5÷ 4=82.8mmA=π(d2-d21) /4=3.141592 ×(2402-2242) ÷4=5830.8 mm2第五段钢管Φ 152×4 截面特性I x=I y=π(d4-d41)/64=3.141592 ×(1524-1444)÷64=5095913.6mm4W x=W y=π(d4-d41)/(32d)=3.141592 ×(1524-1444)÷(32×152)=67051.5mm3i x=i y=(d2+d21)0.5/4=(152 2+144 2)0.5÷ 4=52.3mmA=π(d2-d21) /4=3.141592 ×(1522-1442) ÷4=1859.8 mm2第六段钢管Φ 133x4 截面特性I x=I y=π(d4-d41)/64=3.141592 ×(1334-1254)÷64=3375252.6mm4W x=W y=π(d4-d41)/(32d)=3.141592×(1334-1254)÷(32x133)=50755.7mm 3i x=i y=(d2+d21)0.5/4=(133 2+125 2)0.5÷ 4=45.6mmA=π(d2-d21) /4=3.141592 ×(1332-1252) ÷4=1621 mm2第七段钢管Φ 114x4 截面特性I x=I y=π(d4-d41)/64=3.141592 ×(1144-1064)÷64=2093494.1mm 4W x=W y=π(d4-d41)/(32d)=3.141592 ×(1144-1064)÷(32×114)=36728mm3 i x=iy=(d2+d21)0.5/4=(1142+1062)0.5÷4=38.9mmA=π(d2-d21) /4=3.141592×(1142-1062) ÷4=1382.3 mm2第八段钢管Φ 95x3 截面特性I x=I y=π(d4-d41)/64=3.141592 ×(954-894)÷64=918345.5mm4W x=W y=π(d4-d41)/(32d)=3.141592×(954-894)÷(32×95)=193333.6mm 3 i x=iy=(d2+d21)0.5/4=(952+892)0.5÷4=32.5mmA=π(d2-d21) /4=3.141592×(952-892) ÷4=867.1mm 2四、强度验算第一段钢管N/A+M x/(γx W x)=1.2×24.4×1000÷16493.3+1.4×171.862×1000000÷(1.15×2125061.3)=1.78+98.46=100.24N/m m 2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)=24.4 ×1000÷16493.3-1.4×171.862×1000000÷(1.15×2125061.3)=1.48-98.46=-96.98N/m m 2<215 ×0.7=150.5 N/mm 2第二段钢管N/A+M x/(γx W x)=1.2×14.9×1000÷10857.3 +1.4 ×95.517 ×1000000÷(1.15×1151667.9)=1.65+100.97=102.61N/m m 2<215 ×0.7=150.5 N/mmN/A-M x/(γx W x)= 14.9×1000÷10857.3 -95.517 ×1000000 ÷(1.15×1151667.9)=1.37-72.12=-70.75N/m m 2<215 × 0.7=150.5 N/mm 2 第三段钢管N/A+M x/(γx W x)= 1.2×8.9×1000÷8344.1 +1.4 ×44.622 ×1000000÷(1.15×676654.9)=1.28+80.28=81.56N/m m 2<215 ×0.7=150.5 N/mm N/A-M x/(γx W x)= 8.9×1000÷8344.1 -44.622×1000000÷(1.15×676654.9)=1.07-57.34=-56.27N/m m 2<215 ×0.7=150.5 N/mm 第四段钢管N/A+M x/(γx W x)= 1.2×3.9×1000÷5830.8 +1.4×16.23×1000000÷(1.15×251746.1)=0.8+78.48=79.28N/m m 2<215×0.7=150.5 N/mm N/A-M x/(γx W x)= 3.9×1000÷5830.8 -16.23×1000000÷(1.15×251746.1)=0.67-56.06=-55.39N/m m 2<215 ×0.7=150.5 N/mm 2第五段钢管N/A+M x/(γx W x)= 1.2×1.4×1000÷1859.8 +1.4×3.574×1000000÷(1.15×67051.5)=0.9+64.89=65.79N/m m 2<215×0.7=150.5 N/mm 2N/A-M x/(γx W x)= 1.4×1000÷1859.8-1.4×3.574×1000000÷(1.15×67051.5)=0.75-64.89=-64.14N/m m 2<215 ×0.7=150.5 N/mm 2第六段钢管N/A+M x/(γx W x)= 1.2×0.9×1000÷1621+1.4×1.244×1000000÷(1.15×50755.7)=0.67+29.84=30.51N/m m 2<215 ×0.7=150.5 N/mm 2 N/A-M x/(γx W x)= 0.9×1000÷1621-1.4×1.244×1000000÷(1.15×50755.7)=0.56-29.84=-29.28N/m m 2<215 ×0.7=150.5 N/mm 2第七段钢管N/A+M x/(γx W x)= 1.2×0.5×1000÷1382.3+1.4×0.383×1000000÷(1.15×36728)=0.43+12.69=13.12N/m m 2<215 ×0.7=150.5 N/mm 2 N/A-M x/(γx W x)= 0.5×1000÷1382.3-1.4×0.383×1000000÷(1.15×36728)=0.36-12.69=-12.33N/m m 2<215 ×0.7=150.5 N/mm 2第八段钢管设计值作用下:N/A+M x/(γx W x)= 1.2×0.2×1000÷1382.3+1.4×0.383×1000000÷(1.15×36728)=0.17+12.69=12.86N/m m 2<215 ×0.7=150.5 N/mm 2 N/A-M x/(γx W x)= 0.2×1000÷1382.3-1.4×0.383×1000000÷(1.15×36728)=0.14-12.69=-12.55N/m m 2<215 ×0.7=150.5 N/mm 2设计值作用下:N/A+M x/(γx W x)= 1.2×0.2×1000÷1382.3+0.383×1000000÷(1.15×36728)=0.17+9.07=9.24N/mm 2<80 N/mm 2N/A-M x/(γx W x)= 0.2×1000÷1382.3-1.4×0.383×1000000÷(1.15×36728)=0.14-12.69=-12.55N/mm 2<80 N/mm 2五、稳定性验算第一段钢管1)平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+95.517÷171.862=1.556注: (M 1为钢管上部弯矩; M 2为钢管下部弯矩 )x =Kl/i x =1.556×7300÷185.7=61.17<150,查得φx =0.815N 'Ex2EA /(1.1 2x ) 3.1415922 206000 16493.3/(1 .1 61.172) 81471312)平面外的稳定性2) 平面外的稳定性N tx M x 1.2 14900 1.4 1.0 95.517 1000000tx x0.7 2.10 81.27φx A φb W 1x 0.785 10857.3 1.0 1151667.9 83.37kN / m 215kN /m第三段钢管1)平面内的稳定性 等效长度计算系数 注: (M 1为钢管上部弯矩; M 2为钢管下部弯矩 )mxMx φ A Nφx Ax W 1x (1 0.8 ' ) x 1xNE ' x1.2 24400 1.4 1.0 171.862 10000002.18 98.74100.92kN / m 0.815 16493.3215kN /m1.15 2125061.3 (1 0.8 1.2 24400 )8147131 )φx AtxM xφb W1x1.2 24400 0.815 16493.3 81.43kN /m 215kN /m0.7 1.4 1.0171.862 1000000 2.18 79.251.0 2125061.3第二段钢管1)平面内的稳定性等效长度计算系数K=1+M 1/M 2=1+44.622÷95.517=1.467注: (M 1为钢管上部弯矩; M 2为钢管下部弯矩 )x =Kl/i x =1.467x7000 ÷ 152.8=67.21<150,查得φx =0.785N 'Ex 2EA /(1.1 x 2) 3.1415922 206000 10857.3 /(1.1 67.212 ) 4442507 NmxM x 1.2 14900φx A x W 1x (1 0.8 N ' ) 0.785 10857.3 x 1x NE 'x2.10 101.3 103.4kN /m 215kN /m1.4 1.0 95.517 10000001.2 149001.15 1151667.9 (1 0.8 )4442507K=1+M 1/M 2=1+16.23/44.622=1.36x =Kl/i x =1.36x7000 ÷ 117.4=81.09<150,查得φx =0.704N 'Ex 2EA/(1.1 2x ) 3.1415922 206000 8344.1 /(1.1 81.092) 2345411NmxMx1.2 8900 1.4 1.0 44.622 1000000φx Ax W 1x (10.8 N ' ) 0.704 8344.11.15 676654.9 (1 0.81.2 8900) N E 'x23454111.82 80.57 82.39kN /m215kN /m2)平面外的稳定性N tx M x 1.2 8900 0.7 1.4 1.044.622 100000064.61.82φx A φb W 1x 0.704 8344.1 1.0 676654.966.42kN /m 215kN /m第四段钢管1) 平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+3.574 ÷ 16.23=1.22 注: (M 1为钢管上部弯矩; M 2为钢管下部弯矩 )x =Kl/i x =1.22x7000 ÷ 82.8=103.14<150,查得φx =0.56364.37kN/m 215kN /m根据上述结构计算,第五、第六、第七、第八段平面内及平面外都满足要求。

避雷针计算书

避雷针计算书

避雷针计算一.设计条件:1.计算依据《钢结构设计规范》GB50017-2003《变电站建筑结构设计技术规定》NDGJ96-92《建筑地基基础设计规范》GB 50007-2002《建筑结构荷载规范》GB 50009-2001(2006年版)《建筑抗震设计规范》GB 50011-2008《变电构架设计手册》2.独立避雷针荷载计算:H=35m,第一段高度h1=7300mm,采用钢管Φ580/Φ490x10,平均直径Φ535,N=9.5 kN第二段高度h2=7000mm,采用钢管Φ490/Φ390x8,平均直径Φ440,N=6 kN第三段高度h3=7000mm,采用钢管Φ390/Φ290x7,平均直径Φ340,N=5 kN第四段高度h4=7000mm,采用钢管Φ290/Φ190x6,平均直径Φ240,N=2.5 kN第五段高度h5=2400mm,采用钢管Φ152x4,N=0.5 kN第六段高度h6=1950mm,采用钢管Φ133x4,N=0.4 kN第七段高度h7=1600mm,采用钢管Φ114x4,N=0.3 kN第八段高度h5=1050mm,采用钢管Φ95x3,N=0.2 kN按各段高度及外径求得加权平均外径为:D=(7300×535+7000×440+7000×340+7000×240+2400×152+1950×133+1600×114+1050×95)÷(7300+7000×3+2400+1950+1600+1050)=339mm(实际取用364mm偏于安全)风荷载计算:按《建筑结构荷载规范》(GB 50009-2001)(2006版)查得ω0=0.60kN/m2,风荷载标准值:ωk=βz.μs.μz.ω0风振系数:单钢管柱(h>8m),βz=2.0风压高度变化系数μz:h=35m查《建筑结构荷载规范》(GB 50009-2001)表7.2.1(B类)插值得:μz=1.42+(1.56-1.42)×5÷(40-30)=1.49风荷载体型系数μs:μzω0.d2=1.49×0.60×0.3642=0.118>0.015,取μs=+0.6ωk=βz.μs.μz.ω0=2.0×0.6×1.49×0.60=1.073kN/m2作用于各段钢管的风荷载标准值:第一段钢管Φ580/Φ490x10,q1=ωk xD=1.073×0.535=0.574 kN/m第二段钢管Φ490/Φ390x8,q2=ωk xD=1.073×0.44=0.472 kN/m第三段钢管Φ390/Φ290x8,q3=ωk xD=1.073×0.34=0.365kN/m第四段钢管Φ290/Φ190x6,q4=ωk xD=1.073×0.24=0.258 kN/m第五段钢管Φ152x4,q5=ωk xD=1.073×0.152=0.163 kN/m第六段钢管Φ133x4,q6=ωk xD=1.073×0.133=0.143 kN/m第七段钢管Φ114x4,q7=ωk xD=1.073×0.114=0.122 kN/m第八段钢管Φ95x3,q8=ωk xD=1.073×0.095=0.102 kN/m二、内力分析各段钢管底风荷载标准值:1)剪力第八段钢管Q k8=0.102×1.05=0.107 kN第七段钢管Q k7=0.107+0.122×1.60=0.107+0.195=0.302 kN第六段钢管Q k6=0.302+0.143×1.95=0.302+0.279=0.581 kN第五段钢管Q k5=0.581+0.163×2.40=0.581+0.391=0.972 kN第四段钢管Q k4=0.972+0.258×7=0.972+1.806=2.778 kN第三段钢管Q k3=2.778+0.365×7=2.778+2.555=5.333 kN第二段钢管Q k2=5.333+0.472×7=5.333+3.304=8.637 kN第一段钢管Q k1=8.637+0.574×7.3=8.637+4.19=12.827 kN2)弯矩第八段钢管M k8=0.5×1.05×0.107=0.056 kNm第七段钢管M k7=0.056+0.107×1.6+0.5×1.6×0.195=0.056+0.171+0.156=0.383 kNm 第六段钢管M k6=0.056+0.107×(1.6+1.95)+0.156+0.195×1.95+0.5×1.95×0.279=0.056+0.38+0.156+0.38+0.272=1.244 kNm第五段钢管M k5=0.056+0.107×(1.6+1.95+2.40)+0.156+0.195×(1.95+2.40)+0.272+0.279×2.40+0.5×2.4×0.391=0.056+0.637+0.156+0.85+0.272+0.67+0.469=3.574 kNm 第四段钢管M k4=0.056+0.107×(1.6+1.95+2.40+7)+0.156+0.195×(1.95+2.40+7)+0.272+0.279×(2.40+7)+ 0.469+0.391×7+0.5×7×1.806=0.056+1.386+0.156+2.213+0.272+2.623+0.469+2.734+6.321=16.23 kNm第三段钢管M k3=0.056+0.107×(1.6+1.95+2.40+7+7)+0.156+0.195×(1.95+2.40+7+7)+0.272+0.279×(2.40+7+7)+ 0.469+0.391×(7+7)+6.321+1.806×7+0.5×7×2.555=0.056+2.135+0.156+3.578+0.272+4.576+0.469+5.474+6.321+12.642+8.943=44.622 kNm第二段钢管M k2=0.056+0.107×(1.6+1.95+2.40+7+7+7)+0.156+0.195×(1.95+2.40+7+7+7)+0.272+0.279×(2.40+7+7+7)+ 0.469+0.391×(7+7+7)+6.321+1.806×(7+7)+8.943+2.555×7+0.5×7×3.304=0.056+2.884+0.156+4.943+0.272+6.529+0.469+8.211+6.321+25.284+8.943+17.885+11.564=95.517 kNm第一段钢管M k1=0.056+0.107×(1.6+1.95+2.40+7+7+7+7.3)+0.156+0.195×(1.95+2.40+7+7+7+7.3)+0.272+0.279×(2.40+7+7+7+7.3)+ 0.469+0.391×(7+7+7+7.3)+6.321+1.806×(7+7+7.3)+8.943+2.555×(7+7.3)+11.564+3.304×7.3+0.5×7.3×4.19=0.056+3.665+0.156+6.367+0.272+8.565+0.469+11.065+6.321+38.468+8.943+36.537+11.564+24.119+15.294=171.862 kNm3)轴力第八段钢管N k8=0.2kN第七段钢管N k7=0.2+0.3=0.5kN第六段钢管N k6=0.5+0.4=0.9kN第五段钢管N k5=0.9+0.5=1.4kN第四段钢管N k4=1.4+2.5=3.9kN第三段钢管N k3=3.9+5=8.9kN第二段钢管N k2=8.9+6=14.9kN第一段钢管N k1=14.9+9.5=24.4kN三、钢管截面特性计算(按平均截面计算)第一段钢管Φ580/Φ490x10, 平均直径Φ535的截面特性W x=W y=π(d4-d41)/(32d)=3.141592×(5354-5154)÷(32×535)=2125061.3mm3 i x=i y=(d2+d21)0.5/4=(5352+5152)0.5÷4=185.7mm185.8A=π(d2-d21) /4=3.141592×(5352-5152) ÷4=16493.3 mm2第二段钢管Φ490/Φ390x8, 平均直径Φ440的截面特性I x=I y=π(d4-d41)/64=3.141592×(4404-4244)÷64=253366931.8mm4W x=W y=π(d4-d41)/(32d)=3.141592×(4404-4244)÷(32×440)=1151667.9mm3 i x=i y=(d2+d21)0.5/4=(4402+4242)0.5÷4=152.8mmA=π(d2-d21) /4=3.141592×(4402-4242) ÷4=10857.3 mm2第三段钢管Φ390/Φ290x8, 平均直径Φ340的截面特性I x=I y=π(d4-d41)/64=3.141592×(3404-3244)÷64=115031326.3mm4W x=W y=π(d4-d41)/(32d)=3.141592×(3404-3244)÷(32×340)=676654.9mm3 i x=i y=(d2+d21)0.5/4=(3402+3242)0.5÷4=117.4mmA=π(d2-d21) /4=3.141592×(3402-3242) ÷4=8344.1 mm2第四段钢管Φ290/Φ190x6, 平均直径Φ340的截面特性I x=I y=π(d4-d41)/64=3.141592×(2404-2284)÷64=30209536.1mm4W x=W y=π(d4-d41)/(32d)=3.141592×(2404-2284)÷(32×240)=251746.1mm3 i x=i y=(d2+d21)0.5/4=(2402+2282)0.5÷4=82.8mmA=π(d2-d21) /4=3.141592×(2402-2242) ÷4=5830.8 mm2第五段钢管Φ152×4截面特性I x=I y=π(d4-d41)/64=3.141592×(1524-1444)÷64=5095913.6mm4W x=W y=π(d4-d41)/(32d)=3.141592×(1524-1444)÷(32×152)=67051.5mm3 i x=i y=(d2+d21)0.5/4=(1522+1442)0.5÷4=52.3mmA=π(d2-d21) /4=3.141592×(1522-1442) ÷4=1859.8 mm2第六段钢管Φ133x4截面特性I x=I y=π(d4-d41)/64=3.141592×(1334-1254)÷64=3375252.6mm4W x=W y=π(d4-d41)/(32d)=3.141592×(1334-1254)÷(32x133)=50755.7mm3i x=i y=(d2+d21)0.5/4=(1332+1252)0.5÷4=45.6mmA=π(d2-d21) /4=3.141592×(1332-1252) ÷4=1621 mm2第七段钢管Φ114x4截面特性W x=W y=π(d4-d41)/(32d)=3.141592×(1144-1064)÷(32×114)=36728mm3i x=i y=(d2+d21)0.5/4=(1142+1062)0.5÷4=38.9mmA=π(d2-d21) /4=3.141592×(1142-1062) ÷4=1382.3 mm2第八段钢管Φ95x3截面特性I x=I y=π(d4-d41)/64=3.141592×(954-894)÷64=918345.5mm4W x=W y=π(d4-d41)/(32d)=3.141592×(954-894)÷(32×95)=193333.6mm3i x=i y=(d2+d21)0.5/4=(952+892)0.5÷4=32.5mmA=π(d2-d21) /4=3.141592×(952-892) ÷4=867.1mm2四、强度验算第一段钢管N/A+M x/(γx W x)=1.2×24.4×1000÷16493.3+1.4×171.862×1000000÷(1.15×2125061.3)=1.78+98.46=100.24N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)=24.4×1000÷16493.3-1.4×171.862×1000000÷(1.15×2125061.3) =1.48-98.46=-96.98N/m m2<215×0.7=150.5 N/mm2第二段钢管N/A+M x/(γx W x)=1.2×14.9×1000÷10857.3 +1.4×95.517 ×1000000÷(1.15×1151667.9)=1.65+100.97=102.61N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 14.9×1000÷10857.3 -95.517 ×1000000÷(1.15×1151667.9)=1.37-72.12=-70.75N/m m2<215×0.7=150.5 N/mm2第三段钢管N/A+M x/(γx W x)= 1.2×8.9×1000÷8344.1 +1.4×44.622 ×1000000÷(1.15×676654.9)=1.28+80.28=81.56N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 8.9×1000÷8344.1 -44.622×1000000÷(1.15×676654.9)=1.07-57.34=-56.27N/m m2<215×0.7=150.5 N/mm2第四段钢管N/A+M x/(γx W x)= 1.2×3.9×1000÷5830.8 +1.4×16.23×1000000÷(1.15×251746.1) =0.8+78.48=79.28N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 3.9×1000÷5830.8 -16.23×1000000÷(1.15×251746.1)=0.67-56.06=-55.39N/m m2<215×0.7=150.5 N/mm2第五段钢管N/A+M x/(γx W x)= 1.2×1.4×1000÷1859.8 +1.4×3.574×1000000÷(1.15×67051.5) =0.9+64.89=65.79N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 1.4×1000÷1859.8-1.4×3.574×1000000÷(1.15×67051.5)=0.75-64.89=-64.14N/m m2<215×0.7=150.5 N/mm2第六段钢管N/A+M x/(γx W x)= 1.2×0.9×1000÷1621+1.4×1.244×1000000÷(1.15×50755.7)=0.67+29.84=30.51N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 0.9×1000÷1621-1.4×1.244×1000000÷(1.15×50755.7)=0.56-29.84=-29.28N/m m2<215×0.7=150.5 N/mm2第七段钢管N/A+M x/(γx W x)= 1.2×0.5×1000÷1382.3+1.4×0.383×1000000÷(1.15×36728)=0.43+12.69=13.12N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 0.5×1000÷1382.3-1.4×0.383×1000000÷(1.15×36728)=0.36-12.69=-12.33N/m m2<215×0.7=150.5 N/mm2第八段钢管设计值作用下:N/A+M x/(γx W x)= 1.2×0.2×1000÷1382.3+1.4×0.383×1000000÷(1.15×36728)=0.17+12.69=12.86N/m m2<215×0.7=150.5 N/mm2N/A-M x/(γx W x)= 0.2×1000÷1382.3-1.4×0.383×1000000÷(1.15×36728)=0.14-12.69=-12.55N/m m2<215×0.7=150.5 N/mm2设计值作用下:N/A+M x/(γx W x)= 1.2×0.2×1000÷1382.3+0.383×1000000÷(1.15×36728)=0.17+9.07=9.24N/mm2<80 N/mm2N/A-M x/(γx W x)= 0.2×1000÷1382.3-1.4×0.383×1000000÷(1.15×36728)=0.14-12.69=-12.55N/mm2<80 N/mm2五、稳定性验算第一段钢管1)平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+95.517÷171.862=1.556注:(M 1为钢管上部弯矩;M 2为钢管下部弯矩)λx =Kl/i x =1.556×7300÷185.7=61.17<150,查得x φ=0.8158147131)17.61.116493.3/(1206000141592.3)1.1/(2222'=⨯⨯⨯==x Ex EA N λπmkN m kN N N W M A N Ex x x x mx /215/92.10074.9818.2)8147131244002.18.01(2125061.315.11000000862.1710.14.13.16493815.0244002.1)8.01(φ'1x <=+=⨯⨯-⨯⨯⨯⨯⨯+⨯⨯=-+=γβσ 2)平面外的稳定性mkN m kN W M A N x x tx /215/43.8125.7918.22125061.30.11000000862.1710.14.17.03.16493815.0244002.1φφ1b x ≤=+=⨯⨯⨯⨯⨯+⨯⨯=+βη 第二段钢管1)平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+44.622÷95.517=1.467注:(M 1为钢管上部弯矩;M 2为钢管下部弯矩)λx =Kl/i x =1.467x7000÷152.8=67.21<150,查得x φ=0.7854442507)21.67 /(1.110857.3206000141592.3)1.1/(2222'=⨯⨯⨯==x Ex EA N λπmkN m kN N N W M A N Ex x x x mx /215/4.1033.10110.2)4442507149002.18.01(1151667.915.11000000 95.5170.14.1 10857.3785.0149002.1)8.01(φ'1x <=+=⨯⨯-⨯⨯⨯⨯⨯+⨯⨯=-+=γβσ 2)平面外的稳定性mkN m kN W M A N x x tx /215/37.8327.8110.29.15166710.11000000517.950.14.17.03.10857785.0149002.1φφ1b x ≤=+=⨯⨯⨯⨯⨯+⨯⨯=+βη 第三段钢管1)平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+16.23/44.622=1.36注:(M 1为钢管上部弯矩;M 2为钢管下部弯矩)λx =Kl/i x =1.36x7000÷117.4=81.09<150,查得x φ=0.7042345411)09.81 /(1.18344.1206000141592.3)1.1/(2222'=⨯⨯⨯==xEx EA N λπ mkN m kN N N W M A N Ex x x x mx /215/39.8257.8082.1)234541189002.18.01(9.76654615.11000000 622.440.14.1 1.3448704.089002.1)8.01(φ'1x <=+=⨯⨯-⨯⨯⨯⨯⨯+⨯⨯=-+=γβσ 2)平面外的稳定性mkN m kN W M A N x x tx /215/42.666.6482.19.6766540.11000000622.440.14.17.01.8344704.089002.1φφ1b x ≤=+=⨯⨯⨯⨯⨯+⨯⨯=+βη 第四段钢管1)平面内的稳定性等效长度计算系数 K=1+M 1/M 2=1+3.574÷16.23=1.22注:(M 1为钢管上部弯矩;M 2为钢管下部弯矩)λx =Kl/i x =1.22x7000÷82.8=103.14<150,查得x φ=0.563102222'104.3)563.0 /(1.18.8305206000141592.3)1.1/(⨯=⨯⨯⨯==x Ex EA N λπmkN m kN N N W M A N Ex x x x mx /215/91.7948.7843.1)104.339002.18.01(1.25174615.11000000 23.160.14.18.5830563.039002.1)8.01(φ10'1x <=+=⨯⨯⨯-⨯⨯⨯⨯⨯+⨯⨯=-+=γβσ 2)平面外的稳定性mkN m kN W M A N x x tx /215/37.6418.6319.11.2517460.1100000023.160.14.17.08.5830563.039002.1φφ1b x ≤=+=⨯⨯⨯⨯⨯+⨯⨯=+βη 根据上述结构计算,第五、第六、第七、第八段平面内及平面外都满足要求。

独立避雷针吊装质量安全技术交底

独立避雷针吊装质量安全技术交底
独立避雷针吊装质量安全技术交底
工程名称
xxx直流500KV输变电工程xxx换流站
施工部位
独立避雷针
一、质量要求:
1.拼装时应保证钢柱弯曲度大于5mm,否则必须进行校正
2.严格按图纸施工,防止拼装错误
3.高强螺栓紧固符合力矩值要求(340N·M)
4.拼装完毕后,应认真核对尺寸、轴线、直线度符合要求签名):年月日
施工人员签名
施工负责人:施工技术负责人:质检员:安全员:
5.垂直偏斜不大于h/1000,但不得大于35mm
6.吊装结束后,及时将避雷针接地,防止雷击
二、安全要求:
1.搬运角钢件、钢柱时应防止碰伤人员
2.起吊前,对使用吊具、安全带(绳)认真检查,发现问题的不准现场使用
3.高空作业时,施工人员应有“双保险”保护
4.施工现场布置明显安全标识,杜绝无关人员进场
5.在雨天、大风天气不准吊装

厂区独立避雷针基础施工方案

厂区独立避雷针基础施工方案

1.工程概况及特点全厂区内共设置四个独立避雷针,基础形式为现浇钢筋混凝土独立基础,基础埋深为-2.50m。

其定位坐标分别为A=663.50m,B=2014.00m; A=531.50m,B=2014.00m;A=481.50m,B=2107.00m;A=594.80m,B=2106.50m;避雷针基础±0.00m标高相当于绝对标高4.40m,其高程控制以厂区控制桩为基准点,进行测量。

因避雷针基础地下水位在-3.00m以上,根据水质报告,地下水对砼有强腐蚀,固此,所有基础砼(包括垫层)中均需掺入SRA-I型防腐剂,掺入量为水泥用量的2%,所有基础外侧均刷厚浆型环氧煤沥青防腐涂料2遍。

厂区独立避雷针基础垫层砼强度等级为C15,基础砼强度等级为C35;模板采用组合钢模板,共300m2;钢筋有I级钢和口级钢两种,共5.0t。

2.编制技术方案依据的技术文件《电力建设消除施工质量通病守则》《火电施工质量检验及评定标准》土建工程篇《电力建设施工及验收技术规范》SDJ69-87《电力建设安全工作规程》第一部分:火力发电厂,DL5009.1-2002《电力建设安全健康与环境管理工作规定》国电电源[2002]49号《混凝土结构工程施工质量验收规范》GB50204-2002《厂区独立避雷针及照明平台施工图》10-F038S-T0447《混凝土结构工程施工质量验收规范》GB50204-2002《人工回填土施工工艺规程》Q/JDJFW102.102-2004《1#机组基础外防腐工程施工技术方案》O-WD1-JZ-FF-A13.施工应具备的条件3.1施工现场场地平整完成,临时道路畅通,水源、电源引至使用地点,经测试后满足施工要求。

3.2建立测量控制网,并经甲方、监理等验收合格。

3.3对进场的所有施工人员进行了三级安全教育,特殊工种作业人员已经经过培训合格,持证上岗。

3.4钢筋、水泥、砂、石、外加剂等施工原材料根据材料计划准备充足,同时完成必要的复试和检验。

地面爆破材料库场地施工组织设计

地面爆破材料库场地施工组织设计

目录编制依据及编制说明- 0 -第一章工程概况- 1 -第二章项目管理机构及其职责- 3 -第三章施工准备工作计划- 7 -第四章施工部署及现场平面布置- 10 -第五章施工方案- 14 -第六章季节性施工措施- 22 -第七章工期目标及保证措施- 24 -第八章工程质量管理目标及保证措施- 27 -第九章施工安全管理目标及保证安全措施- 32 -第十章文明施工目标及保证措施- 35 -第十一章新工艺、新技术、新材料- 35 -第十二章劳动力组织- 36 -第十三章主要材料需用量计划- 39 -第十四章主要机械设备配置计- 39 -陕西德源府谷三道沟煤矿地面建筑施工组织设计地面爆破材料库场地工程编制依据:一、陕西德源府谷三道沟煤矿地面建筑工程FMISG0904-03标“地面爆破材料库场地”设计图纸及采用的标准图集二、陕西德源府谷三道沟煤矿地面建筑工程FMISG0904-03标“地面爆破材料库场地”招标文件三、建筑工程施工质量验收统一标准(GB50300-2001)四、现行施工验收规范、规程及技术标准五、《建设工程质量管理条例》、《建设工程安全生产管理条例》六、本企业的质量手册、程序文件及管理制度七、现场勘察资料及本工程的施工条件八、同类工程的施工经验和相关技术经济资料编制说明:一、本施工组织设计作为该工程项目施工的综合性指导文件,是施工技术人员在熟悉图纸和工程特点的基础上,为了确保本工程施工工期、质量、安全等目标的实现,经过认真策划、集思广益编制而成,是本企业施工管理技术水平的充分体现。

二、本施工组织设计着重于施工总体部署、项目管理机构、施工资源配置、现场平面布置、施工方案和方法、施工进度以及质量和安全控制等方面的阐述。

三、编制副导思想是在保证施工质量、进度及安全生产的前提下,对各分部分项工程和检验批制定有效可行的技术措施、质量控制和通病综合防治措施,并积极采用新工艺、新技术,确保创建市级文明工地,为陕西德源府谷三道沟煤矿建设增光添彩。

避雷针知识

避雷针知识

避雷针知识避雷针塔的基本知识避雷针塔的设置原则(1)独立避雷针与被保护物之间应有不小于5m距离,以免雷击避雷针时出现反击。

独立避雷针宜设独立的接地装置,与接地网间地中距离不小于3m。

(2)35kV及以下高压配电装置构架及房顶上不宜装设避雷针。

装在构架上的避雷针应与接地网相连,并装设集中接地装置。

(3)变压器的门型构架上不应安装避雷针。

(4)避雷针及接地装置距道路及出口距离应大于3m,否则应铺碎石或沥青面5~8cm厚,以保人身不受跨步电压危害。

(5)严禁将架空照明线、电话线、广播线、天线等装在避雷针或构架上。

(6)如在独立避雷针或构架上装设照明灯,其电源线必须使用铅皮电缆或穿入钢管,并直接埋入地中长度10m以上。

塔式避雷针的介绍由于避雷针根据保护范围的要求,需要一定的安装高度,后来在此基础上就有了避雷针塔,也就是塔式避雷针(避雷塔),常见有以下几种规格:GFL角钢避雷针塔、GJT圆钢避雷针塔、GH钢管杆避雷针塔等多种形式的金属塔。

避雷针塔的保护范围还要按照滚球法来计算保护半径和保护范围。

避雷塔的工作原理在雷雨天气,高楼上空出现带电云层时,避雷针和高楼顶部都被感应上大量电荷,由于避雷针针头是尖的,所以静电感应时,导体尖端总是聚集了最多的电荷。

这样,避雷针就聚集了大部分电荷。

避雷针又与这些带电云层形成了一个电容器,由于它较尖,即这个电容器的两极板正对面积很小,电容也就很小,也就是说它所能容纳的电荷很少。

而它又聚集了大部分电荷,所以,当云层上电荷较多时,避雷针与云层之间的空气就很容易被击穿,成为导体。

这样,带电云层与避雷针形成通路,而避雷针又是接地的,避雷针就可以把云层上的电荷导入大地,使其不对高层建筑构成危险,保证了它的安全。

避雷针制作与安装注意的质量问题焊接处一不饱满,焊药处理不干净,漏刷防锈漆。

应及时予以补焊,将药皮敲掉,刷上防锈漆。

针体弯曲,安装的垂直度超出允许偏差。

应将针体重新调直,符合要求后再安装独立避雷针及其接地装置与道路或建筑物的出入口保护距离不符合规定。

30m独立避雷针的安装施工方案

封面作者:PanHongliang仅供个人学习独立避雷针的安装施工方案独立避雷针是保证银星一井光伏电站和人身、设备免受雷击灾害所必须采取的重要技术措施。

银星一井光伏电站建设时根据所需保护的建筑、构架以及设备分布情况进行避雷针防雷保护。

一. 根据设计单位计算,银星一井光伏电站新建工程将安装1 根30M 高的独立避雷针,由于30M高的独立避雷针高度较高,重量大约(1.2625 T),且靠近带电线路,因此,作业难度较大,特制定本施工方案。

二. 施工时间此项工程总体时间计划:2016年6月6日至2016年6月8日三. 施工内容及主要质量控制要点(—)施工准备(1)技术准备。

I)图纸会检:严格按照国家电网公司《电力建设工程施工技术管理导则》的要求做好图纸会检工作,主要有下列几项:a.施工图纸与设备、原材料的技术要求是否一致;b・图纸表达深度能否满足施工需要;c・施工图之间和总分图之间、总分尺寸之间有无矛盾;d・设计采用的四新在施工技术、机具W物资供应上有无困难。

(I)复核避雷针的基础轴线、标高、地脚螺栓的规格是否符合设计要求。

(2)基础顶面的支承面、地脚螺栓位置的质量标准应符合:I)支承面的标高偏差:<±3.Omm ;2)支承面的平整度偏差:s5mm ;3)相邻螺栓中心偏移:<2.Omm o(三)构件排杆、组装(I )根据图纸轴线和厂家构件安装说明,制定〃构件平面排杆图"。

(2 )构件运输、卸车排放时组装场地应平整、坚实,按照"构件平面排杆图"一次就近堆放,尽量减少场内二次倒运。

(3)排杆时应将构件垫平、排直,每段钢柱应保证不少于两个支点垫实。

(4 )避雷针组装。

1)组装时用道木将其垫平、排直,每段钢柱两端保证两根道木垫实,道木应保证在同一平面上,同时应检查和处理钢管接触面上的锌瘤或其他影响节点接触的附着物。

组装后,对柱身长度、柱的弯曲矢高进行测量。

2)上下两节钢管插入深度要求:必须满足大于外套入段最大内径1.5倍。

10米钢管避雷针说明书

10米钢管避雷针使用说明书河南汇龙合金材料有限公司产品介绍通用电感避雷针能将有可能击中受保护物体的直击雷引至避雷针处,由接闪器接闪,并通过避雷针对空中放电逐步减弱雷电流,剩余雷电流通过引下结构将雷电流疏导入地进行泄流,在雷击时,利用感抗器件减缓雷电流冲击,降低脉冲幅度,延长放电时间,从而降低雷电流波形的陡度,降低雷电流冲击破坏能力,抑制削弱地电位反击和二次雷击效应对电子电器设备的冲击损害.适用于民用建筑物、别墅、小高层商用建筑、酒店、古建筑等场所,从而避免被保护物体免遭直击雷的侵袭。

二、产品参数:最大放电电流:300KA抗风强度:40m/s针径:Φ50mm 76mm总高:10000mm(可定制)材质:不锈钢避雷针,热镀锌杆体三、产品特点:■接闪器采用不锈钢;■抗腐蚀,外形美观,色泽亮丽;■防侧击;■结构坚固、抗风能力强;■通流容量大、抗雷电冲击能力强;■大幅度衰减冲击电流幅度;■模拟实验中延缓冲击电流陡度10倍以上;四、安装使用:1、安装方法:开启包装后,将避雷针下部放置于预留的安装位置上,使用M16×100的不锈钢螺栓配件安装紧固,也可根据需要进行焊接连接。

2、安装注意事项:■需确保避雷针与引下部分可靠的电气连接;■系统接地良好,其接地电阻应小于10欧姆;■被保护范围应根据《建筑物防雷设计规范》相关规定的滚球法进行计算。

避雷针安装方法简述:(建筑现场情况不同,安装方法也略有不同)采用独立避雷针保护时,避雷针尽量安装在屋顶靠中间最高位置。

如果避雷针保护面积不够,应采用多根避雷针保护。

避雷针应垂直固定牢固,垂直度允许偏差3/1000。

屋顶突起金属装置,应可靠于避雷针连接。

基座法兰用不少于4个M16*100膨胀螺栓牢固固定屋顶混凝土上,也可根据法兰盘孔位先做预埋件,基座法兰直接焊接在预埋件螺栓上。

避雷针引下装置:如屋顶柱子已经预留建筑物主钢筋,避雷针基座法兰用镀锌圆钢Φ12或镀锌扁钢25*4和建筑物主钢筋可靠的电气连接,焊接不少于对角2处预留引下主钢筋,焊接后涂抹沥青。

2016年最新[精品文档]GH钢管杆避雷针安装过程图解13米15米17米19米21米25米30米避雷针塔安装步骤全过程

GH环形钢管杆独立避雷针安装过程(13米15米17米19米21米25米30米40米)避雷针塔安装步骤GH钢管杆避雷针安装说明书1、GH环形钢管杆避雷针安装实例图及说明2、安装前需要准备的安装工具和材料3、装配及安装GH环形钢管杆避雷针4、安装注意事项1、GH环形钢管杆避雷针安装实例图及说明2、安装前需要准备的安装工具和材料(1)3吨以上叉车一部(2)大活动扳手1把(适合地脚螺母用)(3)22-24开口扳手1把(4)14-17开口扳手1把(5)10磅铁锤1把(6)16厘钢丝绳45米(7)16厘钢丝绳锁头8个(8)手拉葫芦2个(3-5吨)(9)25吨吊车一部(安装针杆用)(10)76*3.5铁管1.5米/条2条(11)150以上9.35铁管0.6米/条6条(12)枕木4块3、装配及安装GH环形钢管杆避雷针第一步:把针杆平放在地上,用直径150以上的圆钢管和枕木垫平、垫直,使两节杆在一条直线上(焊缝对焊缝)。

第二步:把主钢绳穿到杆底(每套针4条不锈钢钢丝绳,其中有1条大的为主钢绳,另外3条小的为副钢绳)第三步:两只拉力为3-5吨的葫芦,放在针杆的两侧,两条16的钢绳按如图放置,锁好钢绳之后,两边同时缓慢均匀用力拉葫芦,套接深度为700mm左右(不同的杆体套接深度不一样)拉的时候要注意保持两节针杆在一条直线上,拉不动时,用10磅的大锤,在针杆接口处(针杆的两侧和上侧均衡用力)敲打几下,再拉紧,再敲打,直到拉紧为止。

第四步:两段或是三段针杆全部套紧后,用扳手把顶部避雷针安装上。

第五步:吊装,吊装过程注意人员安全。

第六步:焊接底线,保证接地导通。

GH-30环形钢管杆独立避雷针点击看大图---------------------------------------------------------------范文最新推荐------------------------------------------------------度党支部工作总结[度党支部工作总结] XX年度党支部工作总结XX年,我支部认真努力践行“三个代表”重要思想,树立和落实科学发展观,贯彻落实十六届五中全会精神,认真贯彻党委工作部署,进一步加强党的思想、组织和作风建设,充分发挥党支部战斗堡垒作用,立足办公室本职,放眼全局工作,勤政实干,团结协作,以先锋模范带头作用凝聚力量,努力做到办文办事快捷稳妥,信息传递及时准确,宣传有声有色,调查研究提供依据,内部协调规范顺畅,为确保全局政令畅通、工作顺利开展打下了良好基础,度党支部工作总结。

30米钢管避雷针设计安装图纸

主材 (钢管)
7米
5
7米
6
7米
6
7米
8
30000
壁厚t 上口径d 下口径D
150
总重量
(Kg)
D
保护范围计算:(依据GB50057-2010附录D) 以下是在地面上的保护范围 保护半径Rx=√h(2hr-h)-√hx(2hr-hx)。 1.一类防雷建筑物,滚球半径hr取30m; 式中h=30m,hx=0m,hr=30m; 带入数据得:Rx=30m. 2.二类防雷建筑物,滚球半径hr取45m; 式中h=30m,hx=0m,hr=45m; 带入数据得:Rx=42.43m. 3.三类防雷建筑物,滚球半径hr取60m; 式中h=30m,hx=0m,hr=60m; 带入数据得:Rx=51.96m.
注: 1.钢管材料使用Q235B热镀锌钢板。 2.风压W=0.4KN/m²,基础使用KJD-4。 3.各段之间为插接式,插入总长度为2米,各段参数见下表 (个别参数在加工过程中可能产生偏差,但在正常许可范围内)。
2000
W=0.4KN/m²
B
段别
A段
材 料 规 格
长度
注: 1.接地网为环形,直径4米,接地网要与基 础内配筋、预埋件可靠焊接,并且引出两 根接地线与避雷针底部接地点可靠连接。 2.垂直接地体采用接地模块PTD-3,数量4 块。 3.土质差的地区要适当增加降阻剂。 4.避雷针接地网电阻值要求不大于10欧。
KJD-4 基础
设计单位 制 审 图 核
KWG-H2避雷塔针杆构造图
郑州普天防雷科技有限公司
设计证号 设 计 设计时间
乙21162011002 2015-01-21
694
534
150
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档